blob: b7399bd65a8ec43927ef7dacd6bb1cb32c20838a [file] [log] [blame]
/*
**************************************************************************
* Copyright (c) 2013 - 2015, The Linux Foundation. All rights reserved.
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all copies.
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
**************************************************************************
*/
/*
* nss_init.c
* NSS init APIs
*
*/
#include "nss_core.h"
#if (NSS_PM_SUPPORT == 1)
#include "nss_pm.h"
#endif
#include "nss_tx_rx_common.h"
#include "nss_data_plane.h"
#include <nss_hal.h>
#include <nss_clocks.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/proc_fs.h>
#include <linux/device.h>
#if (NSS_DT_SUPPORT == 1)
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/reset.h>
#else
#include <mach/msm_nss.h>
#endif
#include <linux/sysctl.h>
#include <linux/regulator/consumer.h>
#include <linux/clk.h>
#include <linux/firmware.h>
#include "nss_capwap.h"
/*
* Macros
*/
#define MIN_IMG_SIZE 64*1024
#define NETAP0_IMAGE "qca-nss0.bin"
#define NETAP1_IMAGE "qca-nss1.bin"
/*
* Global declarations
*/
int nss_ctl_redirect __read_mostly = 0;
int nss_ctl_debug __read_mostly = 0;
int nss_rps_cfg __read_mostly = 0;
int nss_ctl_logbuf __read_mostly = 0;
int nss_jumbo_mru __read_mostly = 0;
int nss_paged_mode __read_mostly = 0;
/*
* PM client handle
*/
#if (NSS_PM_SUPPORT == 1)
static void *pm_client;
#endif
/*
* Handler to send NSS messages
*/
struct clk *nss_core0_clk;
/*
* Top level nss context structure
*/
struct nss_top_instance nss_top_main;
struct nss_cmd_buffer nss_cmd_buf;
struct nss_runtime_sampling nss_runtime_samples;
struct workqueue_struct *nss_wq;
/*
* Work Queue to handle messages to Kernel
*/
nss_work_t *nss_work;
/*
* File local/Static variables/functions
*/
static const struct net_device_ops nss_netdev_ops;
static const struct ethtool_ops nss_ethtool_ops;
/*
* nss_dummy_netdev_setup()
* Dummy setup for net_device handler
*/
static void nss_dummy_netdev_setup(struct net_device *ndev)
{
}
/*
* nss_handle_irq()
* HLOS interrupt handler for nss interrupts
*/
static irqreturn_t nss_handle_irq (int irq, void *ctx)
{
struct int_ctx_instance *int_ctx = (struct int_ctx_instance *) ctx;
struct nss_ctx_instance *nss_ctx = int_ctx->nss_ctx;
/*
* Mask interrupt until our bottom half re-enables it
*/
nss_hal_disable_interrupt(nss_ctx->nmap, int_ctx->irq,
int_ctx->shift_factor, NSS_HAL_SUPPORTED_INTERRUPTS);
/*
* Schedule tasklet to process interrupt cause
*/
napi_schedule(&int_ctx->napi);
return IRQ_HANDLED;
}
#if (NSS_DT_SUPPORT == 1)
/*
* nss_drv_of_get_pdata()
* Retrieve platform data from device node.
*/
static struct nss_platform_data *nss_drv_of_get_pdata(struct device_node *np,
struct platform_device *pdev)
{
struct nss_platform_data *npd = NULL;
struct nss_ctx_instance *nss_ctx = NULL;
struct nss_top_instance *nss_top = &nss_top_main;
uint32_t val;
struct resource res_nphys, res_vphys;
int32_t i;
npd = devm_kzalloc(&pdev->dev, sizeof(struct nss_platform_data), GFP_KERNEL);
if (!npd) {
return NULL;
}
if (of_property_read_u32(np, "qcom,id", &npd->id)
|| of_property_read_u32(np, "qcom,rst_addr", &npd->rst_addr)
|| of_property_read_u32(np, "qcom,load_addr", &npd->load_addr)
|| of_property_read_u32(np, "qcom,turbo_frequency", &npd->turbo_frequency)
|| of_property_read_u32(np, "qcom,gmac0_enabled", &npd->gmac_enabled[0])
|| of_property_read_u32(np, "qcom,gmac1_enabled", &npd->gmac_enabled[1])
|| of_property_read_u32(np, "qcom,gmac2_enabled", &npd->gmac_enabled[2])
|| of_property_read_u32(np, "qcom,gmac3_enabled", &npd->gmac_enabled[3])
|| of_property_read_u32(np, "qcom,num_irq", &npd->num_irq)) {
pr_err("%s: error reading critical device node properties\n", np->name);
goto out;
}
nss_ctx = &nss_top->nss[npd->id];
nss_ctx->id = npd->id;
if (of_address_to_resource(np, 0, &res_nphys) != 0) {
nss_info("%p: nss%d: of_address_to_resource() fail for nphys \n", nss_ctx, nss_ctx->id);
goto out;
}
if (of_address_to_resource(np, 1, &res_vphys) != 0) {
nss_info("%p: nss%d: of_address_to_resource() fail for vphys \n", nss_ctx, nss_ctx->id);
goto out;
}
/*
* Save physical addresses
*/
npd->nphys = res_nphys.start;
npd->vphys = res_vphys.start;
npd->nmap = (uint32_t)ioremap_nocache(npd->nphys, resource_size(&res_nphys));
if (!npd->nmap) {
nss_info("%p: nss%d: ioremap() fail for nphys \n", nss_ctx, nss_ctx->id);
goto out;
}
npd->vmap = (uint32_t)ioremap_nocache(npd->vphys, resource_size(&res_vphys));
if (!npd->vmap) {
nss_info("%p: nss%d: ioremap() fail for vphys \n", nss_ctx, nss_ctx->id);
goto out;
}
/*
* Clear TCM memory used by this core
*/
for (i = 0; i < resource_size(&res_vphys) ; i += 4) {
nss_write_32((uint32_t)npd->vmap, i, 0);
}
/*
* Get IRQ numbers
*/
for (val = 0 ; val < npd->num_irq ; val++) {
npd->irq[val] = irq_of_parse_and_map(np, val);
if (!npd->irq[val]) {
nss_info("%p: nss%d: irq_of_parse_and_map() fail for irq %d\n",
nss_ctx, nss_ctx->id, val);
goto out;
}
}
if (of_property_read_u32(np, "qcom,ipv4_enabled", &npd->ipv4_enabled)
|| of_property_read_u32(np, "qcom,ipv6_enabled", &npd->ipv6_enabled)
|| of_property_read_u32(np, "qcom,l2switch_enabled", &npd->l2switch_enabled)
|| of_property_read_u32(np, "qcom,crypto_enabled", &npd->crypto_enabled)
|| of_property_read_u32(np, "qcom,ipsec_enabled", &npd->ipsec_enabled)
|| of_property_read_u32(np, "qcom,wlan_enabled", &npd->wlan_enabled)
|| of_property_read_u32(np, "qcom,tun6rd_enabled", &npd->tun6rd_enabled)
|| of_property_read_u32(np, "qcom,tunipip6_enabled", &npd->tunipip6_enabled)
|| of_property_read_u32(np, "qcom,shaping_enabled", &npd->shaping_enabled)) {
pr_warn("%s: error reading non-critical device node properties\n", np->name);
}
return npd;
out:
if (npd->nmap) {
iounmap((void *)npd->nmap);
}
if (npd->vmap) {
iounmap((void *)npd->vmap);
}
devm_kfree(&pdev->dev, npd);
return NULL;
}
#endif
/*
* nss_probe()
* HLOS device probe callback
*/
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(3,7,0))
static int __devinit nss_probe(struct platform_device *nss_dev)
#else
static int nss_probe(struct platform_device *nss_dev)
#endif
{
struct nss_top_instance *nss_top = &nss_top_main;
struct nss_ctx_instance *nss_ctx = NULL;
struct nss_platform_data *npd = NULL;
struct netdev_priv_instance *ndev_priv;
#if (NSS_DT_SUPPORT == 1)
struct reset_control *rstctl = NULL;
#endif
int i, err = 0;
const struct firmware *nss_fw = NULL;
int rc = -ENODEV;
void __iomem *load_mem;
#if (NSS_DT_SUPPORT == 1)
struct device_node *np = NULL;
if (nss_top_main.nss_hal_common_init_done == false) {
/*
* Perform clock init common to all NSS cores
*/
struct clk *nss_tcm_src = NULL;
struct clk *nss_tcm_clk = NULL;
/*
* Attach debug interface to TLMM
*/
nss_write_32((uint32_t)nss_top_main.nss_fpb_base, NSS_REGS_FPB_CSR_CFG_OFFSET, 0x360);
/*
* NSS TCM CLOCK
*/
nss_tcm_src = clk_get(&nss_dev->dev, NSS_TCM_SRC_CLK);
if (IS_ERR(nss_tcm_src)) {
pr_err("nss-driver: cannot get clock: " NSS_TCM_SRC_CLK);
return -EFAULT;
}
clk_set_rate(nss_tcm_src, NSSTCM_FREQ);
clk_prepare(nss_tcm_src);
clk_enable(nss_tcm_src);
nss_tcm_clk = clk_get(&nss_dev->dev, NSS_TCM_CLK);
if (IS_ERR(nss_tcm_clk)) {
pr_err("nss-driver: cannot get clock: " NSS_TCM_CLK);
return -EFAULT;
}
clk_prepare(nss_tcm_clk);
clk_enable(nss_tcm_clk);
nss_top_main.nss_hal_common_init_done = true;
nss_info("nss_hal_common_reset Done.\n");
}
if (nss_dev->dev.of_node) {
/*
* Device Tree based init
*/
np = of_node_get(nss_dev->dev.of_node);
npd = nss_drv_of_get_pdata(np, nss_dev);
of_node_put(np);
if (!npd) {
return -EFAULT;
}
nss_ctx = &nss_top->nss[npd->id];
nss_ctx->id = npd->id;
nss_dev->id = nss_ctx->id;
} else {
/*
* Platform Device based init
*/
npd = (struct nss_platform_data *) nss_dev->dev.platform_data;
nss_ctx = &nss_top->nss[nss_dev->id];
nss_ctx->id = nss_dev->id;
}
#else
npd = (struct nss_platform_data *) nss_dev->dev.platform_data;
nss_ctx = &nss_top->nss[nss_dev->id];
nss_ctx->id = nss_dev->id;
#endif
nss_ctx->nss_top = nss_top;
nss_info("%p: NSS_DEV_ID %s \n", nss_ctx, dev_name(&nss_dev->dev));
/*
* F/W load from NSS Driver
*/
if (nss_ctx->id == 0) {
rc = request_firmware(&nss_fw, NETAP0_IMAGE, &(nss_dev->dev));
} else if (nss_ctx->id == 1) {
rc = request_firmware(&nss_fw, NETAP1_IMAGE, &(nss_dev->dev));
} else {
nss_warning("%p: Invalid nss dev: %d \n", nss_ctx, nss_dev->id);
}
/*
* Check if the file read is successful
*/
if (rc) {
nss_warning("%p: request_firmware failed with err code: %d", nss_ctx, rc);
err = rc;
goto err_init_0;
}
if (nss_fw->size < MIN_IMG_SIZE) {
nss_warning("%p: nss firmware is truncated, size:%d", nss_ctx, nss_fw->size);
}
load_mem = ioremap_nocache(npd->load_addr, nss_fw->size);
if (load_mem == NULL) {
nss_warning("%p: ioremap_nocache failed: %x", nss_ctx, npd->load_addr);
release_firmware(nss_fw);
goto err_init_0;
}
printk("nss_driver - fw of size %u bytes copied to load addr: %x, nss_id : %d\n", nss_fw->size, npd->load_addr, nss_dev->id);
memcpy_toio(load_mem, nss_fw->data, nss_fw->size);
release_firmware(nss_fw);
iounmap(load_mem);
/*
* Both NSS cores controlled by same regulator, Hook only Once
*/
if (!nss_ctx->id) {
nss_core0_clk = clk_get(&nss_dev->dev, "nss_core_clk");
if (IS_ERR(nss_core0_clk)) {
err = PTR_ERR(nss_core0_clk);
nss_info("%p: Regulator %s get failed, err=%d\n", nss_ctx, dev_name(&nss_dev->dev), err);
return err;
}
/*
* Check if turbo is supported
*/
if (npd->turbo_frequency) {
/*
* Turbo is supported
*/
printk("nss_driver - Turbo Support %d\n", npd->turbo_frequency);
#if (NSS_PM_SUPPORT == 1)
nss_pm_set_turbo();
#endif
} else {
printk("nss_driver - Turbo No Support %d\n", npd->turbo_frequency);
}
nss_runtime_samples.freq_scale[NSS_FREQ_LOW_SCALE].frequency = 0;
nss_runtime_samples.freq_scale[NSS_FREQ_MID_SCALE].frequency = 0;
nss_runtime_samples.freq_scale[NSS_FREQ_HIGH_SCALE].frequency = 0;
/*
* Load default scales, then query for higher.
* If basic set cannot be set, then go to error, and abort
* Two set of defaults, 110, 550, 733 or 110, 275 and 550
*/
if (clk_set_rate(nss_core0_clk, NSS_FREQ_110) != 0) {
goto err_init_0;
}
nss_runtime_samples.freq_scale[NSS_FREQ_LOW_SCALE].frequency = NSS_FREQ_110;
nss_runtime_samples.freq_scale[NSS_FREQ_LOW_SCALE].minimum = NSS_FREQ_110_MIN;
nss_runtime_samples.freq_scale[NSS_FREQ_LOW_SCALE].maximum = NSS_FREQ_110_MAX;
if (npd->turbo_frequency) {
/*
* Figure out the middle scale
*/
if (clk_set_rate(nss_core0_clk, NSS_FREQ_600) == 0) {
nss_runtime_samples.freq_scale[NSS_FREQ_MID_SCALE].frequency = NSS_FREQ_600;
nss_runtime_samples.freq_scale[NSS_FREQ_MID_SCALE].minimum = NSS_FREQ_600_MIN;
nss_runtime_samples.freq_scale[NSS_FREQ_MID_SCALE].maximum = NSS_FREQ_600_MAX;
}else if (clk_set_rate(nss_core0_clk, NSS_FREQ_550) == 0) {
nss_runtime_samples.freq_scale[NSS_FREQ_MID_SCALE].frequency = NSS_FREQ_550;
nss_runtime_samples.freq_scale[NSS_FREQ_MID_SCALE].minimum = NSS_FREQ_550_MIN;
nss_runtime_samples.freq_scale[NSS_FREQ_MID_SCALE].maximum = NSS_FREQ_550_MAX;
} else {
goto err_init_0;
}
/*
* Figure out the max scale
*/
if (clk_set_rate(nss_core0_clk, NSS_FREQ_800) == 0) {
nss_runtime_samples.freq_scale[NSS_FREQ_HIGH_SCALE].frequency = NSS_FREQ_800;
nss_runtime_samples.freq_scale[NSS_FREQ_HIGH_SCALE].minimum = NSS_FREQ_800_MIN;
nss_runtime_samples.freq_scale[NSS_FREQ_HIGH_SCALE].maximum = NSS_FREQ_800_MAX;
} else if (clk_set_rate(nss_core0_clk, NSS_FREQ_733) == 0) {
nss_runtime_samples.freq_scale[NSS_FREQ_HIGH_SCALE].frequency = NSS_FREQ_733;
nss_runtime_samples.freq_scale[NSS_FREQ_HIGH_SCALE].minimum = NSS_FREQ_733_MIN;
nss_runtime_samples.freq_scale[NSS_FREQ_HIGH_SCALE].maximum = NSS_FREQ_733_MAX;
} else {
goto err_init_0;
}
} else {
if (clk_set_rate(nss_core0_clk, NSS_FREQ_275) != 0) {
goto err_init_0;
}
nss_runtime_samples.freq_scale[NSS_FREQ_MID_SCALE].frequency = NSS_FREQ_275;
nss_runtime_samples.freq_scale[NSS_FREQ_MID_SCALE].minimum = NSS_FREQ_275_MIN;
nss_runtime_samples.freq_scale[NSS_FREQ_MID_SCALE].maximum = NSS_FREQ_275_MAX;
if (clk_set_rate(nss_core0_clk, NSS_FREQ_550) != 0) {
goto err_init_0;
}
nss_runtime_samples.freq_scale[NSS_FREQ_HIGH_SCALE].frequency = NSS_FREQ_550;
nss_runtime_samples.freq_scale[NSS_FREQ_HIGH_SCALE].minimum = NSS_FREQ_550_MIN;
nss_runtime_samples.freq_scale[NSS_FREQ_HIGH_SCALE].maximum = NSS_FREQ_550_MAX;
}
printk("Supported Frequencies - ");
for (i = 0; i < NSS_FREQ_MAX_SCALE; i++) {
if (nss_runtime_samples.freq_scale[i].frequency == NSS_FREQ_110) {
printk("110Mhz ");
} else if (nss_runtime_samples.freq_scale[i].frequency == NSS_FREQ_275) {
printk("275Mhz ");
} else if (nss_runtime_samples.freq_scale[i].frequency == NSS_FREQ_550) {
printk("550Mhz ");
} else if (nss_runtime_samples.freq_scale[i].frequency == NSS_FREQ_600) {
printk("600Mhz ");
} else if (nss_runtime_samples.freq_scale[i].frequency == NSS_FREQ_733) {
printk("733Mhz ");
} else if (nss_runtime_samples.freq_scale[i].frequency == NSS_FREQ_800) {
printk("800Mhz ");
} else {
printk("Error \nNo Table/Invalid Frequency Found - Loading Old Tables - ");
goto err_init_0;
}
}
printk("\n");
/*
* Set default frequency
*/
clk_set_rate(nss_core0_clk, nss_runtime_samples.freq_scale[NSS_FREQ_MID_SCALE].frequency);
clk_prepare(nss_core0_clk);
clk_enable(nss_core0_clk);
}
/*
* Get load address of NSS firmware
*/
nss_info("%p: Setting NSS%d Firmware load address to %x\n", nss_ctx, nss_ctx->id, npd->load_addr);
nss_top->nss[nss_ctx->id].load = npd->load_addr;
/*
* Get virtual and physical memory addresses for nss logical/hardware address maps
*/
/*
* Virtual address of CSM space
*/
nss_ctx->nmap = npd->nmap;
nss_assert(nss_ctx->nmap);
/*
* Physical address of CSM space
*/
nss_ctx->nphys = npd->nphys;
nss_assert(nss_ctx->nphys);
/*
* Virtual address of logical registers space
*/
nss_ctx->vmap = npd->vmap;
nss_assert(nss_ctx->vmap);
/*
* Physical address of logical registers space
*/
nss_ctx->vphys = npd->vphys;
nss_assert(nss_ctx->vphys);
nss_info("%d:ctx=%p, vphys=%x, vmap=%x, nphys=%x, nmap=%x",
nss_ctx->id, nss_ctx, nss_ctx->vphys, nss_ctx->vmap, nss_ctx->nphys, nss_ctx->nmap);
/*
* Register netdevice handlers
*/
nss_ctx->int_ctx[0].ndev = alloc_netdev(sizeof(struct netdev_priv_instance),
"qca-nss-dev%d", nss_dummy_netdev_setup);
if (nss_ctx->int_ctx[0].ndev == NULL) {
nss_warning("%p: Could not allocate net_device #0", nss_ctx);
err = -ENOMEM;
goto err_init_0;
}
nss_ctx->int_ctx[0].ndev->netdev_ops = &nss_netdev_ops;
nss_ctx->int_ctx[0].ndev->ethtool_ops = &nss_ethtool_ops;
err = register_netdev(nss_ctx->int_ctx[0].ndev);
if (err) {
nss_warning("%p: Could not register net_device #0", nss_ctx);
goto err_init_1;
}
/*
* request for IRQs
*
* WARNING: CPU affinities should be set using OS supported methods
*/
nss_ctx->int_ctx[0].nss_ctx = nss_ctx;
nss_ctx->int_ctx[0].shift_factor = 0;
nss_ctx->int_ctx[0].irq = npd->irq[0];
err = request_irq(npd->irq[0], nss_handle_irq, IRQF_DISABLED, "nss", &nss_ctx->int_ctx[0]);
if (err) {
nss_warning("%d: IRQ0 request failed", nss_dev->id);
goto err_init_2;
}
/*
* Register NAPI for NSS core interrupt #0
*/
ndev_priv = netdev_priv(nss_ctx->int_ctx[0].ndev);
ndev_priv->int_ctx = &nss_ctx->int_ctx[0];
netif_napi_add(nss_ctx->int_ctx[0].ndev, &nss_ctx->int_ctx[0].napi, nss_core_handle_napi, 64);
napi_enable(&nss_ctx->int_ctx[0].napi);
nss_ctx->int_ctx[0].napi_active = true;
/*
* Check if second interrupt is supported on this nss core
*/
if (npd->num_irq > 1) {
nss_info("%d: This NSS core supports two interrupts", nss_dev->id);
/*
* Register netdevice handlers
*/
nss_ctx->int_ctx[1].ndev = alloc_netdev(sizeof(struct netdev_priv_instance),
"qca-nss-dev%d", nss_dummy_netdev_setup);
if (nss_ctx->int_ctx[1].ndev == NULL) {
nss_warning("%p: Could not allocate net_device #1", nss_ctx);
err = -ENOMEM;
goto err_init_3;
}
nss_ctx->int_ctx[1].ndev->netdev_ops = &nss_netdev_ops;
nss_ctx->int_ctx[1].ndev->ethtool_ops = &nss_ethtool_ops;
err = register_netdev(nss_ctx->int_ctx[1].ndev);
if (err) {
nss_warning("%p: Could not register net_device #1", nss_ctx);
goto err_init_4;
}
nss_ctx->int_ctx[1].nss_ctx = nss_ctx;
nss_ctx->int_ctx[1].shift_factor = 15;
nss_ctx->int_ctx[1].irq = npd->irq[1];
err = request_irq(npd->irq[1], nss_handle_irq, IRQF_DISABLED, "nss", &nss_ctx->int_ctx[1]);
if (err) {
nss_warning("%d: IRQ1 request failed for nss", nss_dev->id);
goto err_init_5;
}
/*
* Register NAPI for NSS core interrupt #1
*/
ndev_priv = netdev_priv(nss_ctx->int_ctx[1].ndev);
ndev_priv->int_ctx = &nss_ctx->int_ctx[1];
netif_napi_add(nss_ctx->int_ctx[1].ndev, &nss_ctx->int_ctx[1].napi, nss_core_handle_napi, 64);
napi_enable(&nss_ctx->int_ctx[1].napi);
nss_ctx->int_ctx[1].napi_active = true;
}
spin_lock_bh(&(nss_top->lock));
/*
* Check functionalities are supported by this NSS core
*/
if (npd->shaping_enabled == NSS_FEATURE_ENABLED) {
nss_top->shaping_handler_id = nss_dev->id;
nss_info("%d: NSS shaping is enabled", nss_dev->id);
}
if (npd->ipv4_enabled == NSS_FEATURE_ENABLED) {
nss_top->ipv4_handler_id = nss_dev->id;
nss_ipv4_register_handler();
nss_pppoe_register_handler();
nss_eth_rx_register_handler();
nss_n2h_register_handler();
nss_virt_if_register_handler();
nss_lag_register_handler();
nss_dynamic_interface_register_handler();
nss_top->capwap_handler_id = nss_dev->id;
nss_capwap_init();
for (i = 0; i < NSS_MAX_VIRTUAL_INTERFACES; i++) {
nss_top->virt_if_handler_id[i] = nss_dev->id;
}
nss_top->dynamic_interface_table[NSS_DYNAMIC_INTERFACE_TYPE_802_3_REDIR] = nss_dev->id;
}
if (npd->ipv4_reasm_enabled == NSS_FEATURE_ENABLED) {
nss_top->ipv4_reasm_handler_id = nss_dev->id;
nss_ipv4_reasm_register_handler();
}
if (npd->ipv6_enabled == NSS_FEATURE_ENABLED) {
nss_top->ipv6_handler_id = nss_dev->id;
nss_ipv6_register_handler();
}
if (npd->crypto_enabled == NSS_FEATURE_ENABLED) {
nss_top->crypto_enabled = 1;
nss_top->crypto_handler_id = nss_dev->id;
nss_crypto_register_handler();
}
if (npd->ipsec_enabled == NSS_FEATURE_ENABLED) {
nss_top->ipsec_handler_id = nss_dev->id;
nss_ipsec_register_handler();
}
if (npd->wlan_enabled == NSS_FEATURE_ENABLED) {
nss_top->wlan_handler_id = nss_dev->id;
}
if (npd->tun6rd_enabled == NSS_FEATURE_ENABLED) {
nss_top->tun6rd_handler_id = nss_dev->id;
}
if (npd->tunipip6_enabled == NSS_FEATURE_ENABLED) {
nss_top->tunipip6_handler_id = nss_dev->id;
nss_tunipip6_register_handler();
}
if (npd->gre_redir_enabled == NSS_FEATURE_ENABLED) {
nss_top->gre_redir_handler_id = nss_dev->id;
nss_top->dynamic_interface_table[NSS_DYNAMIC_INTERFACE_TYPE_GRE_REDIR] = nss_dev->id;
nss_gre_redir_register_handler();
nss_sjack_register_handler();
}
/*
* Mark data plane enabled so when nss core init done we call register to nss-gmac
*/
for (i = 0 ; i < NSS_MAX_PHYSICAL_INTERFACES ; i ++) {
if (npd->gmac_enabled[i] == NSS_FEATURE_ENABLED) {
nss_data_plane_set_enabled(i);
}
}
#if (NSS_FREQ_SCALE_SUPPORT == 1)
nss_freq_register_handler();
#endif
nss_lso_rx_register_handler();
nss_top->frequency_handler_id = nss_dev->id;
spin_unlock_bh(&(nss_top->lock));
/*
* Initialize decongestion callbacks to NULL
*/
for (i = 0; i< NSS_MAX_CLIENTS; i++) {
nss_ctx->queue_decongestion_callback[i] = 0;
nss_ctx->queue_decongestion_ctx[i] = 0;
}
spin_lock_init(&(nss_ctx->decongest_cb_lock));
nss_ctx->magic = NSS_CTX_MAGIC;
nss_info("%p: Reseting NSS core %d now", nss_ctx, nss_ctx->id);
/*
* Enable clocks and bring NSS core out of reset
*/
#if (NSS_DT_SUPPORT == 1)
/*
* Remove UBI32 reset clamp
*/
rstctl = devm_reset_control_get(&nss_dev->dev, "clkrst_clamp");
if (IS_ERR(rstctl)) {
nss_info("%p: Deassert UBI32 reset clamp failed", nss_ctx, nss_ctx->id);
err = -EFAULT;
goto err_init_5;
}
reset_control_deassert(rstctl);
mdelay(1);
reset_control_put(rstctl);
/*
* Remove UBI32 core clamp
*/
rstctl = devm_reset_control_get(&nss_dev->dev, "clamp");
if (IS_ERR(rstctl)) {
nss_info("%p: Deassert UBI32 core clamp failed", nss_ctx, nss_ctx->id);
err = -EFAULT;
goto err_init_5;
}
reset_control_deassert(rstctl);
mdelay(1);
reset_control_put(rstctl);
/*
* Remove UBI32 AHB reset
*/
rstctl = devm_reset_control_get(&nss_dev->dev, "ahb");
if (IS_ERR(rstctl)) {
nss_info("%p: Deassert AHB reset failed", nss_ctx, nss_ctx->id);
err = -EFAULT;
goto err_init_5;
}
reset_control_deassert(rstctl);
mdelay(1);
reset_control_put(rstctl);
/*
* Remove UBI32 AXI reset
*/
rstctl = devm_reset_control_get(&nss_dev->dev, "axi");
if (IS_ERR(rstctl)) {
nss_info("%p: Deassert AXI reset failed", nss_ctx, nss_ctx->id);
err = -EFAULT;
goto err_init_5;
}
reset_control_deassert(rstctl);
mdelay(1);
reset_control_put(rstctl);
nss_hal_core_reset(nss_ctx->nmap, nss_ctx->load);
#else
nss_hal_core_reset(nss_dev->id, nss_ctx->nmap, nss_ctx->load, nss_top->clk_src);
#endif
/*
* Enable interrupts for NSS core
*/
nss_hal_enable_interrupt(nss_ctx->nmap, nss_ctx->int_ctx[0].irq,
nss_ctx->int_ctx[0].shift_factor, NSS_HAL_SUPPORTED_INTERRUPTS);
if (npd->num_irq > 1) {
nss_hal_enable_interrupt(nss_ctx->nmap, nss_ctx->int_ctx[1].irq,
nss_ctx->int_ctx[1].shift_factor, NSS_HAL_SUPPORTED_INTERRUPTS);
}
/*
* Initialize max buffer size for NSS core
*/
nss_ctx->max_buf_size = NSS_NBUF_PAYLOAD_SIZE;
nss_info("%p: All resources initialized and nss core%d has been brought out of reset", nss_ctx, nss_dev->id);
goto err_init_0;
err_init_5:
unregister_netdev(nss_ctx->int_ctx[1].ndev);
err_init_4:
free_netdev(nss_ctx->int_ctx[1].ndev);
err_init_3:
free_irq(npd->irq[0], &nss_ctx->int_ctx[0]);
err_init_2:
unregister_netdev(nss_ctx->int_ctx[0].ndev);
err_init_1:
free_netdev(nss_ctx->int_ctx[0].ndev);
#if (NSS_DT_SUPPORT == 1)
if (nss_dev->dev.of_node) {
if (npd->nmap) {
iounmap((void *)npd->nmap);
}
if (npd->vmap) {
iounmap((void *)npd->vmap);
}
}
#endif
err_init_0:
#if (NSS_DT_SUPPORT == 1)
if (nss_dev->dev.of_node) {
devm_kfree(&nss_dev->dev, npd);
}
#endif
return err;
}
/*
* nss_remove()
* HLOS device remove callback
*/
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(3,7,0))
static int __devexit nss_remove(struct platform_device *nss_dev)
#else
static int nss_remove(struct platform_device *nss_dev)
#endif
{
struct nss_top_instance *nss_top = &nss_top_main;
struct nss_ctx_instance *nss_ctx = &nss_top->nss[nss_dev->id];
int i;
/*
* Clean-up debugfs
*/
nss_stats_clean();
/*
* Disable interrupts and bottom halves in HLOS
* Disable interrupts from NSS to HLOS
*/
nss_hal_disable_interrupt(nss_ctx->nmap, nss_ctx->int_ctx[0].irq,
nss_ctx->int_ctx[0].shift_factor, NSS_HAL_SUPPORTED_INTERRUPTS);
free_irq(nss_ctx->int_ctx[0].irq, &nss_ctx->int_ctx[0]);
unregister_netdev(nss_ctx->int_ctx[0].ndev);
free_netdev(nss_ctx->int_ctx[0].ndev);
/*
* Check if second interrupt is supported
* If so then clear resources for second interrupt as well
*/
if (nss_ctx->int_ctx[1].irq) {
nss_hal_disable_interrupt(nss_ctx->nmap, nss_ctx->int_ctx[1].irq,
nss_ctx->int_ctx[1].shift_factor, NSS_HAL_SUPPORTED_INTERRUPTS);
free_irq(nss_ctx->int_ctx[1].irq, &nss_ctx->int_ctx[1]);
unregister_netdev(nss_ctx->int_ctx[1].ndev);
free_netdev(nss_ctx->int_ctx[1].ndev);
}
/*
* nss-drv is exiting, remove from nss-gmac
*/
for (i = 0 ; i < NSS_MAX_PHYSICAL_INTERFACES ; i ++) {
if (nss_top->subsys_dp_register[i].ndev) {
nss_data_plane_unregister_from_nss_gmac(i);
}
}
#if (NSS_DT_SUPPORT == 1)
if (nss_dev->dev.of_node) {
if (nss_ctx->nmap) {
iounmap((void *)nss_ctx->nmap);
nss_ctx->nmap = 0;
}
if (nss_ctx->vmap) {
iounmap((void *)nss_ctx->vmap);
nss_ctx->vmap = 0;
}
}
#endif
nss_info("%p: All resources freed for nss core%d", nss_ctx, nss_dev->id);
return 0;
}
#if (NSS_DT_SUPPORT == 1)
static struct of_device_id nss_dt_ids[] = {
{ .compatible = "qcom,nss0" },
{ .compatible = "qcom,nss1" },
{},
};
MODULE_DEVICE_TABLE(of, nss_dt_ids);
#endif
/*
* nss_driver
* Platform driver structure for NSS
*/
struct platform_driver nss_driver = {
.probe = nss_probe,
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(3,7,0))
.remove = __devexit_p(nss_remove),
#else
.remove = nss_remove,
#endif
.driver = {
.name = "qca-nss",
.owner = THIS_MODULE,
#if (NSS_DT_SUPPORT == 1)
.of_match_table = of_match_ptr(nss_dt_ids),
#endif
},
};
#if (NSS_FREQ_SCALE_SUPPORT == 1)
/*
* nss_reset_frequency_stats_samples()
* Reset all frequency sampling state when auto scaling is turned off.
*/
static void nss_reset_frequency_stats_samples (void)
{
nss_runtime_samples.buffer_index = 0;
nss_runtime_samples.sum = 0;
nss_runtime_samples.average = 0;
nss_runtime_samples.sample_count = 0;
nss_runtime_samples.message_rate_limit = 0;
nss_runtime_samples.freq_scale_rate_limit_down = 0;
}
/*
***************************************************************************************************
* nss_wq_function() is used to queue up requests to change NSS frequencies.
* The function will take care of NSS notices and also control clock.
* The auto rate algorithmn will queue up requests or the procfs may also queue up these requests.
***************************************************************************************************
*/
/*
* nss_wq_function()
* Added to Handle BH requests to kernel
*/
void nss_wq_function (struct work_struct *work)
{
nss_work_t *my_work = (nss_work_t *)work;
nss_freq_change(&nss_top_main.nss[NSS_CORE_0], my_work->frequency, my_work->stats_enable, 0);
if (nss_top_main.nss[NSS_CORE_1].state == NSS_CORE_STATE_INITIALIZED) {
nss_freq_change(&nss_top_main.nss[NSS_CORE_1], my_work->frequency, my_work->stats_enable, 0);
}
clk_set_rate(nss_core0_clk, my_work->frequency);
nss_freq_change(&nss_top_main.nss[NSS_CORE_0], my_work->frequency, my_work->stats_enable, 1);
if (nss_top_main.nss[NSS_CORE_1].state == NSS_CORE_STATE_INITIALIZED) {
nss_freq_change(&nss_top_main.nss[NSS_CORE_1], my_work->frequency, my_work->stats_enable, 1);
}
#if (NSS_PM_SUPPORT == 1)
if(!pm_client) {
goto out;
}
if (my_work->frequency >= NSS_FREQ_733) {
nss_pm_set_perf_level(pm_client, NSS_PM_PERF_LEVEL_TURBO);
} else if (my_work->frequency > NSS_FREQ_110) {
nss_pm_set_perf_level(pm_client, NSS_PM_PERF_LEVEL_NOMINAL);
} else {
nss_pm_set_perf_level(pm_client, NSS_PM_PERF_LEVEL_IDLE);
}
out:
#endif
kfree((void *)work);
}
/*
* nss_current_freq_handler()
* Handle Userspace Frequency Change Requests
*/
static int nss_current_freq_handler (ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos)
{
int ret, i;
BUG_ON(!nss_wq);
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (!write) {
printk("Frequency Set to %d\n", nss_cmd_buf.current_freq);
return ret;
}
/*
* Check if frequency exists in frequency Table
*/
i = 0;
while (i < NSS_FREQ_MAX_SCALE) {
if (nss_runtime_samples.freq_scale[i].frequency == nss_cmd_buf.current_freq) {
break;
}
i++;
}
if (i == NSS_FREQ_MAX_SCALE) {
printk("Frequency not found. Please check Frequency Table\n");
return ret;
}
/* Turn off Auto Scale */
nss_cmd_buf.auto_scale = 0;
nss_runtime_samples.freq_scale_ready = 0;
nss_work = (nss_work_t *)kmalloc(sizeof(nss_work_t), GFP_ATOMIC);
if (!nss_work) {
nss_info("NSS Freq WQ kmalloc fail");
return ret;
}
INIT_WORK((struct work_struct *)nss_work, nss_wq_function);
nss_work->frequency = nss_cmd_buf.current_freq;
nss_work->stats_enable = 0;
/* Ensure we start with a fresh set of samples later */
nss_reset_frequency_stats_samples();
queue_work(nss_wq, (struct work_struct *)nss_work);
return ret;
}
/*
* nss_auto_scale_handler()
* Enables or Disable Auto Scaling
*/
static int nss_auto_scale_handler (ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos)
{
int ret;
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (!write) {
return ret;
}
if (nss_cmd_buf.auto_scale != 1) {
/*
* Is auto scaling currently enabled? If so, send the command to
* disable stats reporting to NSS
*/
if (nss_runtime_samples.freq_scale_ready != 0) {
nss_cmd_buf.current_freq = nss_runtime_samples.freq_scale[nss_runtime_samples.freq_scale_index].frequency;
nss_work = (nss_work_t *)kmalloc(sizeof(nss_work_t), GFP_ATOMIC);
if (!nss_work) {
nss_info("NSS Freq WQ kmalloc fail");
return ret;
}
INIT_WORK((struct work_struct *)nss_work, nss_wq_function);
nss_work->frequency = nss_cmd_buf.current_freq;
nss_work->stats_enable = 0;
queue_work(nss_wq, (struct work_struct *)nss_work);
nss_runtime_samples.freq_scale_ready = 0;
/*
* The current samples would be stale later when scaling is
* enabled again, hence reset them
*/
nss_reset_frequency_stats_samples();
}
return ret;
}
/*
* Auto Scaling is already being done
*/
if (nss_runtime_samples.freq_scale_ready == 1) {
return ret;
}
/*
* Setup default values - Middle of Freq Scale Band
*/
nss_runtime_samples.freq_scale_index = 1;
nss_cmd_buf.current_freq = nss_runtime_samples.freq_scale[nss_runtime_samples.freq_scale_index].frequency;
nss_work = (nss_work_t *)kmalloc(sizeof(nss_work_t), GFP_ATOMIC);
if (!nss_work) {
nss_info("NSS Freq WQ kmalloc fail");
return ret;
}
INIT_WORK((struct work_struct *)nss_work, nss_wq_function);
nss_work->frequency = nss_cmd_buf.current_freq;
nss_work->stats_enable = 1;
queue_work(nss_wq, (struct work_struct *)nss_work);
nss_cmd_buf.auto_scale = 0;
nss_runtime_samples.freq_scale_ready = 1;
return ret;
}
/*
* nss_get_freq_table_handler()
* Display Support Freq and Ex how to Change.
*/
static int nss_get_freq_table_handler(ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos)
{
int ret, i;
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
printk("Frequency Supported - ");
i = 0;
while (i < NSS_FREQ_MAX_SCALE) {
printk("%dMhz ", nss_runtime_samples.freq_scale[i].frequency/1000000);
i++;
}
printk("\n");
return ret;
}
/*
* nss_get_average_inst_handler()
* Display AVG Inst Per Ms.
*/
static int nss_get_average_inst_handler(ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos)
{
int ret;
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (!ret && !write) {
printk("Current Inst Per Ms %x\n", nss_runtime_samples.average);
}
return ret;
}
#endif
#if (NSS_FW_DBG_SUPPORT == 1)
/*
* nss_debug_handler()
* Enable NSS debug output
*/
static int nss_debug_handler(ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos)
{
int ret;
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (!ret) {
if ((write) && (nss_ctl_debug != 0)) {
printk("Enabling NSS SPI Debug\n");
nss_hal_debug_enable();
}
}
return ret;
}
#endif
/*
* nss_rps_handler()
* Enable NSS RPS
*/
static int nss_rpscfg_handler(ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos)
{
struct nss_top_instance *nss_top = &nss_top_main;
struct nss_ctx_instance *nss_ctx = &nss_top->nss[0];
int ret;
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (!ret) {
if ((write) && (nss_rps_cfg == 1)) {
printk("Enabling NSS RPS\n");
return nss_n2h_rps_cfg(nss_ctx, 1);
}
if ((write) && (nss_rps_cfg == 0)) {
printk("Runtime disabling of NSS RPS not supported \n");
return ret;
}
if (write) {
printk("Invalid input value.Valid values are 0 and 1 \n");
}
}
return ret;
}
/*
* nss_coredump_handler()
* Send Signal To Coredump NSS Cores
*/
static int nss_coredump_handler(ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos)
{
struct nss_ctx_instance *nss_ctx = &nss_top_main.nss[NSS_CORE_0];
int ret;
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (!ret) {
if ((write) && (nss_ctl_debug != 0)) {
printk("Coredumping to DDR\n");
nss_hal_send_interrupt(nss_ctx->nmap, nss_ctx->h2n_desc_rings[NSS_IF_CMD_QUEUE].desc_ring.int_bit, NSS_REGS_H2N_INTR_STATUS_COREDUMP_START);
}
}
return ret;
}
/*
* nss_jumbo_mru_handler()
* Sysctl to modify nss_jumbo_mru
*/
static int nss_jumbo_mru_handler(ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos)
{
int ret;
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (ret) {
return ret;
}
if (write) {
nss_core_set_jumbo_mru(nss_jumbo_mru);
nss_info("jumbo_mru set to %d\n", nss_jumbo_mru);
}
return ret;
}
/* nss_paged_mode_handler()
* Sysctl to modify nss_paged_mode.
*/
static int nss_paged_mode_handler(ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos)
{
int ret;
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (ret) {
return ret;
}
if (write) {
nss_core_set_paged_mode(nss_paged_mode);
nss_info("paged_mode set to %d\n", nss_paged_mode);
}
return ret;
}
#if (NSS_FREQ_SCALE_SUPPORT == 1)
/*
* sysctl-tuning infrastructure.
*/
static ctl_table nss_freq_table[] = {
{
.procname = "current_freq",
.data = &nss_cmd_buf.current_freq,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &nss_current_freq_handler,
},
{
.procname = "freq_table",
.data = &nss_cmd_buf.max_freq,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &nss_get_freq_table_handler,
},
{
.procname = "auto_scale",
.data = &nss_cmd_buf.auto_scale,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &nss_auto_scale_handler,
},
{
.procname = "inst_per_sec",
.data = &nss_cmd_buf.average_inst,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &nss_get_average_inst_handler,
},
{ }
};
#endif
static ctl_table nss_general_table[] = {
{
.procname = "redirect",
.data = &nss_ctl_redirect,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#if (NSS_FW_DBG_SUPPORT == 1)
{
.procname = "debug",
.data = &nss_ctl_debug,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &nss_debug_handler,
},
#endif
{
.procname = "coredump",
.data = &nss_cmd_buf.coredump,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &nss_coredump_handler,
},
{
.procname = "rps",
.data = &nss_rps_cfg,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &nss_rpscfg_handler,
},
{
.procname = "logbuf",
.data = &nss_ctl_logbuf,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &nss_logbuffer_handler,
},
{
.procname = "jumbo_mru",
.data = &nss_jumbo_mru,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &nss_jumbo_mru_handler,
},
{
.procname = "paged_mode",
.data = &nss_paged_mode,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &nss_paged_mode_handler,
},
{ }
};
static ctl_table nss_clock_dir[] = {
#if (NSS_FREQ_SCALE_SUPPORT == 1)
{
.procname = "clock",
.mode = 0555,
.child = nss_freq_table,
},
#endif
{
.procname = "general",
.mode = 0555,
.child = nss_general_table,
},
{ }
};
static ctl_table nss_root_dir[] = {
{
.procname = "nss",
.mode = 0555,
.child = nss_clock_dir,
},
{ }
};
static ctl_table nss_root[] = {
{
.procname = "dev",
.mode = 0555,
.child = nss_root_dir,
},
{ }
};
static struct ctl_table_header *nss_dev_header;
/*
* nss_init()
* Registers nss driver
*/
static int __init nss_init(void)
{
#if (NSS_DT_SUPPORT == 1)
struct device_node *cmn = NULL;
struct resource res_nss_fpb_base;
#endif
nss_info("Init NSS driver");
#if (NSS_DT_SUPPORT == 1)
/*
* Get reference to NSS common device node
*/
cmn = of_find_node_by_name(NULL, "nss-common");
if (!cmn) {
nss_info("cannot find nss-common node\n");
return -EFAULT;
}
if (of_address_to_resource(cmn, 0, &res_nss_fpb_base) != 0) {
nss_info("of_address_to_resource() return error for nss_fpb_base\n");
of_node_put(cmn);
return -EFAULT;
}
nss_top_main.nss_fpb_base = ioremap_nocache(res_nss_fpb_base.start,
resource_size(&res_nss_fpb_base));
if (!nss_top_main.nss_fpb_base) {
nss_info("ioremap fail for nss_fpb_base\n");
of_node_put(cmn);
return -EFAULT;
}
nss_top_main.nss_hal_common_init_done = false;
/*
* Release reference to NSS common device node
*/
of_node_put(cmn);
cmn = NULL;
#else
/*
* Perform clock init common to all NSS cores
*/
nss_hal_common_reset(&(nss_top_main.clk_src));
#endif /* NSS_DT_SUPPORT */
/*
* Enable spin locks
*/
spin_lock_init(&(nss_top_main.lock));
spin_lock_init(&(nss_top_main.stats_lock));
/*
* Enable NSS statistics
*/
nss_stats_init();
/*
* Register sysctl table.
*/
nss_dev_header = register_sysctl_table(nss_root);
/*
* Registering sysctl for ipv4/6 specific config.
*/
nss_ipv4_register_sysctl();
nss_ipv6_register_sysctl();
/*
* Registering sysctl for n2h empty pool buffer.
*/
nss_n2h_empty_pool_buf_register_sysctl();
/*
* Setup Runtime Sample values
*/
nss_runtime_samples.freq_scale_index = 1;
nss_runtime_samples.freq_scale_ready = 0;
nss_runtime_samples.freq_scale_rate_limit_down = 0;
nss_runtime_samples.buffer_index = 0;
nss_runtime_samples.sum = 0;
nss_runtime_samples.sample_count = 0;
nss_runtime_samples.average = 0;
nss_runtime_samples.message_rate_limit = 0;
nss_runtime_samples.initialized = 0;
nss_cmd_buf.current_freq = nss_runtime_samples.freq_scale[nss_runtime_samples.freq_scale_index].frequency;
/*
* Initial Workqueue
*/
nss_wq = create_workqueue("nss_freq_queue");
#if (NSS_PM_SUPPORT == 1)
/*
* Initialize NSS Bus PM module
*/
nss_pm_init();
/*
* Register with Bus driver
*/
pm_client = nss_pm_client_register(NSS_PM_CLIENT_NETAP);
if (!pm_client) {
nss_warning("Error registering with PM driver");
}
#endif
/*
* Initialize mtu size needed as start
*/
nss_top_main.prev_mtu_sz = NSS_GMAC_NORMAL_FRAME_MTU;
/*
* Register platform_driver
*/
return platform_driver_register(&nss_driver);
}
/*
* nss_cleanup()
* Unregisters nss driver
*/
static void __exit nss_cleanup(void)
{
nss_info("Exit NSS driver");
if (nss_dev_header)
unregister_sysctl_table(nss_dev_header);
/*
* Unregister n2h specific sysctl
*/
nss_n2h_empty_pool_buf_unregister_sysctl();
/*
* Unregister ipv4/6 specific sysctl
*/
nss_ipv4_unregister_sysctl();
nss_ipv6_unregister_sysctl();
#if (NSS_DT_SUPPORT == 1)
if(nss_top_main.nss_fpb_base) {
iounmap(nss_top_main.nss_fpb_base);
nss_top_main.nss_fpb_base = 0;
}
#endif
platform_driver_unregister(&nss_driver);
}
module_init(nss_init);
module_exit(nss_cleanup);
MODULE_DESCRIPTION("QCA NSS Driver");
MODULE_AUTHOR("Qualcomm Atheros Inc");
MODULE_LICENSE("Dual BSD/GPL");