blob: febaf466e21831782ce9128f1d709dd598870c49 [file] [log] [blame]
/*
**************************************************************************
* Copyright (c) 2014-2018 The Linux Foundation. All rights reserved.
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all copies.
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
**************************************************************************
*/
#include <linux/version.h>
#include <linux/types.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/icmp.h>
#include <linux/kthread.h>
#include <linux/pkt_sched.h>
#include <linux/string.h>
#include <net/ip6_route.h>
#include <net/ip6_fib.h>
#include <net/ipv6.h>
#include <net/route.h>
#include <net/ip_fib.h>
#include <net/ip.h>
#include <net/tcp.h>
#include <asm/unaligned.h>
#include <asm/uaccess.h> /* for put_user */
#include <linux/inet.h>
#include <linux/in6.h>
#include <linux/in.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <linux/kernel.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <linux/socket.h>
#include <linux/wireless.h>
#if defined(ECM_DB_XREF_ENABLE) && defined(ECM_BAND_STEERING_ENABLE)
#include <linux/if_bridge.h>
#endif
#include <linux/inetdevice.h>
#if defined(ECM_INTERFACE_TUNIPIP6_ENABLE) || defined(ECM_INTERFACE_SIT_ENABLE)
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(3, 9, 0))
#include <net/ipip.h>
#else
#include <net/ip_tunnels.h>
#endif
#endif
#include <net/ip6_tunnel.h>
#include <net/addrconf.h>
#include <linux/if_arp.h>
#include <linux/netfilter_ipv4.h>
#include <linux/netfilter_bridge.h>
#include <linux/if_bridge.h>
#include <net/arp.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_acct.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_l4proto.h>
#include <net/netfilter/nf_conntrack_l3proto.h>
#include <net/netfilter/nf_conntrack_zones.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <linux/netfilter_ipv6/ip6_tables.h>
#include <net/netfilter/ipv4/nf_conntrack_ipv4.h>
#include <net/netfilter/ipv4/nf_defrag_ipv4.h>
#ifdef ECM_INTERFACE_VLAN_ENABLE
#include <linux/../../net/8021q/vlan.h>
#include <linux/if_vlan.h>
#endif
#ifdef ECM_INTERFACE_PPP_ENABLE
#include <linux/if_pppox.h>
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
#include <linux/if_pppol2tp.h>
#endif
#ifdef ECM_INTERFACE_PPTP_ENABLE
#include <linux/netfilter/nf_conntrack_proto_gre.h>
#endif
#endif
#ifdef ECM_INTERFACE_MAP_T_ENABLE
#include <nat46-core.h>
#endif
/*
* Debug output levels
* 0 = OFF
* 1 = ASSERTS / ERRORS
* 2 = 1 + WARN
* 3 = 2 + INFO
* 4 = 3 + TRACE
*/
#define DEBUG_LEVEL ECM_INTERFACE_DEBUG_LEVEL
#ifdef ECM_MULTICAST_ENABLE
#include <mc_ecm.h>
#endif
#include "ecm_types.h"
#include "ecm_db_types.h"
#include "ecm_state.h"
#include "ecm_tracker.h"
#include "ecm_classifier.h"
#include "ecm_front_end_types.h"
#include "ecm_tracker_datagram.h"
#include "ecm_tracker_udp.h"
#include "ecm_tracker_tcp.h"
#include "ecm_db.h"
#include "ecm_interface.h"
/*
* Wifi event handler structure.
*/
struct ecm_interface_wifi_event {
struct task_struct *thread;
struct socket *sock;
};
static struct ecm_interface_wifi_event __ewn;
#ifdef ECM_IPV6_ENABLE
/*
* TODO: Remove once the Linux image and headers get propogated.
*/
struct net_device *ipv6_dev_find(struct net *net, struct in6_addr *addr, int strict);
#endif
/*
* Locking - concurrency control
*/
static DEFINE_SPINLOCK(ecm_interface_lock); /* Protect against SMP access between netfilter, events and private threaded function. */
/*
* Management thread control
*/
static bool ecm_interface_terminate_pending = false; /* True when the user has signalled we should quit */
/*
* Source interface check flag.
* If it is enabled, the acceleration engine will check the flow's interface to see
* whether it matches with the rule's source interface or not.
*/
int ecm_interface_src_check;
static struct ctl_table_header *ecm_interface_ctl_table_header; /* Sysctl table header */
/*
* ecm_interface_get_and_hold_dev_master()
* Returns the master device of a net device if any.
*/
struct net_device *ecm_interface_get_and_hold_dev_master(struct net_device *dev)
{
struct net_device *master;
#if (LINUX_VERSION_CODE > KERNEL_VERSION(3,6,0))
rcu_read_lock();
master = netdev_master_upper_dev_get_rcu(dev);
if (!master) {
rcu_read_unlock();
return NULL;
}
dev_hold(master);
rcu_read_unlock();
#else
master = dev->master;
if (!master) {
return NULL;
}
dev_hold(master);
#endif
return master;
}
EXPORT_SYMBOL(ecm_interface_get_and_hold_dev_master);
/*
* ecm_interface_vlan_real_dev()
* Return immediate VLAN net device or Physical device pointer
*/
static inline struct net_device *ecm_interface_vlan_real_dev(struct net_device *vlan_dev)
{
#if (LINUX_VERSION_CODE > KERNEL_VERSION(3, 6, 0))
return vlan_dev_next_dev(vlan_dev);
#else
return vlan_dev_real_dev(vlan_dev);
#endif
}
/*
* ecm_interface_dev_find_by_local_addr_ipv4()
* Return a hold to the device for the given local IP address. Returns NULL on failure.
*/
static struct net_device *ecm_interface_dev_find_by_local_addr_ipv4(ip_addr_t addr)
{
__be32 be_addr;
struct net_device *dev;
ECM_IP_ADDR_TO_NIN4_ADDR(be_addr, addr);
dev = ip_dev_find(&init_net, be_addr);
return dev;
}
#ifdef ECM_IPV6_ENABLE
/*
* ecm_interface_dev_find_by_local_addr_ipv6()
* Return a hold to the device for the given local IP address. Returns NULL on failure.
*/
static struct net_device *ecm_interface_dev_find_by_local_addr_ipv6(ip_addr_t addr)
{
struct in6_addr addr6;
struct net_device *dev;
ECM_IP_ADDR_TO_NIN6_ADDR(addr6, addr);
dev = (struct net_device *)ipv6_dev_find(&init_net, &addr6, 1);
return dev;
}
#endif
/*
* ecm_interface_dev_find_by_local_addr()
* Return the device on which the local address resides.
*
* Returns a hold to the device or NULL on failure.
*/
struct net_device *ecm_interface_dev_find_by_local_addr(ip_addr_t addr)
{
char __attribute__((unused)) addr_str[40];
DEBUG_ECM_IP_ADDR_TO_STRING(addr_str, addr);
DEBUG_TRACE("Locate dev for: %s\n", addr_str);
if (ECM_IP_ADDR_IS_V4(addr)) {
return ecm_interface_dev_find_by_local_addr_ipv4(addr);
}
#ifdef ECM_IPV6_ENABLE
return ecm_interface_dev_find_by_local_addr_ipv6(addr);
#else
return NULL;
#endif
}
EXPORT_SYMBOL(ecm_interface_dev_find_by_local_addr);
/*
* ecm_interface_dev_find_by_addr()
* Return the net device on which the given IP address resides. Returns NULL on faiure.
*
* NOTE: The device may be the device upon which has a default gateway to reach the address.
* from_local_addr is true when the device was found by a local address search.
*/
struct net_device *ecm_interface_dev_find_by_addr(ip_addr_t addr, bool *from_local_addr)
{
char __attribute__((unused)) addr_str[40];
struct ecm_interface_route ecm_rt;
struct net_device *dev;
struct dst_entry *dst;
DEBUG_ECM_IP_ADDR_TO_STRING(addr_str, addr);
/*
* Is the address a local IP?
*/
DEBUG_TRACE("find net device for address: %s\n", addr_str);
dev = ecm_interface_dev_find_by_local_addr(addr);
if (dev) {
*from_local_addr = true;
DEBUG_TRACE("addr: %s is local: %p (%s)\n", addr_str, dev, dev->name);
return dev;
}
DEBUG_TRACE("addr: %s is not local\n", addr_str);
/*
* Try a route to the address instead
* NOTE: This will locate a route entry in the route destination *cache*.
*/
if (!ecm_interface_find_route_by_addr(addr, &ecm_rt)) {
DEBUG_WARN("addr: %s - no dev locatable\n", addr_str);
return NULL;
}
*from_local_addr = false;
dst = ecm_rt.dst;
dev = dst->dev;
dev_hold(dev);
ecm_interface_route_release(&ecm_rt);
DEBUG_TRACE("dest_addr: %s uses dev: %p(%s)\n", addr_str, dev, dev->name);
return dev;
}
EXPORT_SYMBOL(ecm_interface_dev_find_by_addr);
#ifdef ECM_IPV6_ENABLE
/*
* ecm_interface_mac_addr_get_ipv6()
* Return mac for an IPv6 address
*
* GGG TODO Need to make sure this also works for local IP addresses too.
*/
static bool ecm_interface_mac_addr_get_ipv6(ip_addr_t addr, uint8_t *mac_addr, bool *on_link, ip_addr_t gw_addr)
{
struct in6_addr daddr;
struct ecm_interface_route ecm_rt;
struct neighbour *neigh;
struct rt6_info *rt;
struct dst_entry *dst;
/*
* Get the MAC address that corresponds to IP address given.
* We look up the rt6_info entries and, from its neighbour structure, obtain the hardware address.
* This means we will also work if the neighbours are routers too.
*/
ECM_IP_ADDR_TO_NIN6_ADDR(daddr, addr);
if (!ecm_interface_find_route_by_addr(addr, &ecm_rt)) {
*on_link = false;
return false;
}
DEBUG_ASSERT(!ecm_rt.v4_route, "Did not locate a v6 route!\n");
/*
* Is this destination on link or off-link via a gateway?
*/
rt = ecm_rt.rt.rtv6;
if (!ECM_IP_ADDR_MATCH(rt->rt6i_dst.addr.in6_u.u6_addr32, rt->rt6i_gateway.in6_u.u6_addr32) || (rt->rt6i_flags & RTF_GATEWAY)) {
*on_link = false;
ECM_NIN6_ADDR_TO_IP_ADDR(gw_addr, rt->rt6i_gateway)
} else {
*on_link = true;
}
rcu_read_lock();
dst = ecm_rt.dst;
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(3,6,0))
neigh = dst_get_neighbour_noref(dst);
if (neigh) {
neigh_hold(neigh);
}
#else
neigh = dst_neigh_lookup(dst, &daddr);
#endif
if (!neigh) {
neigh = neigh_lookup(&nd_tbl, &daddr, dst->dev);
}
if (!neigh) {
rcu_read_unlock();
ecm_interface_route_release(&ecm_rt);
DEBUG_WARN("No neigh reference\n");
return false;
}
if (!(neigh->nud_state & NUD_VALID)) {
rcu_read_unlock();
neigh_release(neigh);
ecm_interface_route_release(&ecm_rt);
DEBUG_WARN("NUD invalid\n");
return false;
}
if (!neigh->dev) {
rcu_read_unlock();
neigh_release(neigh);
ecm_interface_route_release(&ecm_rt);
DEBUG_WARN("Neigh dev invalid\n");
return false;
}
/*
* If neigh->dev is a loopback then addr is a local address in which case we take the MAC from given device
*/
if (neigh->dev->flags & IFF_LOOPBACK) {
// GGG TODO Create an equivalent logic to that for ipv4, maybe need to create an ip6_dev_find()?
DEBUG_TRACE("local address " ECM_IP_ADDR_OCTAL_FMT " (found loopback)\n", ECM_IP_ADDR_TO_OCTAL(addr));
memset(mac_addr, 0, 6);
} else {
memcpy(mac_addr, neigh->ha, 6);
}
rcu_read_unlock();
neigh_release(neigh);
ecm_interface_route_release(&ecm_rt);
DEBUG_TRACE(ECM_IP_ADDR_OCTAL_FMT " maps to %pM\n", ECM_IP_ADDR_TO_OCTAL(addr), mac_addr);
return true;
}
/*
* ecm_interface_find_gateway_ipv6()
* Finds the ipv6 gateway ip address of a given ipv6 address.
*/
static bool ecm_interface_find_gateway_ipv6(ip_addr_t addr, ip_addr_t gw_addr)
{
struct ecm_interface_route ecm_rt;
struct rt6_info *rt;
/*
* Find the ipv6 route of the given ip address to look up
* whether we have a gateway to reach to that ip address or not.
*/
if (!ecm_interface_find_route_by_addr(addr, &ecm_rt)) {
return false;
}
DEBUG_ASSERT(!ecm_rt.v4_route, "Did not locate a v6 route!\n");
DEBUG_TRACE("Found route\n");
/*
* Is this destination reachable via a gateway?
*/
rt = ecm_rt.rt.rtv6;
if (ECM_IP_ADDR_MATCH(rt->rt6i_dst.addr.in6_u.u6_addr32, rt->rt6i_gateway.in6_u.u6_addr32) && !(rt->rt6i_flags & RTF_GATEWAY)) {
ecm_interface_route_release(&ecm_rt);
return false;
}
ECM_NIN6_ADDR_TO_IP_ADDR(gw_addr, rt->rt6i_gateway)
ecm_interface_route_release(&ecm_rt);
return true;
}
#endif
/*
* ecm_interface_find_gateway_ipv4()
* Finds the ipv4 gateway address of a given ipv4 address.
*/
static bool ecm_interface_find_gateway_ipv4(ip_addr_t addr, ip_addr_t gw_addr)
{
struct ecm_interface_route ecm_rt;
struct rtable *rt;
/*
* Find the ipv4 route of the given ip address to look up
* whether we have a gateway to reach to that ip address or not.
*/
if (!ecm_interface_find_route_by_addr(addr, &ecm_rt)) {
return false;
}
DEBUG_ASSERT(ecm_rt.v4_route, "Did not locate a v4 route!\n");
DEBUG_TRACE("Found route\n");
/*
* Is this destination reachable via a gateway?
*/
rt = ecm_rt.rt.rtv4;
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(3, 6, 0))
if (!(rt->rt_dst != rt->rt_gateway) && !(rt->rt_flags & RTF_GATEWAY)) {
#else
if (!rt->rt_uses_gateway && !(rt->rt_flags & RTF_GATEWAY)) {
#endif
ecm_interface_route_release(&ecm_rt);
return false;
}
ECM_NIN4_ADDR_TO_IP_ADDR(gw_addr, rt->rt_gateway)
ecm_interface_route_release(&ecm_rt);
return true;
}
/*
* ecm_interface_find_gateway()
* Finds the gateway ip address of a given ECM ip address type.
*/
bool ecm_interface_find_gateway(ip_addr_t addr, ip_addr_t gw_addr)
{
if (ECM_IP_ADDR_IS_V4(addr)) {
return ecm_interface_find_gateway_ipv4(addr, gw_addr);
}
#ifdef ECM_IPV6_ENABLE
return ecm_interface_find_gateway_ipv6(addr, gw_addr);
#else
return false;
#endif
}
EXPORT_SYMBOL(ecm_interface_find_gateway);
/*
* ecm_interface_mac_addr_get_ipv4()
* Return mac for an IPv4 address
*/
static bool ecm_interface_mac_addr_get_ipv4(ip_addr_t addr, uint8_t *mac_addr, bool *on_link, ip_addr_t gw_addr)
{
struct neighbour *neigh;
struct ecm_interface_route ecm_rt;
struct rtable *rt;
struct dst_entry *dst;
__be32 ipv4_addr;
/*
* Get the MAC address that corresponds to IP address given.
* We look up the rtable entries and, from its neighbour structure, obtain the hardware address.
* This means we will also work if the neighbours are routers too.
* We also locate the MAC if the address is a local host address.
*/
ECM_IP_ADDR_TO_NIN4_ADDR(ipv4_addr, addr);
if (!ecm_interface_find_route_by_addr(addr, &ecm_rt)) {
*on_link = false;
return false;
}
DEBUG_ASSERT(ecm_rt.v4_route, "Did not locate a v4 route!\n");
DEBUG_TRACE("Found route\n");
/*
* Is this destination on link or off-link via a gateway?
*/
rt = ecm_rt.rt.rtv4;
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(3,6,0))
if ((rt->rt_dst != rt->rt_gateway) || (rt->rt_flags & RTF_GATEWAY)) {
#else
if (rt->rt_uses_gateway || (rt->rt_flags & RTF_GATEWAY)) {
#endif
*on_link = false;
ECM_NIN4_ADDR_TO_IP_ADDR(gw_addr, rt->rt_gateway)
} else {
*on_link = true;
}
/*
* Get the neighbour entry for the address
*/
rcu_read_lock();
dst = ecm_rt.dst;
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(3,6,0))
neigh = dst_get_neighbour_noref(dst);
if (neigh) {
neigh_hold(neigh);
}
#else
neigh = dst_neigh_lookup(dst, &ipv4_addr);
#endif
if (!neigh) {
neigh = neigh_lookup(&arp_tbl, &ipv4_addr, dst->dev);
}
if (!neigh) {
rcu_read_unlock();
ecm_interface_route_release(&ecm_rt);
DEBUG_WARN("no neigh\n");
return false;
}
if (!(neigh->nud_state & NUD_VALID)) {
rcu_read_unlock();
neigh_release(neigh);
ecm_interface_route_release(&ecm_rt);
DEBUG_WARN("neigh nud state is not valid\n");
return false;
}
if (!neigh->dev) {
rcu_read_unlock();
neigh_release(neigh);
ecm_interface_route_release(&ecm_rt);
DEBUG_WARN("neigh has no device\n");
return false;
}
/*
* If the device is loopback this will be because the address is a local address
* In this case locate the device that has this local address and get its mac.
*/
if (neigh->dev->type == ARPHRD_LOOPBACK) {
struct net_device *dev;
DEBUG_TRACE("%pI4 finds loopback device, dev: %p (%s)\n", &ipv4_addr, neigh->dev, neigh->dev->name);
rcu_read_unlock();
neigh_release(neigh);
ecm_interface_route_release(&ecm_rt);
/*
* Lookup the device that has this IP address assigned
*/
dev = ip_dev_find(&init_net, ipv4_addr);
if (!dev) {
DEBUG_WARN("Unable to locate dev for: %pI4\n", &ipv4_addr);
return false;
}
memcpy(mac_addr, dev->dev_addr, (size_t)dev->addr_len);
DEBUG_TRACE("is local addr: %pI4, mac: %pM, dev ifindex: %d, dev: %p (%s), dev_type: %d\n",
&ipv4_addr, mac_addr, dev->ifindex, dev, dev->name, dev->type);
dev_put(dev);
return true;
}
if (!(neigh->dev->flags & IFF_NOARP)) {
memcpy(mac_addr, neigh->ha, (size_t)neigh->dev->addr_len);
} else {
DEBUG_TRACE("non-arp device: %p (%s, type: %d) to reach %pI4\n", neigh->dev, neigh->dev->name, neigh->dev->type, &ipv4_addr);
memset(mac_addr, 0, 6);
}
DEBUG_TRACE("addr: %pI4, mac: %pM, iif: %d, neigh dev ifindex: %d, dev: %p (%s), dev_type: %d\n",
&ipv4_addr, mac_addr, rt->rt_iif, neigh->dev->ifindex, neigh->dev, neigh->dev->name, neigh->dev->type);
rcu_read_unlock();
neigh_release(neigh);
ecm_interface_route_release(&ecm_rt);
return true;
}
/*
* ecm_interface_mac_addr_get()
* Return the mac address for the given IP address. Returns false on failure.
*/
bool ecm_interface_mac_addr_get(ip_addr_t addr, uint8_t *mac_addr, bool *on_link, ip_addr_t gw_addr)
{
if (ECM_IP_ADDR_IS_V4(addr)) {
return ecm_interface_mac_addr_get_ipv4(addr, mac_addr, on_link, gw_addr);
}
#ifdef ECM_IPV6_ENABLE
return ecm_interface_mac_addr_get_ipv6(addr, mac_addr, on_link, gw_addr);
#else
return false;
#endif
}
EXPORT_SYMBOL(ecm_interface_mac_addr_get);
#ifdef ECM_IPV6_ENABLE
/*
* ecm_interface_mac_addr_get_ipv6_no_route()
* Finds the mac address of a node from its ip address reachable via
* the given device. It looks up the mac address in the neighbour entries.
* It doesn't do any route lookup to find the dst entry.
*/
static bool ecm_interface_mac_addr_get_ipv6_no_route(struct net_device *dev, ip_addr_t addr, uint8_t *mac_addr)
{
struct in6_addr daddr;
struct neighbour *neigh;
struct net_device *local_dev;
memset(mac_addr, 0, ETH_ALEN);
/*
* Get the MAC address that corresponds to IP address given.
*/
ECM_IP_ADDR_TO_NIN6_ADDR(daddr, addr);
local_dev = ipv6_dev_find(&init_net, &daddr, 1);
if (local_dev) {
DEBUG_TRACE("%pi6 is a local address\n", &daddr);
memcpy(mac_addr, dev->dev_addr, ETH_ALEN);
dev_put(local_dev);
return true;
}
rcu_read_lock();
neigh = neigh_lookup(&nd_tbl, &daddr, dev);
if (!neigh) {
rcu_read_unlock();
DEBUG_WARN("No neigh reference\n");
return false;
}
if (!(neigh->nud_state & NUD_VALID)) {
neigh_release(neigh);
rcu_read_unlock();
DEBUG_WARN("NUD invalid\n");
return false;
}
if (!neigh->dev) {
neigh_release(neigh);
rcu_read_unlock();
DEBUG_WARN("Neigh dev invalid\n");
return false;
}
if (neigh->dev->flags & IFF_NOARP) {
neigh_release(neigh);
rcu_read_unlock();
DEBUG_TRACE("dest MAC is zero: %pM\n", mac_addr);
return true;
}
memcpy(mac_addr, neigh->ha, (size_t)neigh->dev->addr_len);
neigh_release(neigh);
rcu_read_unlock();
DEBUG_TRACE(ECM_IP_ADDR_OCTAL_FMT " maps to %pM\n", ECM_IP_ADDR_TO_OCTAL(addr), mac_addr);
return true;
}
#endif
/*
* ecm_interface_mac_addr_get_ipv4_no_route()
* Finds the mac address of a node from its ip address reachable via
* the given device. It looks up the mac address in the neighbour entries.
* It doesn't do any route lookup to find the dst entry.
*/
static bool ecm_interface_mac_addr_get_ipv4_no_route(struct net_device *dev, ip_addr_t ip_addr, uint8_t *mac_addr)
{
struct neighbour *neigh;
__be32 be_addr;
struct net_device *local_dev;
memset(mac_addr, 0, ETH_ALEN);
ECM_IP_ADDR_TO_NIN4_ADDR(be_addr, ip_addr);
local_dev = ip_dev_find(&init_net, be_addr);
if (local_dev) {
DEBUG_TRACE("%pI4n is a local address\n", &be_addr);
memcpy(mac_addr, dev->dev_addr, ETH_ALEN);
dev_put(local_dev);
return true;
}
rcu_read_lock();
neigh = neigh_lookup(&arp_tbl, &be_addr, dev);
if (!neigh) {
rcu_read_unlock();
DEBUG_WARN("no neigh\n");
return false;
}
if (!(neigh->nud_state & NUD_VALID)) {
neigh_release(neigh);
rcu_read_unlock();
DEBUG_WARN("neigh nud state is not valid\n");
return false;
}
if (!neigh->dev) {
neigh_release(neigh);
rcu_read_unlock();
DEBUG_WARN("neigh has no device\n");
return false;
}
if (neigh->dev->flags & IFF_NOARP) {
neigh_release(neigh);
rcu_read_unlock();
DEBUG_TRACE("dest MAC is zero: %pM\n", mac_addr);
return true;
}
memcpy(mac_addr, neigh->ha, (size_t)neigh->dev->addr_len);
neigh_release(neigh);
rcu_read_unlock();
DEBUG_TRACE("dest MAC: %pM\n", mac_addr);
return true;
}
/*
* ecm_interface_mac_addr_get_no_route()
* Return the mac address for the given IP address reacahble via the given device.
* Return false on failure, true on success.
*/
bool ecm_interface_mac_addr_get_no_route(struct net_device *dev, ip_addr_t addr, uint8_t *mac_addr)
{
if (ECM_IP_ADDR_IS_V4(addr)) {
return ecm_interface_mac_addr_get_ipv4_no_route(dev, addr, mac_addr);
}
#ifdef ECM_IPV6_ENABLE
return ecm_interface_mac_addr_get_ipv6_no_route(dev, addr, mac_addr);
#else
return false;
#endif
}
EXPORT_SYMBOL(ecm_interface_mac_addr_get_no_route);
#ifdef ECM_MULTICAST_ENABLE
/*
* ecm_interface_multicast_check_for_br_dev()
* Find a bridge dev is present or not in an
* array of Ifindexs
*/
bool ecm_interface_multicast_check_for_br_dev(uint32_t dest_if[], uint8_t max_if)
{
struct net_device *br_dev;
int i;
for (i = 0; i < max_if; i++) {
br_dev = dev_get_by_index(&init_net, dest_if[i]);
if (!br_dev) {
DEBUG_ASSERT(NULL, "expected only valid netdev here\n");
continue;
}
if (ecm_front_end_is_bridge_device(br_dev)) {
dev_put(br_dev);
return true;
}
dev_put(br_dev);
}
return false;
}
EXPORT_SYMBOL(ecm_interface_multicast_check_for_br_dev);
/*
* ecm_interface_multicast_check_for_src_if_index()
* Find if a source netdev ifindex is matching with list of
* multicast destination netdev ifindex. If find a match then
* returns a new list of destination netdev ifindex excluding
* the ifindex of source netdev.
*/
int32_t ecm_interface_multicast_check_for_src_ifindex(int32_t mc_if_index[], int32_t max_if_index, int32_t if_num)
{
int32_t i;
int32_t valid_index;
for (i = 0, valid_index = 0; i < max_if_index; i++) {
if (mc_if_index[i] == 0) {
break;
}
if (mc_if_index[i] != if_num) {
mc_if_index[valid_index] = mc_if_index[i];
valid_index++;
continue;
}
}
return valid_index;
}
EXPORT_SYMBOL(ecm_interface_multicast_check_for_src_ifindex);
#endif
/*
* ecm_interface_addr_find_route_by_addr_ipv4()
* Return the route for the given IP address. Returns NULL on failure.
*/
static bool ecm_interface_find_route_by_addr_ipv4(ip_addr_t addr, struct ecm_interface_route *ecm_rt)
{
__be32 be_addr;
/*
* Get a route to the given IP address, this will allow us to also find the interface
* it is using to communicate with that IP address.
*/
ECM_IP_ADDR_TO_NIN4_ADDR(be_addr, addr);
ecm_rt->rt.rtv4 = ip_route_output(&init_net, be_addr, 0, 0, 0);
if (IS_ERR(ecm_rt->rt.rtv4)) {
DEBUG_TRACE("No output route to: %pI4n\n", &be_addr);
return false;
}
DEBUG_TRACE("Output route to: %pI4n is: %p\n", &be_addr, ecm_rt->rt.rtv4);
ecm_rt->dst = (struct dst_entry *)ecm_rt->rt.rtv4;
ecm_rt->v4_route = true;
return true;
}
#ifdef ECM_IPV6_ENABLE
/*
* ecm_interface_addr_find_route_by_addr_ipv6()
* Return the route for the given IP address. Returns NULL on failure.
*/
static bool ecm_interface_find_route_by_addr_ipv6(ip_addr_t addr, struct ecm_interface_route *ecm_rt)
{
struct in6_addr naddr;
ECM_IP_ADDR_TO_NIN6_ADDR(naddr, addr);
/*
* Get a route to the given IP address, this will allow us to also find the interface
* it is using to communicate with that IP address.
*/
ecm_rt->rt.rtv6 = rt6_lookup(&init_net, &naddr, NULL, 0, 0);
if (!ecm_rt->rt.rtv6) {
DEBUG_TRACE("No output route to: " ECM_IP_ADDR_OCTAL_FMT "\n", ECM_IP_ADDR_TO_OCTAL(addr));
return NULL;
}
DEBUG_TRACE("Output route to: " ECM_IP_ADDR_OCTAL_FMT " is: %p\n", ECM_IP_ADDR_TO_OCTAL(addr), ecm_rt->rt.rtv6);
ecm_rt->dst = (struct dst_entry *)ecm_rt->rt.rtv6;
ecm_rt->v4_route = false;
return true;
}
#endif
/*
* ecm_interface_addr_find_route_by_addr()
* Return the route (in the given parameter) for the given IP address. Returns false on failure.
*
* Route is the device on which the addr is reachable, which may be loopback for local addresses.
*
* Returns true if the route was able to be located. The route must be released using ecm_interface_route_release().
*/
bool ecm_interface_find_route_by_addr(ip_addr_t addr, struct ecm_interface_route *ecm_rt)
{
char __attribute__((unused)) addr_str[40];
DEBUG_ECM_IP_ADDR_TO_STRING(addr_str, addr);
DEBUG_TRACE("Locate route to: %s\n", addr_str);
if (ECM_IP_ADDR_IS_V4(addr)) {
return ecm_interface_find_route_by_addr_ipv4(addr, ecm_rt);
}
#ifdef ECM_IPV6_ENABLE
return ecm_interface_find_route_by_addr_ipv6(addr, ecm_rt);
#else
return false;
#endif
}
EXPORT_SYMBOL(ecm_interface_find_route_by_addr);
/*
* ecm_interface_route_release()
* Release an ecm route
*/
void ecm_interface_route_release(struct ecm_interface_route *rt)
{
dst_release(rt->dst);
}
EXPORT_SYMBOL(ecm_interface_route_release);
#ifdef ECM_IPV6_ENABLE
/*
* ecm_interface_send_neighbour_solicitation()
* Issue an IPv6 Neighbour soliciation request.
*/
void ecm_interface_send_neighbour_solicitation(struct net_device *dev, ip_addr_t addr)
{
struct in6_addr dst_addr, src_addr;
struct in6_addr mc_dst_addr;
struct rt6_info *rt6i;
struct neighbour *neigh;
struct net *netf = dev_net(dev);
int ret;
/*
* Find source and destination addresses in Linux format. We need
* mcast destination address as well.
*/
ECM_IP_ADDR_TO_NIN6_ADDR(dst_addr, addr);
addrconf_addr_solict_mult(&dst_addr, &mc_dst_addr);
ret = ipv6_dev_get_saddr(netf, dev, &mc_dst_addr, 0, &src_addr);
/*
* Find the route entry
*/
rt6i = rt6_lookup(netf, &dst_addr, NULL, 0, 0);
if (!rt6i) {
DEBUG_TRACE("IPv6 Route lookup failure for destination IPv6 address " ECM_IP_ADDR_OCTAL_FMT "\n", ECM_IP_ADDR_TO_OCTAL(addr));
return;
}
/*
* Find the neighbor entry
*/
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(3,6,0))
neigh = rt6i->dst.ops->neigh_lookup(&rt6i->dst, &dst_addr);
#else
neigh = rt6i->dst.ops->neigh_lookup(&rt6i->dst, NULL, &dst_addr);
#endif
if (neigh == NULL) {
DEBUG_TRACE("Neighbour lookup failure for destination IPv6 address " ECM_IP_ADDR_OCTAL_FMT "\n", ECM_IP_ADDR_TO_OCTAL(addr));
dst_release(&rt6i->dst);
return;
}
/*
* Issue a Neighbour soliciation request
*/
DEBUG_TRACE("Issue Neighbour solicitation request\n");
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 4, 0))
ndisc_send_ns(dev, neigh, &dst_addr, &mc_dst_addr, &src_addr);
#else
ndisc_send_ns(dev, &dst_addr, &mc_dst_addr, &src_addr);
#endif
neigh_release(neigh);
dst_release(&rt6i->dst);
}
EXPORT_SYMBOL(ecm_interface_send_neighbour_solicitation);
#endif
/*
* ecm_interface_send_arp_request()
* Issue and ARP request.
*/
void ecm_interface_send_arp_request(struct net_device *dest_dev, ip_addr_t dest_addr, bool on_link, ip_addr_t gw_addr)
{
/*
* Possible ARP does not know the address yet
*/
struct neighbour *neigh;
__be32 ipv4_addr;
/*
* Convert the ECM IP address type to network order IPv4 address.
*/
ECM_IP_ADDR_TO_NIN4_ADDR(ipv4_addr, dest_addr);
/*
* If we have a GW for this address, then we have to send ARP request to the GW
*/
if (!on_link && !ECM_IP_ADDR_IS_NULL(gw_addr)) {
ECM_IP_ADDR_TO_NIN4_ADDR(ipv4_addr, gw_addr);
}
/*
* If we don't have this neighbor, create it before sending the arp request,
* so that when we receive the arp reply we update the neigh entry.
*/
neigh = neigh_lookup(&arp_tbl, &ipv4_addr, dest_dev);
if (!neigh) {
neigh = neigh_create(&arp_tbl, &ipv4_addr, dest_dev);
if (IS_ERR(neigh)) {
DEBUG_WARN("Unable to create ARP request neigh for %pI4\n", &ipv4_addr);
return;
}
}
DEBUG_TRACE("Send ARP for %pI4\n", &ipv4_addr);
neigh_event_send(neigh, NULL);
neigh_release(neigh);
}
EXPORT_SYMBOL(ecm_interface_send_arp_request);
/*
* ecm_interface_ipv4_neigh_get()
* Returns neighbour reference for a given IP address which must be released when you are done with it.
*
* Returns NULL on fail.
*/
struct neighbour *ecm_interface_ipv4_neigh_get(ip_addr_t addr)
{
struct neighbour *neigh;
struct rtable *rt;
struct dst_entry *dst;
__be32 ipv4_addr;
ECM_IP_ADDR_TO_NIN4_ADDR(ipv4_addr, addr);
rt = ip_route_output(&init_net, ipv4_addr, 0, 0, 0);
if (IS_ERR(rt)) {
return NULL;
}
dst = (struct dst_entry *)rt;
neigh = dst_neigh_lookup(dst, &ipv4_addr);
ip_rt_put(rt);
return neigh;
}
#ifdef ECM_IPV6_ENABLE
/*
* ecm_interface_ipv6_neigh_get()
* Returns neighbour reference for a given IP address which must be released when you are done with it.
*
* Returns NULL on fail.
*/
struct neighbour *ecm_interface_ipv6_neigh_get(ip_addr_t addr)
{
struct neighbour *neigh;
struct rt6_info *rt;
struct dst_entry *dst;
struct in6_addr ipv6_addr;
ECM_IP_ADDR_TO_NIN6_ADDR(ipv6_addr, addr);
rt = rt6_lookup(&init_net, &ipv6_addr, NULL, 0, 0);
if (!rt) {
return NULL;
}
dst = (struct dst_entry *)rt;
neigh = dst_neigh_lookup(dst, &ipv6_addr);
dst_release(dst);
return neigh;
}
#endif
/*
* ecm_interface_is_pptp()
* skip pptp tunnel encapsulated traffic
*
* ECM does not handle PPTP,
* this function detects packets of that type so they can be skipped over to improve their throughput.
*/
bool ecm_interface_is_pptp(struct sk_buff *skb, const struct net_device *out)
{
struct net_device *in;
/*
* skip first pass of l2tp/pptp tunnel encapsulated traffic
*/
if (out->type == ARPHRD_PPP) {
if (out->priv_flags & IFF_PPP_PPTP) {
return true;
}
}
in = dev_get_by_index(&init_net, skb->skb_iif);
if (!in) {
return true;
}
if (in->type == ARPHRD_PPP) {
if (in->priv_flags & IFF_PPP_PPTP) {
dev_put(in);
return true;
}
}
dev_put(in);
return false;
}
#ifdef ECM_INTERFACE_PPP_ENABLE
/*
* ecm_interface_is_l2tp_packet_by_version()
* Check version of l2tp tunnel encapsulated traffic
*
* ECM does not handle l2tp,
* this function detects packets of that type so they can be skipped over to improve their throughput.
*/
bool ecm_interface_is_l2tp_packet_by_version(struct sk_buff *skb, const struct net_device *out, int ver)
{
uint32_t flag = 0;
struct net_device *in;
switch (ver) {
case 2:
flag = IFF_PPP_L2TPV2;
break;
case 3:
flag = IFF_PPP_L2TPV3;
break;
default:
break;
}
/*
* skip first pass of l2tp/pptp tunnel encapsulated traffic
*/
if (out->type == ARPHRD_PPP) {
if (out->priv_flags & flag) {
return true;
}
}
in = dev_get_by_index(&init_net, skb->skb_iif);
if (!in) {
return true;
}
if (in->type == ARPHRD_PPP) {
if (in->priv_flags & flag) {
dev_put(in);
return true;
}
}
dev_put(in);
return false;
}
/*
* ecm_interface_is_l2tp_pptp()
* skip l2tp/pptp tunnel encapsulated traffic
*
* ECM does not handle L2TP or PPTP encapsulated packets,
* this function detects packets of that type so they can be skipped over to improve their throughput.
*/
bool ecm_interface_is_l2tp_pptp(struct sk_buff *skb, const struct net_device *out)
{
struct net_device *in;
/*
* skip first pass of l2tp/pptp tunnel encapsulated traffic
*/
if (out->type == ARPHRD_PPP) {
if (out->priv_flags & (IFF_PPP_L2TPV2 | IFF_PPP_L2TPV3 |
IFF_PPP_PPTP)) {
return true;
}
}
in = dev_get_by_index(&init_net, skb->skb_iif);
if (!in) {
return true;
}
if (in->type == ARPHRD_PPP) {
if (in->priv_flags & (IFF_PPP_L2TPV2 | IFF_PPP_L2TPV3 |
IFF_PPP_PPTP)) {
dev_put(in);
return true;
}
}
dev_put(in);
return false;
}
#endif
#ifdef ECM_INTERFACE_VLAN_ENABLE
/*
* ecm_interface_vlan_interface_establish()
* Returns a reference to a iface of the VLAN type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_vlan_interface_establish(struct ecm_db_interface_info_vlan *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish VLAN iface: %s with address: %pM, vlan tag: %u, vlan_tpid: %x MTU: %d, if num: %d, accel engine if id: %d\n",
dev_name, type_info->address, type_info->vlan_tag, type_info->vlan_tpid, mtu, dev_interface_num, ae_interface_num);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_vlan(type_info->address, type_info->vlan_tag, type_info->vlan_tpid);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_vlan(type_info->address, type_info->vlan_tag, type_info->vlan_tpid);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
return ii;
}
ecm_db_iface_add_vlan(nii, type_info->address, type_info->vlan_tag, type_info->vlan_tpid, dev_name,
mtu, dev_interface_num, ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: vlan iface established\n", nii);
return nii;
}
#endif
/*
* ecm_interface_bridge_interface_establish()
* Returns a reference to a iface of the BRIDGE type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_bridge_interface_establish(struct ecm_db_interface_info_bridge *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish BRIDGE iface: %s with address: %pM, MTU: %d, if num: %d, accel engine if id: %d\n",
dev_name, type_info->address, mtu, dev_interface_num, ae_interface_num);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_bridge(type_info->address);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_bridge(type_info->address);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
return ii;
}
ecm_db_iface_add_bridge(nii, type_info->address, dev_name,
mtu, dev_interface_num, ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: bridge iface established\n", nii);
return nii;
}
#ifdef ECM_INTERFACE_BOND_ENABLE
/*
* ecm_interface_lag_interface_establish()
* Returns a reference to a iface of the LAG type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_lag_interface_establish(struct ecm_db_interface_info_lag *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish LAG iface: %s with address: %pM, MTU: %d, if num: %d, accel engine if id: %d\n",
dev_name, type_info->address, mtu, dev_interface_num, ae_interface_num);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_lag(type_info->address);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_lag(type_info->address);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
return ii;
}
ecm_db_iface_add_lag(nii, type_info->address, dev_name,
mtu, dev_interface_num, ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: lag iface established\n", nii);
return nii;
}
#endif
/*
* ecm_interface_ethernet_interface_establish()
* Returns a reference to a iface of the ETHERNET type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_ethernet_interface_establish(struct ecm_db_interface_info_ethernet *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish ETHERNET iface: %s with address: %pM, MTU: %d, if num: %d, accel engine if id: %d\n",
dev_name, type_info->address, mtu, dev_interface_num, ae_interface_num);
/*
* Locate the iface
*/
ii = ecm_db_iface_ifidx_find_and_ref_ethernet(type_info->address, dev_interface_num);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
/*
* Update the accel engine interface identifier, just in case it was changed.
*/
ecm_db_iface_ae_interface_identifier_set(ii, ae_interface_num);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_ifidx_find_and_ref_ethernet(type_info->address, dev_interface_num);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
return ii;
}
ecm_db_iface_add_ethernet(nii, type_info->address, dev_name,
mtu, dev_interface_num, ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: ethernet iface established\n", nii);
return nii;
}
#ifdef ECM_INTERFACE_PPPOE_ENABLE
/*
* ecm_interface_pppoe_interface_establish()
* Returns a reference to a iface of the PPPoE type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_pppoe_interface_establish(struct ecm_db_interface_info_pppoe *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish PPPoE iface: %s with session id: %u, remote mac: %pM, MTU: %d, if num: %d, accel engine if id: %d\n",
dev_name, type_info->pppoe_session_id, type_info->remote_mac, mtu, dev_interface_num, ae_interface_num);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_pppoe(type_info->pppoe_session_id, type_info->remote_mac);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_pppoe(type_info->pppoe_session_id, type_info->remote_mac);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
return ii;
}
ecm_db_iface_add_pppoe(nii, type_info->pppoe_session_id, type_info->remote_mac, dev_name,
mtu, dev_interface_num, ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: pppoe iface established\n", nii);
return nii;
}
#endif
#ifdef ECM_INTERFACE_MAP_T_ENABLE
/*
* ecm_interface_map_t_interface_establish()
* Returns a reference to a iface of the PPPoE type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_map_t_interface_establish(struct ecm_db_interface_info_map_t *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_TRACE("Establish MAP-T iface: %s MTU: %d, if num: %d, accel engine if id: %d\n",
dev_name, mtu, dev_interface_num, ae_interface_num);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_map_t(type_info->if_index);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
ecm_db_iface_update_ae_interface_identifier(ii, ae_interface_num);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_map_t(type_info->if_index);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
ecm_db_iface_update_ae_interface_identifier(ii, ae_interface_num);
return ii;
}
ecm_db_iface_add_map_t(nii, type_info, dev_name,
mtu, dev_interface_num, ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: map_t iface established\n", nii);
return nii;
}
#endif
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
/*
* ecm_interface_pppol2tpv2_interface_establish()
* Returns a reference to a iface of the PPPoL2TPV2 type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_pppol2tpv2_interface_establish(struct ecm_db_interface_info_pppol2tpv2 *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish PPPol2tp iface: %s with tunnel id=%u session id %u\n", dev_name, type_info->l2tp.tunnel.tunnel_id,
type_info->l2tp.session.session_id);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_pppol2tpv2(type_info->l2tp.tunnel.tunnel_id, type_info->l2tp.session.session_id);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
ecm_db_iface_update_ae_interface_identifier(ii, ae_interface_num);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_pppol2tpv2(type_info->l2tp.tunnel.tunnel_id, type_info->l2tp.session.session_id);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
ecm_db_iface_update_ae_interface_identifier(ii, ae_interface_num);
return ii;
}
ecm_db_iface_add_pppol2tpv2(nii, type_info, dev_name, mtu, dev_interface_num, ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: pppol2tpv2 iface established\n", nii);
return nii;
}
#endif
#ifdef ECM_INTERFACE_PPTP_ENABLE
/*
* ecm_interface_pptp_interface_establish()
* Returns a reference to a iface of the PPTP type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_pptp_interface_establish(struct ecm_db_interface_info_pptp *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish PPTP iface: %s with local call id %u peer call id %u\n", dev_name, type_info->src_call_id,
type_info->dst_call_id);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_pptp(type_info->src_call_id, type_info->dst_call_id);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
ecm_db_iface_update_ae_interface_identifier(ii, ae_interface_num);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_pptp(type_info->src_call_id, type_info->dst_call_id);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
ecm_db_iface_update_ae_interface_identifier(ii, ae_interface_num);
return ii;
}
ecm_db_iface_add_pptp(nii, type_info, dev_name, mtu, dev_interface_num, ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: pptp iface established\n", nii);
return nii;
}
#endif
/*
* ecm_interface_unknown_interface_establish()
* Returns a reference to a iface of the UNKNOWN type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_unknown_interface_establish(struct ecm_db_interface_info_unknown *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish UNKNOWN iface: %s with os_specific_ident: %u, MTU: %d, if num: %d, accel engine if id: %d\n",
dev_name, type_info->os_specific_ident, mtu, dev_interface_num, ae_interface_num);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_unknown(type_info->os_specific_ident);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_unknown(type_info->os_specific_ident);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
return ii;
}
ecm_db_iface_add_unknown(nii, type_info->os_specific_ident, dev_name,
mtu, dev_interface_num, ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: unknown iface established\n", nii);
return nii;
}
/*
* ecm_interface_loopback_interface_establish()
* Returns a reference to a iface of the LOOPBACK type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_loopback_interface_establish(struct ecm_db_interface_info_loopback *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish LOOPBACK iface: %s with os_specific_ident: %u, MTU: %d, if num: %d, accel engine if id: %d\n",
dev_name, type_info->os_specific_ident, mtu, dev_interface_num, ae_interface_num);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_loopback(type_info->os_specific_ident);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_loopback(type_info->os_specific_ident);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
return ii;
}
ecm_db_iface_add_loopback(nii, type_info->os_specific_ident, dev_name,
mtu, dev_interface_num, ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: loopback iface established\n", nii);
return nii;
}
#ifdef ECM_INTERFACE_IPSEC_ENABLE
/*
* ecm_interface_ipsec_tunnel_interface_establish()
* Returns a reference to a iface of the IPSEC_TUNNEL type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*
* NOTE: GGG TODO THIS NEEDS TO TAKE A PROPER APPROACH TO IPSEC TUNNELS USING ENDPOINT ADDRESSING AS THE TYPE INFO KEYS
*/
static struct ecm_db_iface_instance *ecm_interface_ipsec_tunnel_interface_establish(struct ecm_db_interface_info_ipsec_tunnel *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish IPSEC_TUNNEL iface: %s with os_specific_ident: %u, MTU: %d, if num: %d, accel engine if id: %d\n",
dev_name, type_info->os_specific_ident, mtu, dev_interface_num, ae_interface_num);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_ipsec_tunnel(type_info->os_specific_ident);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_ipsec_tunnel(type_info->os_specific_ident);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
return ii;
}
ecm_db_iface_add_ipsec_tunnel(nii, type_info->os_specific_ident, dev_name,
mtu, dev_interface_num, ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: ipsec_tunnel iface established\n", nii);
return nii;
}
#endif
#ifdef ECM_INTERFACE_SIT_ENABLE
#ifdef CONFIG_IPV6_SIT_6RD
/*
* ecm_interface_sit_interface_establish()
* Returns a reference to a iface of the SIT type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_sit_interface_establish(struct ecm_db_interface_info_sit *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish SIT iface: %s with saddr: " ECM_IP_ADDR_OCTAL_FMT ", daddr: " ECM_IP_ADDR_OCTAL_FMT ", MTU: %d, if num: %d, accel engine if id: %d\n",
dev_name, ECM_IP_ADDR_TO_OCTAL(type_info->saddr), ECM_IP_ADDR_TO_OCTAL(type_info->daddr), mtu, dev_interface_num, ae_interface_num);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_sit(type_info->saddr, type_info->daddr, ae_interface_num);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_sit(type_info->saddr, type_info->daddr, ae_interface_num);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
return ii;
}
ecm_db_iface_add_sit(nii, type_info, dev_name, mtu, dev_interface_num,
ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: sit iface established\n", nii);
return nii;
}
#endif
#endif
#ifdef ECM_INTERFACE_TUNIPIP6_ENABLE
#ifdef ECM_IPV6_ENABLE
/*
* ecm_interface_tunipip6_interface_establish()
* Returns a reference to a iface of the TUNIPIP6 type, possibly creating one if necessary.
* Returns NULL on failure or a reference to interface.
*/
static struct ecm_db_iface_instance *ecm_interface_tunipip6_interface_establish(struct ecm_db_interface_info_tunipip6 *type_info,
char *dev_name, int32_t dev_interface_num, int32_t ae_interface_num, int32_t mtu)
{
struct ecm_db_iface_instance *nii;
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Establish TUNIPIP6 iface: %s with saddr: " ECM_IP_ADDR_OCTAL_FMT ", daddr: " ECM_IP_ADDR_OCTAL_FMT ", MTU: %d, if num: %d, accel engine if id: %d\n",
dev_name, ECM_IP_ADDR_TO_OCTAL(type_info->saddr), ECM_IP_ADDR_TO_OCTAL(type_info->daddr), mtu, dev_interface_num, ae_interface_num);
/*
* Locate the iface
*/
ii = ecm_db_iface_find_and_ref_tunipip6(type_info->saddr, type_info->daddr);
if (ii) {
DEBUG_TRACE("%p: iface established\n", ii);
return ii;
}
/*
* No iface - create one
*/
nii = ecm_db_iface_alloc();
if (!nii) {
DEBUG_WARN("Failed to establish iface\n");
return NULL;
}
/*
* Add iface into the database, atomically to avoid races creating the same thing
*/
spin_lock_bh(&ecm_interface_lock);
ii = ecm_db_iface_find_and_ref_tunipip6(type_info->saddr, type_info->daddr);
if (ii) {
spin_unlock_bh(&ecm_interface_lock);
ecm_db_iface_deref(nii);
return ii;
}
ecm_db_iface_add_tunipip6(nii, type_info, dev_name, mtu, dev_interface_num,
ae_interface_num, NULL, nii);
spin_unlock_bh(&ecm_interface_lock);
DEBUG_TRACE("%p: tunipip6 iface established\n", nii);
return nii;
}
#endif
#endif
/*
* ecm_interface_establish_and_ref()
* Establish an interface instance for the given interface detail.
*/
struct ecm_db_iface_instance *ecm_interface_establish_and_ref(struct ecm_front_end_connection_instance *feci,
struct net_device *dev, struct sk_buff *skb)
{
int32_t dev_interface_num;
char *dev_name;
int32_t dev_type;
int32_t dev_mtu;
int32_t ae_interface_num;
struct ecm_db_iface_instance *ii;
union {
struct ecm_db_interface_info_ethernet ethernet; /* type == ECM_DB_IFACE_TYPE_ETHERNET */
#ifdef ECM_INTERFACE_VLAN_ENABLE
struct ecm_db_interface_info_vlan vlan; /* type == ECM_DB_IFACE_TYPE_VLAN */
#endif
#ifdef ECM_INTERFACE_BOND_ENABLE
struct ecm_db_interface_info_lag lag; /* type == ECM_DB_IFACE_TYPE_LAG */
#endif
struct ecm_db_interface_info_bridge bridge; /* type == ECM_DB_IFACE_TYPE_BRIDGE */
#ifdef ECM_INTERFACE_PPPOE_ENABLE
struct ecm_db_interface_info_pppoe pppoe; /* type == ECM_DB_IFACE_TYPE_PPPOE */
#endif
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
struct ecm_db_interface_info_pppol2tpv2 pppol2tpv2; /* type == ECM_DB_IFACE_TYPE_PPPOL2TPV2 */
#endif
#ifdef ECM_INTERFACE_PPTP_ENABLE
struct ecm_db_interface_info_pptp pptp; /* type == ECM_DB_IFACE_TYPE_PPTP */
#endif
#ifdef ECM_INTERFACE_MAP_T_ENABLE
struct ecm_db_interface_info_map_t map_t; /* type == ECM_DB_IFACE_TYPE_MAP_T */
#endif
struct ecm_db_interface_info_unknown unknown; /* type == ECM_DB_IFACE_TYPE_UNKNOWN */
struct ecm_db_interface_info_loopback loopback; /* type == ECM_DB_IFACE_TYPE_LOOPBACK */
#ifdef ECM_INTERFACE_IPSEC_ENABLE
struct ecm_db_interface_info_ipsec_tunnel ipsec_tunnel; /* type == ECM_DB_IFACE_TYPE_IPSEC_TUNNEL */
#endif
#ifdef ECM_INTERFACE_SIT_ENABLE
struct ecm_db_interface_info_sit sit; /* type == ECM_DB_IFACE_TYPE_SIT */
#endif
#ifdef ECM_INTERFACE_TUNIPIP6_ENABLE
#ifdef ECM_IPV6_ENABLE
struct ecm_db_interface_info_tunipip6 tunipip6; /* type == ECM_DB_IFACE_TYPE_TUNIPIP6 */
#endif
#endif
} type_info;
#ifdef ECM_INTERFACE_PPP_ENABLE
int channel_count;
struct ppp_channel *ppp_chan[1];
int channel_protocol;
#ifdef ECM_INTERFACE_PPPOE_ENABLE
struct pppoe_opt addressing;
#endif
#ifdef ECM_INTERFACE_PPTP_ENABLE
int protocol = IPPROTO_IP;
struct pptp_opt opt;
struct iphdr *v4_hdr = NULL;
if (skb) {
v4_hdr = ip_hdr(skb);
protocol = v4_hdr->protocol;
}
#endif
#endif
/*
* Get basic information about the given device
*/
dev_interface_num = dev->ifindex;
dev_name = dev->name;
dev_type = dev->type;
dev_mtu = dev->mtu;
/*
* Does the accel engine recognise this interface?
*/
ae_interface_num = feci->ae_interface_number_by_dev_get(dev);
DEBUG_TRACE("Establish interface instance for device: %p is type: %d, name: %s, ifindex: %d, ae_if: %d, mtu: %d\n",
dev, dev_type, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
/*
* Extract from the device more type-specific information
*/
if (dev_type == ARPHRD_ETHER) {
/*
* Ethernet - but what sub type?
*/
#ifdef ECM_INTERFACE_VLAN_ENABLE
/*
* VLAN?
*/
if (is_vlan_dev(dev)) {
/*
* VLAN master
* GGG No locking needed here, ASSUMPTION is that real_dev is held for as long as we have dev.
*/
memcpy(type_info.vlan.address, dev->dev_addr, 6);
type_info.vlan.vlan_tag = vlan_dev_vlan_id(dev);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 15, 0))
type_info.vlan.vlan_tpid = ETH_P_8021Q;
#else
type_info.vlan.vlan_tpid = ntohs(vlan_dev_vlan_proto(dev));
#endif
DEBUG_TRACE("Net device: %p is VLAN, mac: %pM, vlan_id: %x vlan_tpid: %x\n",
dev, type_info.vlan.address, type_info.vlan.vlan_tag, type_info.vlan.vlan_tpid);
/*
* Establish this type of interface
*/
ii = ecm_interface_vlan_interface_establish(&type_info.vlan, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
goto identifier_update;
}
#endif
/*
* BRIDGE?
*/
if (ecm_front_end_is_bridge_device(dev)) {
/*
* Bridge
*/
memcpy(type_info.bridge.address, dev->dev_addr, 6);
DEBUG_TRACE("Net device: %p is BRIDGE, mac: %pM\n",
dev, type_info.bridge.address);
/*
* Establish this type of interface
*/
ii = ecm_interface_bridge_interface_establish(&type_info.bridge, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
goto identifier_update;
}
#ifdef ECM_INTERFACE_BOND_ENABLE
/*
* LAG?
*/
if (ecm_front_end_is_lag_master(dev)) {
/*
* Link aggregation
*/
memcpy(type_info.lag.address, dev->dev_addr, 6);
DEBUG_TRACE("Net device: %p is LAG, mac: %pM\n",
dev, type_info.lag.address);
/*
* Establish this type of interface
*/
ii = ecm_interface_lag_interface_establish(&type_info.lag, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
goto identifier_update;
}
#endif
#ifdef ECM_INTERFACE_GRE_ENABLE
/*
* GRE TAP?
*/
if (dev->priv_flags & (IFF_GRE_V4_TAP | IFF_GRE_V6_TAP)) {
/*
* GRE TAP interface is handled as ethernet interface, however it is possible
* that the acceleration engine may not be ready yet to handle the connection.
* In this case the acceleration engine interface is not found for this type and
* we should wait until it is ready.
*/
if (ae_interface_num < 0) {
DEBUG_TRACE("GRE interface is not ready yet\n");
return NULL;
}
}
#endif
/*
* ETHERNET!
* Just plain ethernet it seems
*/
memcpy(type_info.ethernet.address, dev->dev_addr, 6);
DEBUG_TRACE("Net device: %p is ETHERNET, mac: %pM\n",
dev, type_info.ethernet.address);
/*
* Establish this type of interface
*/
ii = ecm_interface_ethernet_interface_establish(&type_info.ethernet, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
identifier_update:
if (ii) {
/*
* An interface identifier/ifindex can be change after network restart. Below
* functtion will check interface_identifier present in 'ii' with new dev_interface_num.
* If differ then update new ifindex and update the interface identifier hash table.
*/
ecm_db_iface_identifier_hash_table_entry_check_and_update(ii, dev_interface_num);
}
return ii;
}
/*
* LOOPBACK?
*/
if (dev_type == ARPHRD_LOOPBACK) {
DEBUG_TRACE("Net device: %p is LOOPBACK type: %d\n", dev, dev_type);
type_info.loopback.os_specific_ident = dev_interface_num;
ii = ecm_interface_loopback_interface_establish(&type_info.loopback, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
#ifdef ECM_INTERFACE_IPSEC_ENABLE
/*
* IPSEC?
*/
if (dev_type == ECM_ARPHRD_IPSEC_TUNNEL_TYPE) {
DEBUG_TRACE("Net device: %p is IPSec tunnel type: %d\n", dev, dev_type);
type_info.ipsec_tunnel.os_specific_ident = dev_interface_num;
// GGG TODO Flesh this out with tunnel endpoint addressing detail
ii = ecm_interface_ipsec_tunnel_interface_establish(&type_info.ipsec_tunnel, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
#endif
#ifdef ECM_INTERFACE_MAP_T_ENABLE
if (dev_type == ARPHRD_NONE) {
if (is_map_t_dev(dev)) {
type_info.map_t.if_index = dev_interface_num;
ii = ecm_interface_map_t_interface_establish(&type_info.map_t, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
}
#endif
#ifdef ECM_INTERFACE_SIT_ENABLE
#ifdef CONFIG_IPV6_SIT_6RD
/*
* SIT (6-in-4)?
*/
if (dev_type == ARPHRD_SIT) {
struct ip_tunnel *tunnel;
struct ip_tunnel_6rd_parm *ip6rd;
const struct iphdr *tiph;
int interface_type;
DEBUG_TRACE("Net device: %p is SIT (6-in-4) type: %d\n", dev, dev_type);
tunnel = (struct ip_tunnel*)netdev_priv(dev);
ip6rd = &tunnel->ip6rd;
/*
* Get the Tunnel device IP header info
*/
tiph = &tunnel->parms.iph ;
type_info.sit.prefixlen = ip6rd->prefixlen;
type_info.sit.relay_prefix = ip6rd->relay_prefix;
type_info.sit.relay_prefixlen = ip6rd->relay_prefixlen;
ECM_NIN4_ADDR_TO_IP_ADDR(type_info.sit.saddr, tiph->saddr);
ECM_NIN4_ADDR_TO_IP_ADDR(type_info.sit.daddr, tiph->daddr);
type_info.sit.prefix[0] = ntohl(ip6rd->prefix.s6_addr32[0]);
type_info.sit.prefix[1] = ntohl(ip6rd->prefix.s6_addr32[1]);
type_info.sit.prefix[2] = ntohl(ip6rd->prefix.s6_addr32[2]);
type_info.sit.prefix[3] = ntohl(ip6rd->prefix.s6_addr32[3]);
type_info.sit.ttl = tiph->ttl;
type_info.sit.tos = tiph->tos;
interface_type = feci->ae_interface_type_get(feci, dev_type);
ae_interface_num = feci->ae_interface_number_by_dev_type_get(dev, interface_type);
ii = ecm_interface_sit_interface_establish(&type_info.sit, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
#endif
#endif
#ifdef ECM_INTERFACE_TUNIPIP6_ENABLE
#ifdef ECM_IPV6_ENABLE
/*
* IPIP6 Tunnel?
*/
if (dev_type == ARPHRD_TUNNEL6) {
struct ip6_tnl *tunnel;
struct flowi6 *fl6;
DEBUG_TRACE("Net device: %p is TUNIPIP6 type: %d\n", dev, dev_type);
/*
* Get the tunnel device flow information (discover the output path of the tunnel)
*/
tunnel = (struct ip6_tnl *)netdev_priv(dev);
fl6 = &tunnel->fl.u.ip6;
ECM_NIN6_ADDR_TO_IP_ADDR(type_info.tunipip6.saddr, fl6->saddr);
ECM_NIN6_ADDR_TO_IP_ADDR(type_info.tunipip6.daddr, fl6->daddr);
type_info.tunipip6.hop_limit = tunnel->parms.hop_limit;
type_info.tunipip6.flags = ntohl(tunnel->parms.flags);
type_info.tunipip6.flowlabel = fl6->flowlabel; /* flow Label In kernel is stored in big endian format */
ii = ecm_interface_tunipip6_interface_establish(&type_info.tunipip6, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
#endif
#endif
/*
* If this is NOT PPP then it is unknown to the ecm
*/
if (dev_type != ARPHRD_PPP) {
DEBUG_TRACE("Net device: %p is UNKNOWN type: %d\n", dev, dev_type);
type_info.unknown.os_specific_ident = dev_interface_num;
/*
* Establish this type of interface
*/
ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
#ifndef ECM_INTERFACE_PPP_ENABLE
/*
* PPP Support is NOT provided for.
* Interface is therefore unknown
*/
DEBUG_TRACE("Net device: %p is UNKNOWN (PPP Unsupported) type: %d\n", dev, dev_type);
type_info.unknown.os_specific_ident = dev_interface_num;
/*
* Establish this type of interface
*/
ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
#else
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
/*
* ppp_xmit lock is held by linux kernel for l2tp packet in transmit
* direction. we need to check for l2tp packet and avoid calls to
* ppp_is_multilink() and ppp_hold_channels() which acquire same lock
*/
if ((dev->priv_flags & IFF_PPP_L2TPV2) && ppp_is_xmit_locked(dev)) {
if (skb && (skb->skb_iif == dev->ifindex)) {
struct pppol2tp_common_addr info;
if (__ppp_is_multilink(dev) > 0) {
DEBUG_TRACE("Net device: %p is MULTILINK PPP - Unknown to the ECM\n", dev);
type_info.unknown.os_specific_ident = dev_interface_num;
/*
* Establish this type of interface
*/
ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
channel_count = __ppp_hold_channels(dev, ppp_chan, 1);
if (channel_count != 1) {
DEBUG_TRACE("Net device: %p PPP has %d channels - ECM cannot handle this (interface becomes Unknown type)\n",
dev, channel_count);
type_info.unknown.os_specific_ident = dev_interface_num;
/*
* Establish this type of interface
*/
ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
if (pppol2tp_channel_addressing_get(ppp_chan[0], &info)) {
ppp_release_channels(ppp_chan, 1);
return NULL;
}
type_info.pppol2tpv2.l2tp.tunnel.tunnel_id = info.local_tunnel_id;
type_info.pppol2tpv2.l2tp.tunnel.peer_tunnel_id = info.remote_tunnel_id;
type_info.pppol2tpv2.l2tp.session.session_id = info.local_session_id;
type_info.pppol2tpv2.l2tp.session.peer_session_id = info.remote_session_id;
type_info.pppol2tpv2.udp.sport = ntohs(info.local_addr.sin_port);
type_info.pppol2tpv2.udp.dport = ntohs(info.remote_addr.sin_port);
type_info.pppol2tpv2.ip.saddr = ntohl(info.local_addr.sin_addr.s_addr);
type_info.pppol2tpv2.ip.daddr = ntohl(info.remote_addr.sin_addr.s_addr);
/*
* Release the channel. Note that next_dev is still (correctly) held.
*/
ppp_release_channels(ppp_chan, 1);
DEBUG_TRACE("Net device: %p PPPo2L2TP session: %d,n", dev, type_info.pppol2tpv2.l2tp.session.peer_session_id);
/*
* Establish this type of interface
*/
ii = ecm_interface_pppol2tpv2_interface_establish(&type_info.pppol2tpv2, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
}
#endif
#ifdef ECM_INTERFACE_PPTP_ENABLE
if ((protocol == IPPROTO_GRE) && skb && v4_hdr) {
struct gre_hdr_pptp *gre_hdr;
uint16_t proto;
int ret;
skb_pull(skb, sizeof(struct iphdr));
gre_hdr = (struct gre_hdr_pptp *)(skb->data);
proto = ntohs(gre_hdr->protocol);
if ((gre_hdr->version == GRE_VERSION_PPTP) && (proto == GRE_PROTOCOL_PPTP)) {
ret = pptp_session_find(&opt, gre_hdr->call_id, v4_hdr->daddr);
if (ret < 0) {
skb_push(skb, sizeof(struct iphdr));
DEBUG_WARN("PPTP session info not found\n");
return NULL;
}
/*
* Get PPTP session info
*/
type_info.pptp.src_call_id = ntohs(opt.src_addr.call_id);
type_info.pptp.dst_call_id = ntohs(opt.dst_addr.call_id);
type_info.pptp.src_ip = ntohl(opt.src_addr.sin_addr.s_addr);
type_info.pptp.dst_ip = ntohl(opt.dst_addr.sin_addr.s_addr);
skb_push(skb, sizeof(struct iphdr));
/*
* Establish this type of interface
*/
ii = ecm_interface_pptp_interface_establish(&type_info.pptp, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
if (ii) {
/*
* The ifindex of a virtual netdevice like a PPTP session can change if it is destroyed
* and comes up again. Detect if the ifindex has changed and update it if required
*/
ecm_db_iface_identifier_hash_table_entry_check_and_update(ii, dev_interface_num);
}
return ii;
}
skb_push(skb, sizeof(struct iphdr));
DEBUG_TRACE("Unknown GRE protocol \n");
type_info.unknown.os_specific_ident = dev_interface_num;
/*
* Establish this type of interface
*/
ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
#endif
/*
* PPP - but what is the channel type?
* First: If this is multi-link then we do not support it
*/
if (ppp_is_multilink(dev) > 0) {
DEBUG_TRACE("Net device: %p is MULTILINK PPP - Unknown to the ECM\n", dev);
type_info.unknown.os_specific_ident = dev_interface_num;
/*
* Establish this type of interface
*/
ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
DEBUG_TRACE("Net device: %p is PPP\n", dev);
/*
* Get the PPP channel and then enquire what kind of channel it is
* NOTE: Not multilink so only one channel to get.
*/
channel_count = ppp_hold_channels(dev, ppp_chan, 1);
if (channel_count != 1) {
DEBUG_TRACE("Net device: %p PPP has %d channels - ECM cannot handle this (interface becomes Unknown type)\n",
dev, channel_count);
type_info.unknown.os_specific_ident = dev_interface_num;
/*
* Establish this type of interface
*/
ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
/*
* Get channel protocol type
* NOTE: Not all PPP channels support channel specific methods.
*/
channel_protocol = ppp_channel_get_protocol(ppp_chan[0]);
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
if (channel_protocol == PX_PROTO_OL2TP) {
struct pppol2tp_common_addr info;
if (pppol2tp_channel_addressing_get(ppp_chan[0], &info)) {
ppp_release_channels(ppp_chan, 1);
return NULL;
}
type_info.pppol2tpv2.l2tp.tunnel.tunnel_id = info.local_tunnel_id;
type_info.pppol2tpv2.l2tp.tunnel.peer_tunnel_id = info.remote_tunnel_id;
type_info.pppol2tpv2.l2tp.session.session_id = info.local_session_id;
type_info.pppol2tpv2.l2tp.session.peer_session_id = info.remote_session_id;
type_info.pppol2tpv2.udp.sport = ntohs(info.local_addr.sin_port);
type_info.pppol2tpv2.udp.dport = ntohs(info.remote_addr.sin_port);
type_info.pppol2tpv2.ip.saddr = ntohl(info.local_addr.sin_addr.s_addr);
type_info.pppol2tpv2.ip.daddr = ntohl(info.remote_addr.sin_addr.s_addr);
/*
* Release the channel. Note that next_dev is still (correctly) held.
*/
ppp_release_channels(ppp_chan, 1);
DEBUG_TRACE("Net device: %p PPPo2L2TP session: %d,n", dev, type_info.pppol2tpv2.l2tp.session.peer_session_id);
/*
* Establish this type of interface
*/
ii = ecm_interface_pppol2tpv2_interface_establish(&type_info.pppol2tpv2, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
#endif
#ifdef ECM_INTERFACE_PPPOE_ENABLE
if (channel_protocol == PX_PROTO_OE) {
/*
* PPPoE channel
*/
DEBUG_TRACE("Net device: %p PPP channel is PPPoE\n", dev);
/*
* Get PPPoE session information and the underlying device it is using.
*/
pppoe_channel_addressing_get(ppp_chan[0], &addressing);
type_info.pppoe.pppoe_session_id = (uint16_t)ntohs((uint16_t)addressing.pa.sid);
memcpy(type_info.pppoe.remote_mac, addressing.pa.remote, ETH_ALEN);
dev_put(addressing.dev);
/*
* Release the channel. Note that next_dev is still (correctly) held.
*/
ppp_release_channels(ppp_chan, 1);
DEBUG_TRACE("Net device: %p PPPoE session: %x, remote mac: %pM\n",
dev, type_info.pppoe.pppoe_session_id, type_info.pppoe.remote_mac);
/*
* Establish this type of interface
*/
ii = ecm_interface_pppoe_interface_establish(&type_info.pppoe, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
}
#endif
#ifdef ECM_INTERFACE_PPTP_ENABLE
if (channel_protocol == PX_PROTO_PPTP) {
pptp_channel_addressing_get(&opt, ppp_chan[0]);
/*
* Get PPTP session info
*/
type_info.pptp.src_call_id = ntohs(opt.src_addr.call_id);
type_info.pptp.dst_call_id = ntohs(opt.dst_addr.call_id);
type_info.pptp.src_ip = ntohl(opt.src_addr.sin_addr.s_addr);
type_info.pptp.dst_ip = ntohl(opt.dst_addr.sin_addr.s_addr);
DEBUG_TRACE("Net device: %p PPTP source call id: %d,n", dev, type_info.pptp.src_call_id);
ppp_release_channels(ppp_chan, 1);
/*
* Establish this type of interface
*/
ii = ecm_interface_pptp_interface_establish(&type_info.pptp, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
if (ii) {
/*
* The ifindex of a virtual netdevice like a PPTP session can change if it is destroyed
* and comes up again. Detect if the ifindex has changed and update it if required
*/
ecm_db_iface_identifier_hash_table_entry_check_and_update(ii, dev_interface_num);
}
return ii;
}
#endif
DEBUG_TRACE("Net device: %p PPP channel protocol: %d - Unknown to the ECM\n", dev, channel_protocol);
type_info.unknown.os_specific_ident = dev_interface_num;
/*
* Release the channel
*/
ppp_release_channels(ppp_chan, 1);
/*
* Establish this type of interface
*/
ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, ae_interface_num, dev_mtu);
return ii;
#endif
}
EXPORT_SYMBOL(ecm_interface_establish_and_ref);
#ifdef ECM_MULTICAST_ENABLE
/*
* ecm_interface_multicast_heirarchy_construct_single()
* Create and return an interface heirarchy for a single interface for a multicast connection
*
* src_addr IP source address
* dest_addr IP Destination address/Group Address
* interface Pointer to a single multicast interface heirarchy
* given_dest_dev Netdev pointer for destination interface
* br_slave_dev Netdev pointer to a bridge slave device. It could be NULL in case of pure
* routed flow without any bridge interface in destination dev list.
* skb sk_buff
*/
static uint32_t ecm_interface_multicast_heirarchy_construct_single(struct ecm_front_end_connection_instance *feci, ip_addr_t src_addr,
ip_addr_t dest_addr, struct ecm_db_iface_instance *interface,
struct net_device *given_dest_dev, struct net_device *br_slave_dev,
uint8_t *src_node_addr, bool is_routed, __be16 *layer4hdr, struct sk_buff *skb)
{
struct ecm_db_iface_instance *to_list_single[ECM_DB_IFACE_HEIRARCHY_MAX];
struct ecm_db_iface_instance **ifaces;
struct ecm_db_iface_instance *ii_temp;
struct net_device *dest_dev;
int32_t current_interface_index;
int32_t interfaces_cnt = 0;
int32_t dest_dev_type;
dest_dev = given_dest_dev;
dev_hold(dest_dev);
dest_dev_type = dest_dev->type;
current_interface_index = ECM_DB_IFACE_HEIRARCHY_MAX;
while (current_interface_index > 0) {
struct ecm_db_iface_instance *ii;
struct net_device *next_dev;
/*
* Get the ecm db interface instance for the device at hand
*/
ii = ecm_interface_establish_and_ref(feci, dest_dev, skb);
interfaces_cnt++;
/*
* If the interface could not be established then we abort
*/
if (!ii) {
DEBUG_WARN("Failed to establish interface: %p, name: %s\n", dest_dev, dest_dev->name);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_multicast_copy_if_heirarchy(to_list_single, interface);
ecm_db_connection_interfaces_deref(to_list_single, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
/*
* Record the interface instance into the *ifaces
*/
current_interface_index--;
ii_temp = ecm_db_multicast_if_instance_get_at_index(interface, current_interface_index);
ifaces = (struct ecm_db_iface_instance **)ii_temp;
*ifaces = ii;
/*
* Now we have to figure out what the next device will be (in the transmission path)
*/
do {
#ifdef ECM_INTERFACE_PPP_ENABLE
int channel_count;
struct ppp_channel *ppp_chan[1];
int channel_protocol;
struct pppoe_opt addressing;
#endif
DEBUG_TRACE("Net device: %p is type: %d, name: %s\n", dest_dev, dest_dev_type, dest_dev->name);
next_dev = NULL;
if (dest_dev_type == ARPHRD_ETHER) {
/*
* Ethernet - but what sub type?
*/
/*
* VLAN?
*/
if (is_vlan_dev(dest_dev)) {
/*
* VLAN master
* No locking needed here, ASSUMPTION is that real_dev is held for as long as we have dev.
*/
next_dev = ecm_interface_vlan_real_dev(dest_dev);
dev_hold(next_dev);
DEBUG_TRACE("Net device: %p is VLAN, slave dev: %p (%s)\n",
dest_dev, next_dev, next_dev->name);
break;
}
/*
* BRIDGE?
*/
if (ecm_front_end_is_bridge_device(dest_dev)) {
if (!ecm_front_end_is_bridge_port(br_slave_dev)) {
DEBUG_ASSERT(NULL, "%p: expected only bridge slave here\n", interface);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_multicast_copy_if_heirarchy(to_list_single, interface);
ecm_db_connection_interfaces_deref(to_list_single, current_interface_index);
dev_put(dest_dev);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
next_dev = br_slave_dev;
if (!next_dev) {
DEBUG_WARN("Unable to obtain output port \n");
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_multicast_copy_if_heirarchy(to_list_single, interface);
ecm_db_connection_interfaces_deref(to_list_single, current_interface_index);
dev_put(dest_dev);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
DEBUG_TRACE("Net device: %p is BRIDGE, next_dev: %p (%s)\n", dest_dev, next_dev, next_dev->name);
dev_hold(next_dev);
break;
}
#ifdef ECM_INTERFACE_BOND_ENABLE
/*
* LAG?
*/
if (ecm_front_end_is_lag_master(dest_dev)) {
/*
* Link aggregation
* Figure out which slave device of the link aggregation will be used to reach the destination.
*/
uint32_t src_addr_32 = 0;
uint32_t dest_addr_32 = 0;
struct in6_addr src_addr6;
struct in6_addr dest_addr6;
uint8_t src_mac_addr[ETH_ALEN];
uint8_t dest_mac_addr[ETH_ALEN];
memset(src_mac_addr, 0, ETH_ALEN);
memset(dest_mac_addr, 0, ETH_ALEN);
if (ECM_IP_ADDR_IS_V4(src_addr)) {
ECM_IP_ADDR_TO_NIN4_ADDR(src_addr_32, src_addr);
ECM_IP_ADDR_TO_NIN4_ADDR(dest_addr_32, dest_addr);
}
if (!is_routed) {
memcpy(src_mac_addr, src_node_addr, ETH_ALEN);
} else {
struct net_device *dest_dev_master;
/*
* Use appropriate source MAC address for routed packets
*/
dest_dev_master = ecm_interface_get_and_hold_dev_master(dest_dev);
if (dest_dev_master) {
memcpy(src_mac_addr, dest_dev_master->dev_addr, ETH_ALEN);
dev_put(dest_dev_master);
} else {
memcpy(src_mac_addr, dest_dev->dev_addr, ETH_ALEN);
}
}
/*
* Create Destination MAC address using IP multicast destination address
*/
ecm_translate_multicast_mac(dest_addr, dest_mac_addr);
if (ECM_IP_ADDR_IS_V4(src_addr)) {
next_dev = bond_get_tx_dev(NULL, src_mac_addr, dest_mac_addr,
&src_addr_32, &dest_addr_32,
htons((uint16_t)ETH_P_IP), dest_dev, layer4hdr);
} else {
ECM_IP_ADDR_TO_NIN6_ADDR(src_addr6, src_addr);
ECM_IP_ADDR_TO_NIN6_ADDR(dest_addr6, dest_addr);
next_dev = bond_get_tx_dev(NULL, src_mac_addr, dest_mac_addr,
src_addr6.s6_addr, dest_addr6.s6_addr,
htons((uint16_t)ETH_P_IPV6), dest_dev, layer4hdr);
}
if (!(next_dev && netif_carrier_ok(next_dev))) {
DEBUG_WARN("Unable to obtain LAG output slave device\n");
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_multicast_copy_if_heirarchy(to_list_single, interface);
ecm_db_connection_interfaces_deref(to_list_single, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
dev_hold(next_dev);
DEBUG_TRACE("Net device: %p is LAG, slave dev: %p (%s)\n", dest_dev, next_dev, next_dev->name);
break;
}
#endif
/*
* ETHERNET!
* Just plain ethernet it seems.
*/
DEBUG_TRACE("Net device: %p is ETHERNET\n", dest_dev);
break;
}
/*
* LOOPBACK?
*/
if (dest_dev_type == ARPHRD_LOOPBACK) {
DEBUG_TRACE("Net device: %p is LOOPBACK type: %d\n", dest_dev, dest_dev_type);
break;
}
/*
* IPSEC?
*/
if (dest_dev_type == ECM_ARPHRD_IPSEC_TUNNEL_TYPE) {
DEBUG_TRACE("Net device: %p is IPSec tunnel type: %d\n", dest_dev, dest_dev_type);
/*
* TODO Figure out the next device the tunnel is using...
*/
break;
}
/*
* SIT (6-in-4)?
*/
if (dest_dev_type == ARPHRD_SIT) {
DEBUG_TRACE("Net device: %p is SIT (6-in-4) type: %d\n", dest_dev, dest_dev_type);
/*
* TODO Figure out the next device the tunnel is using...
*/
break;
}
/*
* IPIP6 Tunnel?
*/
if (dest_dev_type == ARPHRD_TUNNEL6) {
DEBUG_TRACE("Net device: %p is TUNIPIP6 type: %d\n", dest_dev, dest_dev_type);
/*
* TODO Figure out the next device the tunnel is using...
*/
break;
}
/*
* If this is NOT PPP then it is unknown to the ecm and we cannot figure out it's next device.
*/
if (dest_dev_type != ARPHRD_PPP) {
DEBUG_TRACE("Net device: %p is UNKNOWN type: %d\n", dest_dev, dest_dev_type);
break;
}
#ifndef ECM_INTERFACE_PPP_ENABLE
DEBUG_TRACE("Net device: %p is UNKNOWN (PPP Unsupported) type: %d\n", dest_dev, dest_dev_type);
#else
/*
* PPP - but what is the channel type?
* First: If this is multi-link then we do not support it
*/
if (ppp_is_multilink(dest_dev) > 0) {
DEBUG_TRACE("Net device: %p is MULTILINK PPP - Unknown to the ECM\n", dest_dev);
break;
}
DEBUG_TRACE("Net device: %p is PPP\n", dest_dev);
/*
* Get the PPP channel and then enquire what kind of channel it is
* NOTE: Not multilink so only one channel to get.
*/
channel_count = ppp_hold_channels(dest_dev, ppp_chan, 1);
if (channel_count != 1) {
DEBUG_TRACE("Net device: %p PPP has %d channels - Unknown to the ECM\n",
dest_dev, channel_count);
break;
}
/*
* Get channel protocol type
* NOTE: Not all PPP channels support channel specific methods.
*/
channel_protocol = ppp_channel_get_protocol(ppp_chan[0]);
if (channel_protocol != PX_PROTO_OE) {
DEBUG_TRACE("Net device: %p PPP channel protocol: %d - Unknown to the ECM\n",
dest_dev, channel_protocol);
/*
* Release the channel
*/
ppp_release_channels(ppp_chan, 1);
break;
}
/*
* PPPoE channel
*/
DEBUG_TRACE("Net device: %p PPP channel is PPPoE\n", dest_dev);
/*
* Get PPPoE session information and the underlying device it is using.
*/
pppoe_channel_addressing_get(ppp_chan[0], &addressing);
/*
* Copy the dev hold into this, we will release the hold later
*/
next_dev = addressing.dev;
/*
* Release the channel. Note that next_dev is still (correctly) held.
*/
ppp_release_channels(ppp_chan, 1);
#endif
} while (false);
/*
* No longer need dest_dev as it may become next_dev
*/
dev_put(dest_dev);
/*
* Check out the next_dev, if any
*/
if (!next_dev) {
int32_t i __attribute__((unused));
DEBUG_INFO("Completed interface heirarchy construct with first interface @: %d\n", current_interface_index);
#if DEBUG_LEVEL > 1
ecm_db_multicast_copy_if_heirarchy(to_list_single, interface);
for (i = current_interface_index; i < ECM_DB_IFACE_HEIRARCHY_MAX; ++i) {
DEBUG_TRACE("\tInterface @ %d: %p, type: %d, name: %s\n", \
i, to_list_single[i], ecm_db_connection_iface_type_get(to_list_single[i]), \
ecm_db_interface_type_to_string(ecm_db_connection_iface_type_get(to_list_single[i])));
}
#endif
return current_interface_index;
}
/*
* dest_dev becomes next_dev
*/
dest_dev = next_dev;
dest_dev_type = dest_dev->type;
}
dev_put(dest_dev);
ecm_db_multicast_copy_if_heirarchy(to_list_single, interface);
ecm_db_connection_interfaces_deref(to_list_single, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
/*
* ecm_interface_multicast_heirarchy_construct_routed()
* Create destination interface heirarchy for a routed multicast connectiona
*
* interfaces Pointer to the 2-D array of multicast interface heirarchies
* in_dev Pointer to the source netdev
* packet_src_addr Source IP of the multicast flow
* packet_dest_addr Group(dest) IP of the multicast flow
* max_dst Maximum number of netdev joined the multicast group
* dst_if_index_base An array of if index joined the multicast group
* interface_first_base An array of the index of the first interface in the list
*/
int32_t ecm_interface_multicast_heirarchy_construct_routed(struct ecm_front_end_connection_instance *feci,
struct ecm_db_iface_instance *interfaces,
struct net_device *in_dev,
ip_addr_t packet_src_addr,
ip_addr_t packet_dest_addr, uint8_t max_if,
uint32_t *dst_if_index_base,
uint32_t *interface_first_base, bool mfc_update,
__be16 *layer4hdr, struct sk_buff *skb)
{
struct ecm_db_iface_instance *to_list_single[ECM_DB_IFACE_HEIRARCHY_MAX];
struct ecm_db_iface_instance *ifaces;
struct net_device *dest_dev = NULL;
struct net_device *br_dev_src = NULL;
uint32_t *dst_if_index;
uint32_t *interface_first;
uint32_t br_if;
uint32_t valid_if;
int32_t if_num;
int32_t dest_dev_type;
int if_index;
int ii_cnt;
int total_ii_count = 0;
bool src_dev_is_bridge = false;
DEBUG_TRACE("Construct interface heirarchy for dest_addr: " ECM_IP_ADDR_DOT_FMT " src_addr: " ECM_IP_ADDR_DOT_FMT "total destination ifs %d\n",
ECM_IP_ADDR_TO_DOT(packet_dest_addr), ECM_IP_ADDR_TO_DOT(packet_src_addr), max_if);
/*
* Check if the source net_dev is a bridge slave.
*/
if (in_dev && !mfc_update) {
if (ecm_front_end_is_bridge_port(in_dev)) {
src_dev_is_bridge = true;
br_dev_src = ecm_interface_get_and_hold_dev_master(in_dev);
DEBUG_ASSERT(br_dev_src, "Expected a master\n");
/*
* The source net_dev found as bridge slave. In case of routed interface
* heirarchy MFC is not aware of any other bridge slave has joined the same
* multicast group as a destination interface. Therfore we assume there
* are bridge slaves present in multicast destination interface list
* and increase the max_if by one.
*/
max_if++;
}
}
ii_cnt = 0;
br_if = if_num = 0;
/*
* This loop is for creating the destination interface hierarchy list.
* We take the destination interface array we got from MFC (in form of ifindex array)
* as input for this.
*/
for (if_index = 0, valid_if = 0; if_index < max_if; if_index++) {
dst_if_index = ecm_db_multicast_if_first_get_at_index(dst_if_index_base, if_index);
if (*dst_if_index == ECM_INTERFACE_LOOPBACK_DEV_INDEX) {
continue;
}
dest_dev = dev_get_by_index(&init_net, *dst_if_index);
if (!dest_dev) {
if (!src_dev_is_bridge) {
int i;
/*
* If already constructed any interface heirarchies before hitting
* this error condition then Deref all interface heirarchies.
*/
if (valid_if > 0) {
for (i = 0; i < valid_if; i++) {
ifaces = ecm_db_multicast_if_heirarchy_get(interfaces, i);
ecm_db_multicast_copy_if_heirarchy(to_list_single, ifaces);
ecm_db_connection_interfaces_deref(to_list_single, interface_first_base[i]);
}
}
/*
* If valid netdev not found, Return 0
*/
return 0;
}
dest_dev = br_dev_src;
}
dest_dev_type = dest_dev->type;
if (ecm_front_end_is_bridge_device(dest_dev)) {
struct net_device *mc_br_slave_dev = NULL;
uint32_t mc_max_dst = ECM_DB_MULTICAST_IF_MAX;
uint32_t mc_dst_if_index[ECM_DB_MULTICAST_IF_MAX];
if (ECM_IP_ADDR_IS_V4(packet_src_addr)) {
if_num = mc_bridge_ipv4_get_if(dest_dev, htonl((packet_src_addr[0])), htonl(packet_dest_addr[0]), mc_max_dst, mc_dst_if_index);
} else {
struct in6_addr origin6;
struct in6_addr group6;
ECM_IP_ADDR_TO_NIN6_ADDR(origin6, packet_src_addr);
ECM_IP_ADDR_TO_NIN6_ADDR(group6, packet_dest_addr);
if_num = mc_bridge_ipv6_get_if(dest_dev, &origin6, &group6, mc_max_dst, mc_dst_if_index);
}
if ((if_num < 0) || (if_num > ECM_DB_MULTICAST_IF_MAX)) {
int i;
DEBUG_WARN("MCS is not ready\n");
/*
* If already constructed any interface heirarchies before hitting
* this error condition then Deref all interface heirarchies.
*/
if (valid_if > 0) {
for (i = 0; i < valid_if; i++) {
ifaces = ecm_db_multicast_if_heirarchy_get(interfaces, i);
ecm_db_multicast_copy_if_heirarchy(to_list_single, ifaces);
ecm_db_connection_interfaces_deref(to_list_single, interface_first_base[i]);
}
}
dev_put(dest_dev);
return 0;
}
if (in_dev && !mfc_update) {
if_num = ecm_interface_multicast_check_for_src_ifindex(mc_dst_if_index, if_num, in_dev->ifindex);
}
for (br_if = 0; br_if < if_num; br_if++) {
mc_br_slave_dev = dev_get_by_index(&init_net, mc_dst_if_index[br_if]);
if (!mc_br_slave_dev) {
continue;
}
if ((valid_if + br_if) > ECM_DB_MULTICAST_IF_MAX) {
int i;
/*
* If already constructed any interface heirarchies before hitting
* this error condition then Deref all interface heirarchies.
*/
for (i = 0; i < (valid_if + br_if); i++) {
ifaces = ecm_db_multicast_if_heirarchy_get(interfaces, i);
ecm_db_multicast_copy_if_heirarchy(to_list_single, ifaces);
ecm_db_connection_interfaces_deref(to_list_single, interface_first_base[i]);
}
dev_put(dest_dev);
dev_put(mc_br_slave_dev);
return 0;
}
ifaces = ecm_db_multicast_if_heirarchy_get(interfaces, valid_if + br_if);
/*
* Construct a single interface heirarchy of a multicast dev.
*/
ii_cnt = ecm_interface_multicast_heirarchy_construct_single(feci, packet_src_addr, packet_dest_addr, ifaces, dest_dev, mc_br_slave_dev, NULL, true, layer4hdr, skb);
if (ii_cnt == ECM_DB_IFACE_HEIRARCHY_MAX) {
/*
* If already constructed any interface heirarchies before hitting
* this error condition then Deref all interface heirarchies.
*/
if ((valid_if + br_if) > 0) {
int i;
for (i = 0; i < (valid_if + br_if); i++) {
ifaces = ecm_db_multicast_if_heirarchy_get(interfaces, i);
ecm_db_multicast_copy_if_heirarchy(to_list_single, ifaces);
ecm_db_connection_interfaces_deref(to_list_single, interface_first_base[i]);
}
}
dev_put(dest_dev);
dev_put(mc_br_slave_dev);
return 0;
}
interface_first = ecm_db_multicast_if_first_get_at_index(interface_first_base, (valid_if + br_if));
*interface_first = ii_cnt;
total_ii_count += ii_cnt;
dev_put(mc_br_slave_dev);
}
valid_if += br_if;
} else {
DEBUG_ASSERT(valid_if < ECM_DB_MULTICAST_IF_MAX, "Bad array index size %d\n", valid_if);
ifaces = ecm_db_multicast_if_heirarchy_get(interfaces, valid_if);
/*
* Construct a single interface heirarchy of a multicast dev.
*/
ii_cnt = ecm_interface_multicast_heirarchy_construct_single(feci, packet_src_addr, packet_dest_addr, ifaces, dest_dev, NULL, NULL, true, layer4hdr, skb);
if (ii_cnt == ECM_DB_IFACE_HEIRARCHY_MAX) {
/*
* If already constructed any interface heirarchies before hitting
* this error condition then Deref all interface heirarchies.
*/
if (valid_if > 0) {
int i;
for (i = 0; i < valid_if; i++) {
ifaces = ecm_db_multicast_if_heirarchy_get(interfaces, i);
ecm_db_multicast_copy_if_heirarchy(to_list_single, ifaces);
ecm_db_connection_interfaces_deref(to_list_single, interface_first_base[i]);
}
}
dev_put(dest_dev);
return 0;
}
interface_first = ecm_db_multicast_if_first_get_at_index(interface_first_base, valid_if);
*interface_first = ii_cnt;
total_ii_count += ii_cnt;
valid_if++;
}
dev_put(dest_dev);
}
return total_ii_count;
}
EXPORT_SYMBOL(ecm_interface_multicast_heirarchy_construct_routed);
/*
* ecm_interface_multicast_heirarchy_construct_bridged()
* This function called when the Hyfi bridge snooper has IGMP/IMLD updates, this function
* creates destination interface heirarchy for a bridged multicast connection.
*
* interfaces Pointer to the 2-D array of multicast interface heirarchies
* dest_dev Pointer to the destination dev, here dest_dev is always a bridge type
* packet_src_addr Source IP of the multicast flow
* packet_dest_addr Group(dest) IP of the multicast flow
* mc_max_dst Maximum number of bridge slaves joined the multicast group
* mc_dst_if_index_base An array of if index joined the multicast group
* interface_first_base An array of the index of the first interface in the list
*/
int32_t ecm_interface_multicast_heirarchy_construct_bridged(struct ecm_front_end_connection_instance *feci,
struct ecm_db_iface_instance *interfaces, struct net_device *dest_dev,
ip_addr_t packet_src_addr, ip_addr_t packet_dest_addr, uint8_t mc_max_dst,
int *mc_dst_if_index_base, uint32_t *interface_first_base, uint8_t *src_node_addr,
__be16 *layer4hdr, struct sk_buff *skb)
{
struct ecm_db_iface_instance *to_list_single[ECM_DB_IFACE_HEIRARCHY_MAX];
struct ecm_db_iface_instance *ifaces;
struct net_device *mc_br_slave_dev = NULL;
uint32_t *interface_first;
int *mc_dst_if_index;
int valid_if;
int ii_cnt = 0;
int br_if;
int total_ii_cnt = 0;
/*
* Go through the newly joined interface index one by one and
* create an interface heirarchy for each valid interface.
*/
for (br_if = 0, valid_if = 0; br_if < mc_max_dst; br_if++) {
mc_dst_if_index = (int *)ecm_db_multicast_if_num_get_at_index(mc_dst_if_index_base, br_if);
mc_br_slave_dev = dev_get_by_index(&init_net, *mc_dst_if_index);
if (!mc_br_slave_dev) {
/*
* If already constructed any interface heirarchies before hitting
* this error condition then Deref all interface heirarchies.
*/
if (valid_if > 0) {
int i;
for (i = 0; i < valid_if; i++) {
ifaces = ecm_db_multicast_if_heirarchy_get(interfaces, i);
ecm_db_multicast_copy_if_heirarchy(to_list_single, ifaces);
ecm_db_connection_interfaces_deref(to_list_single, interface_first_base[i]);
}
}
/*
* If valid netdev not found, Return 0
*/
return 0;
}
if (valid_if > ECM_DB_MULTICAST_IF_MAX) {
int i;
/*
* If already constructed any interface heirarchies before hitting
* this error condition then Deref all interface heirarchies.
*/
for (i = 0; i < valid_if; i++) {
ifaces = ecm_db_multicast_if_heirarchy_get(interfaces, i);
ecm_db_multicast_copy_if_heirarchy(to_list_single, ifaces);
ecm_db_connection_interfaces_deref(to_list_single, interface_first_base[i]);
}
dev_put(mc_br_slave_dev);
return 0;
}
ifaces = ecm_db_multicast_if_heirarchy_get(interfaces, valid_if);
/*
* Construct a single interface heirarchy of a multicast dev.
*/
ii_cnt = ecm_interface_multicast_heirarchy_construct_single(feci, packet_src_addr, packet_dest_addr, ifaces, dest_dev, mc_br_slave_dev, src_node_addr, false, layer4hdr, skb);
if (ii_cnt == ECM_DB_IFACE_HEIRARCHY_MAX) {
/*
* If already constructed any interface heirarchies before hitting
* this error condition then Deref all interface heirarchies.
*/
if (valid_if > 0) {
int i;
for (i = 0; i < valid_if; i++) {
ifaces = ecm_db_multicast_if_heirarchy_get(interfaces, i);
ecm_db_multicast_copy_if_heirarchy(to_list_single, ifaces);
ecm_db_connection_interfaces_deref(to_list_single, interface_first_base[i]);
}
}
dev_put(mc_br_slave_dev);
return 0;
}
interface_first = ecm_db_multicast_if_first_get_at_index(interface_first_base, valid_if);
*interface_first = ii_cnt;
total_ii_cnt += ii_cnt;
valid_if++;
dev_put(mc_br_slave_dev);
}
return valid_if;
}
EXPORT_SYMBOL(ecm_interface_multicast_heirarchy_construct_bridged);
/*
* ecm_interface_multicast_get_next_node_mac_address()
* Get the MAC address of the next node for multicast flows
*
* TODO: This function will be removed when the multicast flow code
* is fixed to use the new interface hierarchy construction model.
*
*/
static bool ecm_interface_multicast_get_next_node_mac_address(
ip_addr_t dest_addr, struct net_device *dest_dev, int ip_version,
uint8_t *mac_addr)
{
bool on_link;
ip_addr_t gw_addr = ECM_IP_ADDR_NULL;
if (!ecm_interface_mac_addr_get(dest_addr, mac_addr, &on_link, gw_addr)) {
if (ip_version == 4) {
DEBUG_WARN("Unable to obtain MAC address for " ECM_IP_ADDR_DOT_FMT "\n",
ECM_IP_ADDR_TO_DOT(dest_addr));
ecm_interface_send_arp_request(dest_dev, dest_addr, on_link, gw_addr);
}
#ifdef ECM_IPV6_ENABLE
if (ip_version == 6) {
DEBUG_WARN("Unable to obtain MAC address for " ECM_IP_ADDR_OCTAL_FMT "\n",
ECM_IP_ADDR_TO_OCTAL(dest_addr));
ecm_interface_send_neighbour_solicitation(dest_dev, dest_addr);
}
#endif
return false;
}
return true;
}
#endif
/*
* ecm_interface_get_next_node_mac_address()
* Get the MAC address of the next node
*/
static bool ecm_interface_get_next_node_mac_address(
ip_addr_t dest_addr, struct net_device *dest_dev, int ip_version,
uint8_t *mac_addr)
{
if (!ecm_interface_mac_addr_get_no_route(dest_dev, dest_addr, mac_addr)) {
/*
* MAC address look up failed. The host IP address may not be in the
* neighbour table. So, let's send an ARP or neighbour solicitation
* request to this host IP address, so in the subsequent lookups it can be
* found.
*/
if (ip_version == 4) {
ip_addr_t gw_addr = ECM_IP_ADDR_NULL;
bool on_link = true;
DEBUG_WARN("Unable to obtain MAC address for " ECM_IP_ADDR_DOT_FMT " send ARP request\n",
ECM_IP_ADDR_TO_DOT(dest_addr));
if (ecm_interface_find_gateway(dest_addr, gw_addr)) {
on_link = false;
}
if (ecm_interface_mac_addr_get_no_route(dest_dev, gw_addr, mac_addr)) {
DEBUG_TRACE("Found the mac address for gateway\n");
return true;
}
ecm_interface_send_arp_request(dest_dev, dest_addr, on_link, gw_addr);
}
#ifdef ECM_IPV6_ENABLE
if (ip_version == 6) {
DEBUG_WARN("Unable to obtain MAC address for " ECM_IP_ADDR_OCTAL_FMT " send neighbour solicitation request\n",
ECM_IP_ADDR_TO_OCTAL(dest_addr));
ecm_interface_send_neighbour_solicitation(dest_dev, dest_addr);
}
#endif
return false;
}
return true;
}
/*
* ecm_interface_should_update_egress_device_bridged()
* Determine if the egress port should be re-evaluated in the bridged case
*
* This will be done if:
* - The egress port is the one provided from the front-end
* - The egress port is not a bridge, but is a slave of the bridge
* - Not routed
*
* If these conditions hold, this function will hold a reference to the bridge
* port and return it to the caller. Otherwise no reference will be held and
* it will return NULL.
*/
static struct net_device *ecm_interface_should_update_egress_device_bridged(
struct net_device *given_dest_dev, struct net_device *dest_dev,
bool is_routed)
{
struct net_device *bridge;
/*
* Determine if we should attempt to fetch the bridge device
*/
if (!given_dest_dev || is_routed || (dest_dev != given_dest_dev) ||
ecm_front_end_is_bridge_device(given_dest_dev))
return NULL;
bridge = ecm_interface_get_and_hold_dev_master(given_dest_dev);
if (!bridge)
return NULL;
if (!ecm_front_end_is_bridge_device(bridge)) {
/*
* Master is not a bridge - free the reference and return
*/
dev_put(bridge);
return NULL;
}
/*
* Reference is held to bridge and must be freed by caller
*/
return bridge;
}
/*
* ecm_interface_heirarchy_construct()
* Construct an interface heirarchy.
*
* Using the given addressing, locate the interface heirarchy used to emit packets to that destination.
* This is the heirarchy of interfaces a packet would transit to emit from the device.
*
* We will use the given src/dest devices when is_routed is false.
* When is_routed is true we will use the construct and the other devices (which is the src device of the
* construct device) whcih were obtained from the skb's route field and passed to this function..
*
* For example, with this network arrangement:
*
* PPPoE--VLAN--BRIDGE--BRIDGE_PORT(LAG_MASTER)--LAG_SLAVE_0--10.22.33.11
*
* Given the packet_dest_addr IP address 10.22.33.11 this will create an interface heirarchy (in interracfes[]) of:
* LAG_SLAVE_0 @ [ECM_DB_IFACE_HEIRARCHY_MAX - 5]
* LAG_MASTER @ [ECM_DB_IFACE_HEIRARCHY_MAX - 4]
* BRIDGE @ [ECM_DB_IFACE_HEIRARCHY_MAX - 3]
* VLAN @ [ECM_DB_IFACE_HEIRARCHY_MAX - 2]
* PPPOE @ [ECM_DB_IFACE_HEIRARCHY_MAX - 1]
* The value returned is (ECM_DB_IFACE_HEIRARCHY_MAX - 5)
*
* IMPORTANT: This function will return any known interfaces in the database, when interfaces do not exist in the database
* they will be created and added automatically to the database.
*/
int32_t ecm_interface_heirarchy_construct(struct ecm_front_end_connection_instance *feci,
struct ecm_db_iface_instance *interfaces[],
struct net_device *const_if, struct net_device *other_if,
ip_addr_t lookup_src_addr,
ip_addr_t lookup_dest_addr,
ip_addr_t real_dest_addr,
int ip_version, int packet_protocol,
struct net_device *given_dest_dev,
bool is_routed, struct net_device *given_src_dev,
uint8_t *dest_node_addr, uint8_t *src_node_addr,
__be16 *layer4hdr, struct sk_buff *skb)
{
int protocol;
ip_addr_t src_addr;
ip_addr_t dest_addr;
struct net_device *dest_dev;
char *dest_dev_name;
int32_t dest_dev_type;
struct net_device *src_dev;
char *src_dev_name;
int32_t src_dev_type;
int32_t current_interface_index;
bool from_local_addr;
bool next_dest_addr_valid;
bool next_dest_node_addr_valid = false;
ip_addr_t next_dest_addr;
uint8_t next_dest_node_addr[ETH_ALEN] = {0};
struct net_device *bridge;
struct net_device *top_dev_vlan = NULL;
uint32_t serial = ecm_db_connection_serial_get(feci->ci);
/*
* Get a big endian of the IPv4 address we have been given as our starting point.
*/
protocol = packet_protocol;
ECM_IP_ADDR_COPY(src_addr, lookup_src_addr);
ECM_IP_ADDR_COPY(dest_addr, lookup_dest_addr);
if (ip_version == 4) {
DEBUG_TRACE("Construct interface heirarchy for from src_addr: " ECM_IP_ADDR_DOT_FMT " to dest_addr: " ECM_IP_ADDR_DOT_FMT ", protocol: %d (serial %u)\n",
ECM_IP_ADDR_TO_DOT(src_addr), ECM_IP_ADDR_TO_DOT(dest_addr), protocol,
serial);
#ifdef ECM_IPV6_ENABLE
} else if (ip_version == 6) {
DEBUG_TRACE("Construct interface heirarchy for from src_addr: " ECM_IP_ADDR_OCTAL_FMT " to dest_addr: " ECM_IP_ADDR_OCTAL_FMT ", protocol: %d (serial %u)\n",
ECM_IP_ADDR_TO_OCTAL(src_addr), ECM_IP_ADDR_TO_OCTAL(dest_addr), protocol,
serial);
#endif
} else {
DEBUG_WARN("Wrong IP protocol: %d\n", ip_version);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
/*
* Get device to reach the given destination address.
* If the heirarchy is for a routed connection we must use the devices obtained from the skb's route information..
* If the heirarchy is NOT for a routed connection we try the given_dest_dev.
*/
from_local_addr = false;
if (!is_routed) {
dest_dev = given_dest_dev;
dev_hold(dest_dev);
} else {
dest_dev = ecm_interface_dev_find_by_local_addr(dest_addr);
if (dest_dev) {
from_local_addr = true;
} else {
dest_dev = const_if;
dev_hold(dest_dev);
}
}
/*
* If the address is a local address and protocol is an IP tunnel
* then this connection is a tunnel endpoint made to this device.
* In which case we circumvent all proper procedure and just hack the devices to make stuff work.
*
* TODO THIS MUST BE FIXED - WE MUST USE THE INTERFACE HIERARCHY FOR ITS INTENDED PURPOSE TO
* PARSE THE DEVICES AND WORK OUT THE PROPER INTERFACES INVOLVED.
* E.G. IF WE TRIED TO RUN A TUNNEL OVER A VLAN OR QINQ THIS WILL BREAK AS WE DON'T DISCOVER THAT HIERARCHY
*/
if (dest_dev && from_local_addr) {
if (((ip_version == 4) && (protocol == IPPROTO_IPV6)) ||
((ip_version == 6) && (protocol == IPPROTO_IPIP))
#ifdef ECM_INTERFACE_GRE_ENABLE
|| ((protocol == IPPROTO_GRE) && (given_dest_dev->priv_flags & (IFF_GRE_V4_TAP | IFF_GRE_V6_TAP)))) {
#else
{
#endif
dev_put(dest_dev);
dest_dev = given_dest_dev;
if (dest_dev) {
dev_hold(dest_dev);
if (ip_version == 4) {
DEBUG_TRACE("HACK: %s tunnel packet with dest_addr: " ECM_IP_ADDR_DOT_FMT " uses dev: %p(%s)\n", "IPV6", ECM_IP_ADDR_TO_DOT(dest_addr), dest_dev, dest_dev->name);
} else {
DEBUG_TRACE("HACK: %s tunnel packet with dest_addr: " ECM_IP_ADDR_OCTAL_FMT " uses dev: %p(%s)\n", "IPIP", ECM_IP_ADDR_TO_OCTAL(dest_addr), dest_dev, dest_dev->name);
}
}
}
}
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
/*
* if the address is a local address and indev=l2tp.
*/
if ((given_src_dev->type == ARPHRD_PPP) && (given_src_dev->priv_flags & IFF_PPP_L2TPV2) && ppp_is_xmit_locked(given_src_dev)) {
dev_put(dest_dev);
dest_dev = given_dest_dev;
if (dest_dev) {
dev_hold(dest_dev);
DEBUG_TRACE("l2tp packet tunnel packet with dest_addr: " ECM_IP_ADDR_OCTAL_FMT " uses dev: %p(%s)\n", ECM_IP_ADDR_TO_OCTAL(dest_addr), dest_dev, dest_dev->name);
}
}
#endif
#ifdef ECM_INTERFACE_PPTP_ENABLE
/*
* if the address is a local address and indev=PPTP.
*/
if (protocol == IPPROTO_GRE && given_dest_dev && given_dest_dev->type == ARPHRD_PPP) {
dev_put(dest_dev);
dest_dev = given_dest_dev;
if (dest_dev) {
dev_hold(dest_dev);
DEBUG_TRACE("PPTP packet tunnel packet with dest_addr: " ECM_IP_ADDR_OCTAL_FMT " uses dev: %p(%s)\n", ECM_IP_ADDR_TO_OCTAL(dest_addr), dest_dev, dest_dev->name);
}
}
#endif
if (!dest_dev) {
DEBUG_WARN("dest_addr: " ECM_IP_ADDR_OCTAL_FMT " - cannot locate device\n", ECM_IP_ADDR_TO_OCTAL(dest_addr));
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
dest_dev_name = dest_dev->name;
dest_dev_type = dest_dev->type;
/*
* Get device to reach the given source address.
* If the heirarchy is for a routed connection we must use the devices obtained from the skb's route information..
* If the heirarchy is NOT for a routed connection we try the given_src_dev.
*/
from_local_addr = false;
if (!is_routed) {
src_dev = given_src_dev;
dev_hold(src_dev);
} else {
src_dev = ecm_interface_dev_find_by_local_addr(src_addr);
if (src_dev) {
from_local_addr = true;
} else {
src_dev = other_if;
dev_hold(src_dev);
}
}
/*
* If the address is a local address and protocol is an IP tunnel
* then this connection is a tunnel endpoint made to this device.
* In which case we circumvent all proper procedure and just hack the devices to make stuff work.
*
* TODO THIS MUST BE FIXED - WE MUST USE THE INTERFACE HIERARCHY FOR ITS INTENDED PURPOSE TO
* PARSE THE DEVICES AND WORK OUT THE PROPER INTERFACES INVOLVED.
* E.G. IF WE TRIED TO RUN A TUNNEL OVER A VLAN OR QINQ THIS WILL BREAK AS WE DON'T DISCOVER THAT HIERARCHY
*/
if (src_dev && from_local_addr) {
if (((ip_version == 4) && (protocol == IPPROTO_IPV6)) ||
((ip_version == 6) && (protocol == IPPROTO_IPIP))
#ifdef ECM_INTERFACE_GRE_ENABLE
|| ((protocol == IPPROTO_GRE) && (given_src_dev->priv_flags & (IFF_GRE_V4_TAP | IFF_GRE_V6_TAP)))) {
#else
{
#endif
dev_put(src_dev);
src_dev = given_src_dev;
if (src_dev) {
dev_hold(src_dev);
if (ip_version == 4) {
DEBUG_TRACE("HACK: %s tunnel packet with src_addr: " ECM_IP_ADDR_DOT_FMT " uses dev: %p(%s)\n", "IPV6", ECM_IP_ADDR_TO_DOT(src_addr), src_dev, src_dev->name);
} else {
DEBUG_TRACE("HACK: %s tunnel packet with src_addr: " ECM_IP_ADDR_OCTAL_FMT " uses dev: %p(%s)\n", "IPIP", ECM_IP_ADDR_TO_OCTAL(src_addr), src_dev, src_dev->name);
}
}
}
}
if (!src_dev) {
DEBUG_WARN("src_addr: " ECM_IP_ADDR_OCTAL_FMT " - cannot locate device\n", ECM_IP_ADDR_TO_OCTAL(src_addr));
dev_put(dest_dev);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
src_dev_name = src_dev->name;
src_dev_type = src_dev->type;
/*
* Check if source and dest dev are same.
*/
if (src_dev == dest_dev) {
bool skip = false;
DEBUG_TRACE("Protocol is :%d source dev and dest dev are same\n", protocol);
switch (ip_version) {
case 4:
if ((protocol == IPPROTO_IPV6) || (protocol == IPPROTO_ESP)) {
skip = true;
break;
}
if ((protocol == IPPROTO_UDP) && (udp_hdr(skb)->dest == htons(4500))) {
skip = true;
break;
}
break;
case 6:
if ((protocol == IPPROTO_IPIP) || (protocol == IPPROTO_ESP)) {
skip = true;
break;
}
break;
default:
DEBUG_WARN("IP version = %d, Protocol = %d: Corrupted packet entered ecm\n", ip_version, protocol);
skip = true;
break;
}
if (skip) {
/*
* This happens from the input hook
* We do not want to create a connection entry for this
* TODO YES WE DO.
* TODO THIS CONCERNS ME AS THIS SHOULD BE CAUGHT MUCH
* EARLIER IN THE FRONT END IF POSSIBLE TO AVOID PERFORMANCE PENALTIES.
* WE HAVE DONE A TREMENDOUS AMOUT OF WORK TO GET TO THIS POINT.
* WE WILL ABORT HERE AND THIS WILL BE REPEATED FOR EVERY PACKET.
* IN KEEPING WITH THE ECM DESIGN IT IS BETTER TO CREATE A CONNECTION AND RECORD IN THE HIERARCHY
* ENOUGH INFORMATION TO ENSURE THAT ACCELERATION IS NOT BROKEN / DOES NOT OCCUR AT ALL.
* THAT WAY WE DO A HEAVYWEIGHT ESTABLISHING OF A CONNECTION ONCE AND NEVER AGAIN...
*/
dev_put(src_dev);
dev_put(dest_dev);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
}
bridge = ecm_interface_should_update_egress_device_bridged(
given_dest_dev, dest_dev, is_routed);
if (bridge) {
struct net_device *new_dest_dev;
new_dest_dev = br_port_dev_get(bridge, dest_node_addr, skb, serial);
if (new_dest_dev) {
dev_put(dest_dev);
if (new_dest_dev != given_dest_dev) {
DEBUG_INFO("Adjusted port for %pM is %s (given was %s)\n",
dest_node_addr, new_dest_dev->name,
given_dest_dev->name);
dest_dev = new_dest_dev;
dest_dev_name = dest_dev->name;
dest_dev_type = dest_dev->type;
}
}
dev_put(bridge);
}
next_dest_addr_valid = true;
ECM_IP_ADDR_COPY(next_dest_addr, dest_addr);
/*
* Iterate until we are done or get to the max number of interfaces we can record.
* NOTE: current_interface_index tracks the position of the first interface position in interfaces[]
* because we add from the end first_interface grows downwards.
*/
current_interface_index = ECM_DB_IFACE_HEIRARCHY_MAX;
while (current_interface_index > 0) {
struct ecm_db_iface_instance *ii;
struct net_device *next_dev;
/*
* Get the ecm db interface instance for the device at hand
*/
ii = ecm_interface_establish_and_ref(feci, dest_dev, skb);
/*
* If the interface could not be established then we abort
*/
if (!ii) {
DEBUG_WARN("Failed to establish interface: %p, name: %s\n", dest_dev, dest_dev_name);
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
/*
* Record the interface instance into the interfaces[]
*/
current_interface_index--;
interfaces[current_interface_index] = ii;
/*
* Now we have to figure out what the next device will be (in the transmission path) the skb
* will use to emit to the destination address.
*/
do {
#ifdef ECM_INTERFACE_PPP_ENABLE
int channel_count;
struct ppp_channel *ppp_chan[1];
int channel_protocol;
#ifdef ECM_INTERFACE_PPPOE_ENABLE
struct pppoe_opt addressing;
#endif
#endif
DEBUG_TRACE("Net device: %p is type: %d, name: %s\n", dest_dev, dest_dev_type, dest_dev_name);
next_dev = NULL;
if (dest_dev_type == ARPHRD_ETHER) {
/*
* Ethernet - but what sub type?
*/
#ifdef ECM_INTERFACE_VLAN_ENABLE
/*
* VLAN?
*/
if (is_vlan_dev(dest_dev)) {
/*
* VLAN master
* No locking needed here, ASSUMPTION is that real_dev is held for as long as we have dev.
*/
next_dev = ecm_interface_vlan_real_dev(dest_dev);
dev_hold(next_dev);
DEBUG_TRACE("Net device: %p is VLAN, slave dev: %p (%s)\n",
dest_dev, next_dev, next_dev->name);
if (current_interface_index == (ECM_DB_IFACE_HEIRARCHY_MAX - 1)) {
top_dev_vlan = dest_dev;
}
break;
}
#endif
/*
* BRIDGE?
*/
if (ecm_front_end_is_bridge_device(dest_dev)) {
/*
* Bridge
* Figure out which port device the skb will go to using the dest_addr.
*/
uint8_t mac_addr[ETH_ALEN];
if (next_dest_node_addr_valid) {
memcpy(mac_addr, next_dest_node_addr, ETH_ALEN);
} else if (!next_dest_addr_valid) {
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
} else {
if (!ecm_interface_get_next_node_mac_address(dest_addr, dest_dev, ip_version, mac_addr)) {
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
}
next_dev = br_port_dev_get(dest_dev,
mac_addr, skb, serial);
if (!next_dev) {
DEBUG_WARN("Unable to obtain output port for: %pM\n", mac_addr);
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
DEBUG_TRACE("Net device: %p is BRIDGE, next_dev: %p (%s)\n", dest_dev, next_dev, next_dev->name);
break;
}
#ifdef ECM_INTERFACE_BOND_ENABLE
/*
* LAG?
*/
if (ecm_front_end_is_lag_master(dest_dev)) {
/*
* Link aggregation
* Figure out whiich slave device of the link aggregation will be used to reach the destination.
*/
uint32_t src_addr_32 = 0;
uint32_t dest_addr_32 = 0;
struct in6_addr src_addr6;
struct in6_addr dest_addr6;
uint8_t src_mac_addr[ETH_ALEN];
uint8_t dest_mac_addr[ETH_ALEN];
memset(src_mac_addr, 0, ETH_ALEN);
memset(dest_mac_addr, 0, ETH_ALEN);
if (ip_version == 4) {
ECM_IP_ADDR_TO_NIN4_ADDR(src_addr_32, src_addr);
ECM_IP_ADDR_TO_NIN4_ADDR(dest_addr_32, real_dest_addr);
}
if (!is_routed) {
memcpy(src_mac_addr, src_node_addr, ETH_ALEN);
memcpy(dest_mac_addr, dest_node_addr, ETH_ALEN);
} else {
struct net_device *master_dev;
/*
* Use appropriate source MAC address for routed packets and
* find proper interface to find the destination mac address and
* from which to issue ARP or neighbour solicitation packet.
*/
master_dev = ecm_interface_get_and_hold_dev_master(dest_dev);
if (master_dev) {
memcpy(src_mac_addr, master_dev->dev_addr, ETH_ALEN);
} else {
memcpy(src_mac_addr, dest_dev->dev_addr, ETH_ALEN);
master_dev = dest_dev;
if (top_dev_vlan) {
master_dev = top_dev_vlan;
}
dev_hold(master_dev);
}
/*
* Determine destination MAC address for this routed packet
*/
if (next_dest_node_addr_valid) {
memcpy(dest_mac_addr, next_dest_node_addr, ETH_ALEN);
} else if (!next_dest_addr_valid) {
dev_put(src_dev);
dev_put(dest_dev);
dev_put(master_dev);
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
} else {
if (!ecm_interface_mac_addr_get_no_route(master_dev, dest_addr, dest_mac_addr)) {
ip_addr_t gw_addr = ECM_IP_ADDR_NULL;
/*
* Try one more time with gateway ip address if it exists.
*/
if (!ecm_interface_find_gateway(dest_addr, gw_addr)) {
goto lag_fail;
}
if (ip_version == 4) {
DEBUG_TRACE("Have a gw address " ECM_IP_ADDR_DOT_FMT "\n", ECM_IP_ADDR_TO_DOT(gw_addr));
}
#ifdef ECM_IPV6_ENABLE
if (ip_version == 6) {
DEBUG_TRACE("Have a gw address " ECM_IP_ADDR_OCTAL_FMT "\n", ECM_IP_ADDR_TO_OCTAL(gw_addr));
}
#endif
if (ecm_interface_mac_addr_get_no_route(master_dev, gw_addr, dest_mac_addr)) {
DEBUG_TRACE("Found the mac address for gateway\n");
dev_put(master_dev);
goto lag_success;
}
if (ip_version == 4) {
ecm_interface_send_arp_request(master_dev, dest_addr, false, gw_addr);
DEBUG_WARN("Unable to obtain any MAC address for " ECM_IP_ADDR_DOT_FMT "\n", ECM_IP_ADDR_TO_DOT(dest_addr));
}
#ifdef ECM_IPV6_ENABLE
if (ip_version == 6) {
ecm_interface_send_neighbour_solicitation(master_dev, dest_addr);
DEBUG_WARN("Unable to obtain any MAC address for " ECM_IP_ADDR_OCTAL_FMT "\n", ECM_IP_ADDR_TO_OCTAL(dest_addr));
}
#endif
lag_fail:
dev_put(src_dev);
dev_put(dest_dev);
dev_put(master_dev);
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
}
dev_put(master_dev);
}
lag_success:
if (ip_version == 4) {
next_dev = bond_get_tx_dev(NULL, src_mac_addr, dest_mac_addr,
&src_addr_32, &dest_addr_32,
htons((uint16_t)ETH_P_IP), dest_dev, layer4hdr);
} else if (ip_version == 6) {
ECM_IP_ADDR_TO_NIN6_ADDR(src_addr6, src_addr);
ECM_IP_ADDR_TO_NIN6_ADDR(dest_addr6, real_dest_addr);
next_dev = bond_get_tx_dev(NULL, src_mac_addr, dest_mac_addr,
src_addr6.s6_addr, dest_addr6.s6_addr,
htons((uint16_t)ETH_P_IPV6), dest_dev, layer4hdr);
}
if (next_dev && netif_carrier_ok(next_dev)) {
dev_hold(next_dev);
} else {
DEBUG_WARN("Unable to obtain LAG output slave device\n");
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
DEBUG_TRACE("Net device: %p is LAG, slave dev: %p (%s)\n", dest_dev, next_dev, next_dev->name);
break;
}
#endif
/*
* ETHERNET!
* Just plain ethernet it seems.
*/
DEBUG_TRACE("Net device: %p is ETHERNET\n", dest_dev);
break;
}
/*
* LOOPBACK?
*/
if (dest_dev_type == ARPHRD_LOOPBACK) {
DEBUG_TRACE("Net device: %p is LOOPBACK type: %d\n", dest_dev, dest_dev_type);
break;
}
/*
* IPSEC?
*/
if (dest_dev_type == ECM_ARPHRD_IPSEC_TUNNEL_TYPE) {
DEBUG_TRACE("Net device: %p is IPSec tunnel type: %d\n", dest_dev, dest_dev_type);
/* TODO Figure out the next device the tunnel is using... */
break;
}
/*
* SIT (6-in-4)?
*/
if (dest_dev_type == ARPHRD_SIT) {
DEBUG_TRACE("Net device: %p is SIT (6-in-4) type: %d\n", dest_dev, dest_dev_type);
/* TODO Figure out the next device the tunnel is using... */
break;
}
/*
* IPIP6 Tunnel?
*/
if (dest_dev_type == ARPHRD_TUNNEL6) {
DEBUG_TRACE("Net device: %p is TUNIPIP6 type: %d\n", dest_dev, dest_dev_type);
/* TODO Figure out the next device the tunnel is using... */
break;
}
#ifdef ECM_INTERFACE_MAP_T_ENABLE
/*
* MAP-T xlate ?
*/
if (dest_dev_type == ARPHRD_NONE) {
if (is_map_t_dev(dest_dev)) {
DEBUG_TRACE("Net device: %p is MAP-T type: %d\n", dest_dev, dest_dev_type);
break;
}
}
#endif
/*
* If this is NOT PPP then it is unknown to the ecm and we cannot figure out it's next device.
*/
if (dest_dev_type != ARPHRD_PPP) {
DEBUG_TRACE("Net device: %p is UNKNOWN type: %d\n", dest_dev, dest_dev_type);
break;
}
#ifndef ECM_INTERFACE_PPP_ENABLE
DEBUG_TRACE("Net device: %p is UNKNOWN (PPP Unsupported) type: %d\n", dest_dev, dest_dev_type);
#else
DEBUG_TRACE("Net device: %p is PPP\n", dest_dev);
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
if ((given_src_dev->priv_flags & IFF_PPP_L2TPV2) && ppp_is_xmit_locked(given_src_dev)) {
if (skb->skb_iif == dest_dev->ifindex) {
DEBUG_TRACE("Net device: %p PPP channel is PPPoL2TPV2\n", dest_dev);
break;
}
}
#endif
#ifdef ECM_INTERFACE_PPTP_ENABLE
if (protocol == IPPROTO_GRE && dest_dev && dest_dev->type == ARPHRD_PPP) {
DEBUG_TRACE("Net device: %p PPP channel is PPTP\n", dest_dev);
break;
}
#endif
/*
* PPP - but what is the channel type?
* First: If this is multi-link then we do not support it
*/
if (ppp_is_multilink(dest_dev) > 0) {
DEBUG_TRACE("Net device: %p is MULTILINK PPP - Unknown to the ECM\n", dest_dev);
break;
}
/*
* Get the PPP channel and then enquire what kind of channel it is
* NOTE: Not multilink so only one channel to get.
*/
channel_count = ppp_hold_channels(dest_dev, ppp_chan, 1);
if (channel_count != 1) {
DEBUG_TRACE("Net device: %p PPP has %d channels - Unknown to the ECM\n",
dest_dev, channel_count);
break;
}
/*
* Get channel protocol type
* NOTE: Not all PPP channels support channel specific methods.
*/
channel_protocol = ppp_channel_get_protocol(ppp_chan[0]);
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
if (channel_protocol == PX_PROTO_OL2TP) {
/*
* PPPoL2TPV2 channel
*/
ppp_release_channels(ppp_chan, 1);
DEBUG_TRACE("Net device: %p PPP channel is PPPoL2TPV2\n", dest_dev);
/*
* Release the channel. Note that next_dev not held.
*/
break;
}
#endif
#ifdef ECM_INTERFACE_PPPOE_ENABLE
if (channel_protocol == PX_PROTO_OE) {
/*
* PPPoE channel
*/
DEBUG_TRACE("Net device: %p PPP channel is PPPoE\n", dest_dev);
/*
* Get PPPoE session information and the underlying device it is using.
*/
pppoe_channel_addressing_get(ppp_chan[0], &addressing);
/*
* Copy the dev hold into this, we will release the hold later
*/
next_dev = addressing.dev;
next_dest_addr_valid = false;
next_dest_node_addr_valid = true;
memcpy(next_dest_node_addr, addressing.pa.remote, ETH_ALEN);
/*
* Release the channel. Note that next_dev is still (correctly) held.
*/
ppp_release_channels(ppp_chan, 1);
break;
}
#endif
DEBUG_TRACE("Net device: %p PPP channel protocol: %d - Unknown to the ECM\n",
dest_dev, channel_protocol);
/*
* Release the channel
*/
ppp_release_channels(ppp_chan, 1);
#endif
} while (false);
/*
* No longer need dest_dev as it may become next_dev
*/
dev_put(dest_dev);
/*
* Check out the next_dev, if any
*/
if (!next_dev) {
int32_t i __attribute__((unused));
DEBUG_INFO("Completed interface heirarchy construct with first interface @: %d\n", current_interface_index);
#if DEBUG_LEVEL > 1
for (i = current_interface_index; i < ECM_DB_IFACE_HEIRARCHY_MAX; ++i) {
DEBUG_TRACE("\tInterface @ %d: %p, type: %d, name: %s\n",
i, interfaces[i], ecm_db_connection_iface_type_get(interfaces[i]), ecm_db_interface_type_to_string(ecm_db_connection_iface_type_get(interfaces[i])));
}
#endif
/*
* Release src_dev now
*/
dev_put(src_dev);
return current_interface_index;
}
/*
* dest_dev becomes next_dev
*/
dest_dev = next_dev;
dest_dev_name = dest_dev->name;
dest_dev_type = dest_dev->type;
}
DEBUG_WARN("Too many interfaces: %d\n", current_interface_index);
DEBUG_ASSERT(current_interface_index == 0, "Bad logic handling current_interface_index: %d\n", current_interface_index);
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
EXPORT_SYMBOL(ecm_interface_heirarchy_construct);
#ifdef ECM_MULTICAST_ENABLE
/*
* ecm_interface_multicast_from_heirarchy_construct()
* Construct an interface heirarchy.
*
* TODO: This function will be removed later and ecm_interface_heirarchy_construct() function
* will be used when the multicast code is fixed to use the new interface hierarchy
* construction model which uses the skb's route information instead of doing
* the route lookup based on the IP addresses.
*
* Using the given addressing, locate the interface heirarchy used to emit packets to that destination.
* This is the heirarchy of interfaces a packet would transit to emit from the device.
*
* We will use the given src/dest devices when is_routed is false.
* When is_routed is true we will try routing tables first, failing back to any given.
*
* For example, with this network arrangement:
*
* PPPoE--VLAN--BRIDGE--BRIDGE_PORT(LAG_MASTER)--LAG_SLAVE_0--10.22.33.11
*
* Given the packet_dest_addr IP address 10.22.33.11 this will create an interface heirarchy (in interracfes[]) of:
* LAG_SLAVE_0 @ [ECM_DB_IFACE_HEIRARCHY_MAX - 5]
* LAG_MASTER @ [ECM_DB_IFACE_HEIRARCHY_MAX - 4]
* BRIDGE @ [ECM_DB_IFACE_HEIRARCHY_MAX - 3]
* VLAN @ [ECM_DB_IFACE_HEIRARCHY_MAX - 2]
* PPPOE @ [ECM_DB_IFACE_HEIRARCHY_MAX - 1]
* The value returned is (ECM_DB_IFACE_HEIRARCHY_MAX - 5)
*
* IMPORTANT: This function will return any known interfaces in the database, when interfaces do not exist in the database
* they will be created and added automatically to the database.
*/
int32_t ecm_interface_multicast_from_heirarchy_construct(struct ecm_front_end_connection_instance *feci,
struct ecm_db_iface_instance *interfaces[],
ip_addr_t packet_src_addr,
ip_addr_t packet_dest_addr,
int ip_version, int packet_protocol,
struct net_device *given_dest_dev,
bool is_routed, struct net_device *given_src_dev,
uint8_t *dest_node_addr, uint8_t *src_node_addr,
__be16 *layer4hdr, struct sk_buff *skb)
{
int protocol;
ip_addr_t src_addr;
ip_addr_t dest_addr;
struct net_device *dest_dev;
char *dest_dev_name;
int32_t dest_dev_type;
struct net_device *src_dev;
char *src_dev_name;
int32_t src_dev_type;
int32_t current_interface_index;
bool from_local_addr;
bool next_dest_addr_valid;
bool next_dest_node_addr_valid = false;
ip_addr_t next_dest_addr;
uint8_t next_dest_node_addr[ETH_ALEN] = {0};
struct net_device *bridge;
uint32_t serial = ecm_db_connection_serial_get(feci->ci);
/*
* Get a big endian of the IPv4 address we have been given as our starting point.
*/
protocol = packet_protocol;
ECM_IP_ADDR_COPY(src_addr, packet_src_addr);
ECM_IP_ADDR_COPY(dest_addr, packet_dest_addr);
if (ip_version == 4) {
DEBUG_TRACE("Construct interface heirarchy for from src_addr: " ECM_IP_ADDR_DOT_FMT " to dest_addr: " ECM_IP_ADDR_DOT_FMT ", protocol: %d (serial %u)\n",
ECM_IP_ADDR_TO_DOT(src_addr), ECM_IP_ADDR_TO_DOT(dest_addr), protocol,
serial);
#ifdef ECM_IPV6_ENABLE
} else if (ip_version == 6) {
DEBUG_TRACE("Construct interface heirarchy for from src_addr: " ECM_IP_ADDR_OCTAL_FMT " to dest_addr: " ECM_IP_ADDR_OCTAL_FMT ", protocol: %d (serial %u)\n",
ECM_IP_ADDR_TO_OCTAL(src_addr), ECM_IP_ADDR_TO_OCTAL(dest_addr), protocol,
serial);
#endif
} else {
DEBUG_WARN("Wrong IP protocol: %d\n", ip_version);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
/*
* Get device to reach the given destination address.
* If the heirarchy is for a routed connection we must try route lookup first, falling back to any given_dest_dev.
* If the heirarchy is NOT for a routed connection we try the given_dest_dev first, followed by routed lookup.
*/
from_local_addr = false;
if (is_routed) {
dest_dev = ecm_interface_dev_find_by_addr(dest_addr, &from_local_addr);
if (!dest_dev && given_dest_dev) {
/*
* Fall back to any given
*/
dest_dev = given_dest_dev;
dev_hold(dest_dev);
}
} else if (given_dest_dev) {
dest_dev = given_dest_dev;
dev_hold(dest_dev);
} else {
/*
* Fall back to routed look up
*/
dest_dev = ecm_interface_dev_find_by_addr(dest_addr, &from_local_addr);
}
/*
* GGG ALERT: If the address is a local address and protocol is an IP tunnel
* then this connection is a tunnel endpoint made to this device.
* In which case we circumvent all proper procedure and just hack the devices to make stuff work.
* GGG TODO THIS MUST BE FIXED - WE MUST USE THE INTERFACE HIERARCHY FOR ITS INTENDED PURPOSE TO
* PARSE THE DEVICES AND WORK OUT THE PROPER INTERFACES INVOLVED.
* E.G. IF WE TRIED TO RUN A TUNNEL OVER A VLAN OR QINQ THIS WILL BREAK AS WE DON'T DISCOVER THAT HIERARCHY
*/
if (dest_dev && from_local_addr) {
if (((ip_version == 4) && (protocol == IPPROTO_IPV6)) ||
((ip_version == 6) && (protocol == IPPROTO_IPIP))) {
dev_put(dest_dev);
dest_dev = given_dest_dev;
if (dest_dev) {
dev_hold(dest_dev);
if (ip_version == 4) {
DEBUG_TRACE("HACK: %s tunnel packet with dest_addr: " ECM_IP_ADDR_DOT_FMT " uses dev: %p(%s)\n", "IPV6", ECM_IP_ADDR_TO_DOT(dest_addr), dest_dev, dest_dev->name);
} else {
DEBUG_TRACE("HACK: %s tunnel packet with dest_addr: " ECM_IP_ADDR_OCTAL_FMT " uses dev: %p(%s)\n", "IPIP", ECM_IP_ADDR_TO_OCTAL(dest_addr), dest_dev, dest_dev->name);
}
}
}
}
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
/*
* if the address is a local address and indev=l2tp.
*/
if ((given_src_dev->type == ARPHRD_PPP) && (given_src_dev->priv_flags & IFF_PPP_L2TPV2) && ppp_is_xmit_locked(given_src_dev)) {
dev_put(dest_dev);
dest_dev = given_dest_dev;
if (dest_dev) {
dev_hold(dest_dev);
DEBUG_TRACE("l2tp packet tunnel packet with dest_addr: " ECM_IP_ADDR_OCTAL_FMT " uses dev: %p(%s)\n", ECM_IP_ADDR_TO_OCTAL(dest_addr), dest_dev, dest_dev->name);
}
}
#endif
#ifdef ECM_INTERFACE_PPTP_ENABLE
/*
* if the address is a local address and indev=PPTP.
*/
if (protocol == IPPROTO_GRE && given_dest_dev && given_dest_dev->type == ARPHRD_PPP) {
dev_put(dest_dev);
dest_dev = given_dest_dev;
if (dest_dev) {
dev_hold(dest_dev);
DEBUG_TRACE("PPTP packet tunnel packet with dest_addr: " ECM_IP_ADDR_OCTAL_FMT " uses dev: %p(%s)\n", ECM_IP_ADDR_TO_OCTAL(dest_addr), dest_dev, dest_dev->name);
}
}
#endif
if (!dest_dev) {
DEBUG_WARN("dest_addr: " ECM_IP_ADDR_OCTAL_FMT " - cannot locate device\n", ECM_IP_ADDR_TO_OCTAL(dest_addr));
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
dest_dev_name = dest_dev->name;
dest_dev_type = dest_dev->type;
/*
* Get device to reach the given source address.
* If the heirarchy is for a routed connection we must try route lookup first, falling back to any given_src_dev.
* If the heirarchy is NOT for a routed connection we try the given_src_dev first, followed by routed lookup.
*/
from_local_addr = false;
if (is_routed) {
src_dev = ecm_interface_dev_find_by_addr(src_addr, &from_local_addr);
if (!src_dev && given_src_dev) {
/*
* Fall back to any given
*/
src_dev = given_src_dev;
dev_hold(src_dev);
}
} else if (given_src_dev) {
src_dev = given_src_dev;
dev_hold(src_dev);
} else {
/*
* Fall back to routed look up
*/
src_dev = ecm_interface_dev_find_by_addr(src_addr, &from_local_addr);
}
/*
* GGG ALERT: If the address is a local address and protocol is an IP tunnel
* then this connection is a tunnel endpoint made to this device.
* In which case we circumvent all proper procedure and just hack the devices to make stuff work.
* GGG TODO THIS MUST BE FIXED - WE MUST USE THE INTERFACE HIERARCHY FOR ITS INTENDED PURPOSE TO
* PARSE THE DEVICES AND WORK OUT THE PROPER INTERFACES INVOLVED.
* E.G. IF WE TRIED TO RUN A TUNNEL OVER A VLAN OR QINQ THIS WILL BREAK AS WE DON'T DISCOVER THAT HIERARCHY
*/
if (src_dev && from_local_addr) {
if (((ip_version == 4) && (protocol == IPPROTO_IPV6)) ||
((ip_version == 6) && (protocol == IPPROTO_IPIP))) {
dev_put(src_dev);
src_dev = given_src_dev;
if (src_dev) {
dev_hold(src_dev);
if (ip_version == 4) {
DEBUG_TRACE("HACK: %s tunnel packet with src_addr: " ECM_IP_ADDR_DOT_FMT " uses dev: %p(%s)\n", "IPV6", ECM_IP_ADDR_TO_DOT(src_addr), src_dev, src_dev->name);
} else {
DEBUG_TRACE("HACK: %s tunnel packet with src_addr: " ECM_IP_ADDR_OCTAL_FMT " uses dev: %p(%s)\n", "IPIP", ECM_IP_ADDR_TO_OCTAL(src_addr), src_dev, src_dev->name);
}
}
}
}
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
/*
* if the address is a local address and indev=l2tp.
*/
if (skb && skb->sk && (skb->sk->sk_protocol == IPPROTO_UDP) && (udp_sk(skb->sk)->encap_type == UDP_ENCAP_L2TPINUDP)) {
if (dest_dev != given_src_dev) {
dev_put(src_dev);
src_dev = given_src_dev;
if (src_dev) {
dev_hold(src_dev);
DEBUG_TRACE("l2tp tunnel packet with src_addr: " ECM_IP_ADDR_OCTAL_FMT " uses dev: %p(%s)\n", ECM_IP_ADDR_TO_OCTAL(src_addr), src_dev, src_dev->name);
}
}
}
#endif
if (!src_dev) {
DEBUG_WARN("src_addr: " ECM_IP_ADDR_OCTAL_FMT " - cannot locate device\n", ECM_IP_ADDR_TO_OCTAL(src_addr));
dev_put(dest_dev);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
src_dev_name = src_dev->name;
src_dev_type = src_dev->type;
/*
* Check if source and dest dev are same.
* For the forwarded flows which involve tunnels this will happen when called from input hook.
*/
if (src_dev == dest_dev) {
DEBUG_TRACE("Protocol is :%d source dev and dest dev are same\n", protocol);
if (((ip_version == 4) && ((protocol == IPPROTO_IPV6) || (protocol == IPPROTO_ESP)))
|| ((ip_version == 6) && (protocol == IPPROTO_IPIP))) {
/*
* This happens from the input hook
* We do not want to create a connection entry for this
* GGG TODO YES WE DO.
* GGG TODO THIS CONCERNS ME AS THIS SHOULD BE CAUGHT MUCH
* EARLIER IN THE FRONT END IF POSSIBLE TO AVOID PERFORMANCE PENALTIES.
* WE HAVE DONE A TREMENDOUS AMOUT OF WORK TO GET TO THIS POINT.
* WE WILL ABORT HERE AND THIS WILL BE REPEATED FOR EVERY PACKET.
* IN KEEPING WITH THE ECM DESIGN IT IS BETTER TO CREATE A CONNECTION AND RECORD IN THE HIERARCHY
* ENOUGH INFORMATION TO ENSURE THAT ACCELERATION IS NOT BROKEN / DOES NOT OCCUR AT ALL.
* THAT WAY WE DO A HEAVYWEIGHT ESTABLISHING OF A CONNECTION ONCE AND NEVER AGAIN...
*/
dev_put(src_dev);
dev_put(dest_dev);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
}
bridge = ecm_interface_should_update_egress_device_bridged(
given_dest_dev, dest_dev, is_routed);
if (bridge) {
struct net_device *new_dest_dev;
new_dest_dev = br_port_dev_get(bridge, dest_node_addr, skb, serial);
if (new_dest_dev) {
dev_put(dest_dev);
if (new_dest_dev != given_dest_dev) {
DEBUG_INFO("Adjusted port for %pM is %s (given was %s)\n",
dest_node_addr, new_dest_dev->name,
given_dest_dev->name);
dest_dev = new_dest_dev;
dest_dev_name = dest_dev->name;
dest_dev_type = dest_dev->type;
}
}
dev_put(bridge);
}
next_dest_addr_valid = true;
next_dest_node_addr_valid = false;
ECM_IP_ADDR_COPY(next_dest_addr, dest_addr);
/*
* Iterate until we are done or get to the max number of interfaces we can record.
* NOTE: current_interface_index tracks the position of the first interface position in interfaces[]
* because we add from the end first_interface grows downwards.
*/
current_interface_index = ECM_DB_IFACE_HEIRARCHY_MAX;
while (current_interface_index > 0) {
struct ecm_db_iface_instance *ii;
struct net_device *next_dev;
/*
* Get the ecm db interface instance for the device at hand
*/
ii = ecm_interface_establish_and_ref(feci, dest_dev, skb);
/*
* If the interface could not be established then we abort
*/
if (!ii) {
DEBUG_WARN("Failed to establish interface: %p, name: %s\n", dest_dev, dest_dev_name);
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
/*
* Record the interface instance into the interfaces[]
*/
current_interface_index--;
interfaces[current_interface_index] = ii;
/*
* Now we have to figure out what the next device will be (in the transmission path) the skb
* will use to emit to the destination address.
*/
do {
#ifdef ECM_INTERFACE_PPP_ENABLE
int channel_count;
struct ppp_channel *ppp_chan[1];
int channel_protocol;
#ifdef ECM_INTERFACE_PPPOE_ENABLE
struct pppoe_opt addressing;
#endif
#endif
DEBUG_TRACE("Net device: %p is type: %d, name: %s\n", dest_dev, dest_dev_type, dest_dev_name);
next_dev = NULL;
if (dest_dev_type == ARPHRD_ETHER) {
/*
* Ethernet - but what sub type?
*/
#ifdef ECM_INTERFACE_VLAN_ENABLE
/*
* VLAN?
*/
if (is_vlan_dev(dest_dev)) {
/*
* VLAN master
* No locking needed here, ASSUMPTION is that real_dev is held for as long as we have dev.
*/
next_dev = ecm_interface_vlan_real_dev(dest_dev);
dev_hold(next_dev);
DEBUG_TRACE("Net device: %p is VLAN, slave dev: %p (%s)\n",
dest_dev, next_dev, next_dev->name);
break;
}
#endif
/*
* BRIDGE?
*/
if (ecm_front_end_is_bridge_device(dest_dev)) {
/*
* Bridge
* Figure out which port device the skb will go to using the dest_addr.
*/
uint8_t mac_addr[ETH_ALEN];
if (next_dest_node_addr_valid) {
memcpy(mac_addr, next_dest_node_addr, ETH_ALEN);
} else if (!next_dest_addr_valid) {
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
} else {
if (!ecm_interface_multicast_get_next_node_mac_address(next_dest_addr, dest_dev, ip_version, mac_addr)) {
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
}
next_dev = br_port_dev_get(dest_dev,
mac_addr, skb, serial);
if (!next_dev) {
DEBUG_WARN("Unable to obtain output port for: %pM\n", mac_addr);
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
DEBUG_TRACE("Net device: %p is BRIDGE, next_dev: %p (%s)\n", dest_dev, next_dev, next_dev->name);
break;
}
#ifdef ECM_INTERFACE_BOND_ENABLE
/*
* LAG?
*/
if (ecm_front_end_is_lag_master(dest_dev)) {
/*
* Link aggregation
* Figure out whiich slave device of the link aggregation will be used to reach the destination.
*/
bool dest_on_link = false;
ip_addr_t dest_gw_addr = ECM_IP_ADDR_NULL;
uint32_t src_addr_32 = 0;
uint32_t dest_addr_32 = 0;
struct in6_addr src_addr6;
struct in6_addr dest_addr6;
uint8_t src_mac_addr[ETH_ALEN];
uint8_t dest_mac_addr[ETH_ALEN];
struct net_device *master_dev = NULL;
memset(src_mac_addr, 0, ETH_ALEN);
memset(dest_mac_addr, 0, ETH_ALEN);
if (ip_version == 4) {
ECM_IP_ADDR_TO_NIN4_ADDR(src_addr_32, src_addr);
ECM_IP_ADDR_TO_NIN4_ADDR(dest_addr_32, dest_addr);
}
if (!is_routed) {
memcpy(src_mac_addr, src_node_addr, ETH_ALEN);
memcpy(dest_mac_addr, dest_node_addr, ETH_ALEN);
} else {
struct net_device *dest_dev_master;
/*
* Use appropriate source MAC address for routed packets
*/
dest_dev_master = ecm_interface_get_and_hold_dev_master(dest_dev);
if (dest_dev_master) {
memcpy(src_mac_addr, dest_dev_master->dev_addr, ETH_ALEN);
} else {
memcpy(src_mac_addr, dest_dev->dev_addr, ETH_ALEN);
}
/*
* Determine destination MAC address for this routed packet
*/
if (next_dest_node_addr_valid) {
memcpy(dest_mac_addr, next_dest_node_addr, ETH_ALEN);
} else if (!next_dest_addr_valid) {
dev_put(src_dev);
dev_put(dest_dev);
if (dest_dev_master) {
dev_put(dest_dev_master);
}
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
} else {
if (!ecm_interface_mac_addr_get(dest_addr, dest_mac_addr,
&dest_on_link, dest_gw_addr)) {
/*
* Find proper interfce from which to issue ARP
* or neighbour solicitation packet.
*/
if (dest_dev_master) {
master_dev = dest_dev_master;
} else {
master_dev = dest_dev;
}
dev_hold(master_dev);
if (dest_dev_master) {
dev_put(dest_dev_master);
}
if (ip_version == 4) {
DEBUG_WARN("Unable to obtain MAC address for " ECM_IP_ADDR_DOT_FMT "\n", ECM_IP_ADDR_TO_DOT(dest_addr));
ecm_interface_send_arp_request(dest_dev, dest_addr, dest_on_link, dest_gw_addr);
}
#ifdef ECM_IPV6_ENABLE
if (ip_version == 6) {
DEBUG_WARN("Unable to obtain MAC address for " ECM_IP_ADDR_OCTAL_FMT "\n", ECM_IP_ADDR_TO_OCTAL(dest_addr));
ecm_interface_send_neighbour_solicitation(master_dev, dest_addr);
}
#endif
dev_put(src_dev);
dev_put(dest_dev);
dev_put(master_dev);
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
}
if (dest_dev_master) {
dev_put(dest_dev_master);
}
}
if (ip_version == 4) {
next_dev = bond_get_tx_dev(NULL, src_mac_addr, dest_mac_addr,
&src_addr_32, &dest_addr_32,
htons((uint16_t)ETH_P_IP), dest_dev, layer4hdr);
} else if (ip_version == 6) {
ECM_IP_ADDR_TO_NIN6_ADDR(src_addr6, src_addr);
ECM_IP_ADDR_TO_NIN6_ADDR(dest_addr6, dest_addr);
next_dev = bond_get_tx_dev(NULL, src_mac_addr, dest_mac_addr,
src_addr6.s6_addr, dest_addr6.s6_addr,
htons((uint16_t)ETH_P_IPV6), dest_dev, layer4hdr);
}
if (next_dev && netif_carrier_ok(next_dev)) {
dev_hold(next_dev);
} else {
DEBUG_WARN("Unable to obtain LAG output slave device\n");
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
DEBUG_TRACE("Net device: %p is LAG, slave dev: %p (%s)\n", dest_dev, next_dev, next_dev->name);
break;
}
#endif
/*
* ETHERNET!
* Just plain ethernet it seems.
*/
DEBUG_TRACE("Net device: %p is ETHERNET\n", dest_dev);
break;
}
/*
* LOOPBACK?
*/
if (dest_dev_type == ARPHRD_LOOPBACK) {
DEBUG_TRACE("Net device: %p is LOOPBACK type: %d\n", dest_dev, dest_dev_type);
break;
}
/*
* IPSEC?
*/
if (dest_dev_type == ECM_ARPHRD_IPSEC_TUNNEL_TYPE) {
DEBUG_TRACE("Net device: %p is IPSec tunnel type: %d\n", dest_dev, dest_dev_type);
/* TODO Figure out the next device the tunnel is using... */
break;
}
/*
* SIT (6-in-4)?
*/
if (dest_dev_type == ARPHRD_SIT) {
DEBUG_TRACE("Net device: %p is SIT (6-in-4) type: %d\n", dest_dev, dest_dev_type);
/* TODO Figure out the next device the tunnel is using... */
break;
}
/*
* IPIP6 Tunnel?
*/
if (dest_dev_type == ARPHRD_TUNNEL6) {
DEBUG_TRACE("Net device: %p is TUNIPIP6 type: %d\n", dest_dev, dest_dev_type);
/* TODO Figure out the next device the tunnel is using... */
break;
}
/*
* If this is NOT PPP then it is unknown to the ecm and we cannot figure out it's next device.
*/
if (dest_dev_type != ARPHRD_PPP) {
DEBUG_TRACE("Net device: %p is UNKNOWN type: %d\n", dest_dev, dest_dev_type);
break;
}
#ifndef ECM_INTERFACE_PPP_ENABLE
DEBUG_TRACE("Net device: %p is UNKNOWN (PPP Unsupported) type: %d\n", dest_dev, dest_dev_type);
#else
DEBUG_TRACE("Net device: %p is PPP\n", dest_dev);
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
if ((given_src_dev->priv_flags & IFF_PPP_L2TPV2) && ppp_is_xmit_locked(given_src_dev)) {
if (skb->skb_iif == dest_dev->ifindex) {
DEBUG_TRACE("Net device: %p PPP channel is PPPoL2TPV2\n", dest_dev);
break;
}
}
#endif
#ifdef ECM_INTERFACE_PPTP_ENABLE
if (protocol == IPPROTO_GRE && dest_dev && dest_dev->type == ARPHRD_PPP) {
DEBUG_TRACE("Net device: %p PPP channel is PPTP\n", dest_dev);
break;
}
#endif
/*
* PPP - but what is the channel type?
* First: If this is multi-link then we do not support it
*/
if (ppp_is_multilink(dest_dev) > 0) {
DEBUG_TRACE("Net device: %p is MULTILINK PPP - Unknown to the ECM\n", dest_dev);
break;
}
/*
* Get the PPP channel and then enquire what kind of channel it is
* NOTE: Not multilink so only one channel to get.
*/
channel_count = ppp_hold_channels(dest_dev, ppp_chan, 1);
if (channel_count != 1) {
DEBUG_TRACE("Net device: %p PPP has %d channels - Unknown to the ECM\n",
dest_dev, channel_count);
break;
}
/*
* Get channel protocol type
* NOTE: Not all PPP channels support channel specific methods.
*/
channel_protocol = ppp_channel_get_protocol(ppp_chan[0]);
#ifdef ECM_INTERFACE_L2TPV2_ENABLE
if (channel_protocol == PX_PROTO_OL2TP) {
/*
* PPPoL2TPV2 channel
*/
ppp_release_channels(ppp_chan, 1);
DEBUG_TRACE("Net device: %p PPP channel is PPPoL2TPV2\n", dest_dev);
/*
* Release the channel. Note that next_dev not held.
*/
break;
}
#endif
#ifdef ECM_INTERFACE_PPPOE_ENABLE
if (channel_protocol == PX_PROTO_OE) {
/*
* PPPoE channel
*/
DEBUG_TRACE("Net device: %p PPP channel is PPPoE\n", dest_dev);
/*
* Get PPPoE session information and the underlying device it is using.
*/
pppoe_channel_addressing_get(ppp_chan[0], &addressing);
/*
* Copy the dev hold into this, we will release the hold later
*/
next_dev = addressing.dev;
next_dest_addr_valid = false;
next_dest_node_addr_valid = true;
memcpy(next_dest_node_addr, addressing.pa.remote, ETH_ALEN);
/*
* Release the channel. Note that next_dev is still (correctly) held.
*/
ppp_release_channels(ppp_chan, 1);
break;
}
#endif
DEBUG_TRACE("Net device: %p PPP channel protocol: %d - Unknown to the ECM\n",
dest_dev, channel_protocol);
/*
* Release the channel
*/
ppp_release_channels(ppp_chan, 1);
#endif
} while (false);
/*
* No longer need dest_dev as it may become next_dev
*/
dev_put(dest_dev);
/*
* Check out the next_dev, if any
*/
if (!next_dev) {
int32_t i __attribute__((unused));
DEBUG_INFO("Completed interface heirarchy construct with first interface @: %d\n", current_interface_index);
#if DEBUG_LEVEL > 1
for (i = current_interface_index; i < ECM_DB_IFACE_HEIRARCHY_MAX; ++i) {
DEBUG_TRACE("\tInterface @ %d: %p, type: %d, name: %s\n",
i, interfaces[i], ecm_db_connection_iface_type_get(interfaces[i]), ecm_db_interface_type_to_string(ecm_db_connection_iface_type_get(interfaces[i])));
}
#endif
/*
* Release src_dev now
*/
dev_put(src_dev);
return current_interface_index;
}
/*
* dest_dev becomes next_dev
*/
dest_dev = next_dev;
dest_dev_name = dest_dev->name;
dest_dev_type = dest_dev->type;
}
DEBUG_WARN("Too many interfaces: %d\n", current_interface_index);
DEBUG_ASSERT(current_interface_index == 0, "Bad logic handling current_interface_index: %d\n", current_interface_index);
dev_put(src_dev);
dev_put(dest_dev);
/*
* Release the interfaces heirarchy we constructed to this point.
*/
ecm_db_connection_interfaces_deref(interfaces, current_interface_index);
return ECM_DB_IFACE_HEIRARCHY_MAX;
}
EXPORT_SYMBOL(ecm_interface_multicast_from_heirarchy_construct);
#endif
/*
* ecm_interface_list_stats_update()
* Given an interface list, walk the interfaces and update the stats for certain types.
*/
static void ecm_interface_list_stats_update(int iface_list_first, struct ecm_db_iface_instance *iface_list[], uint8_t *mac_addr,
bool is_mcast_flow, uint32_t tx_packets, uint32_t tx_bytes, uint32_t rx_packets, uint32_t rx_bytes)
{
int list_index;
for (list_index = iface_list_first; (list_index < ECM_DB_IFACE_HEIRARCHY_MAX); list_index++) {
struct ecm_db_iface_instance *ii;
ecm_db_iface_type_t ii_type;
char *ii_name;
struct net_device *dev;
ii = iface_list[list_index];
ii_type = ecm_db_connection_iface_type_get(ii);
ii_name = ecm_db_interface_type_to_string(ii_type);
DEBUG_TRACE("list_index: %d, ii: %p, type: %d (%s)\n", list_index, ii, ii_type, ii_name);
/*
* Locate real device in system
*/
dev = dev_get_by_index(&init_net, ecm_db_iface_interface_identifier_get(ii));
if (!dev) {
DEBUG_WARN("Could not locate interface\n");
continue;
}
DEBUG_TRACE("found dev: %p (%s)\n", dev, dev->name);
if (likely(!is_mcast_flow)) {
/*
* Refresh the bridge forward table entry if the port is a bridge port
* Note: A bridge port can be of different interface type, e.g VLAN, ethernet.
* This check, therefore, should be performed for all interface types.
*/
if (is_valid_ether_addr(mac_addr) && ecm_front_end_is_bridge_port(dev) && rx_packets) {
DEBUG_TRACE("Update bridge fdb entry for mac: %pM\n", mac_addr);
br_refresh_fdb_entry(dev, mac_addr);
}
}
switch (ii_type) {
struct rtnl_link_stats64 stats;
#ifdef ECM_INTERFACE_VLAN_ENABLE
case ECM_DB_IFACE_TYPE_VLAN:
DEBUG_INFO("VLAN\n");
stats.rx_packets = rx_packets;
stats.rx_bytes = rx_bytes;
stats.tx_packets = tx_packets;
stats.tx_bytes = tx_bytes;
__vlan_dev_update_accel_stats(dev, &stats);
break;
#endif
case ECM_DB_IFACE_TYPE_BRIDGE:
DEBUG_INFO("BRIDGE\n");
stats.rx_packets = rx_packets;
stats.rx_bytes = rx_bytes;
stats.tx_packets = tx_packets;
stats.tx_bytes = tx_bytes;
br_dev_update_stats(dev, &stats);
break;
#ifdef ECM_INTERFACE_PPPOE_ENABLE
case ECM_DB_IFACE_TYPE_PPPOE:
DEBUG_INFO("PPPOE\n");
ppp_update_stats(dev, rx_packets, rx_bytes, tx_packets, tx_bytes, 0, 0, 0, 0);
break;
#endif
default:
/*
* TODO: Extend it accordingly
*/
break;
}
dev_put(dev);
}
}
/*
* ecm_interface_stats_update()
* Using the interface lists for the given connection, update the interface statistics for each.
*
* 'from' here is wrt the connection 'from' side. Likewise with 'to'.
* TX is wrt what the interface has transmitted. RX is what the interface has received.
*/
void ecm_interface_stats_update(struct ecm_db_connection_instance *ci,
uint32_t from_tx_packets, uint32_t from_tx_bytes, uint32_t from_rx_packets, uint32_t from_rx_bytes,
uint32_t to_tx_packets, uint32_t to_tx_bytes, uint32_t to_rx_packets, uint32_t to_rx_bytes)
{
struct ecm_db_iface_instance *from_ifaces[ECM_DB_IFACE_HEIRARCHY_MAX];
struct ecm_db_iface_instance *to_ifaces[ECM_DB_IFACE_HEIRARCHY_MAX];
int from_ifaces_first;
int to_ifaces_first;
uint8_t mac_addr[ETH_ALEN];
/*
* Iterate the 'from' side interfaces and update statistics and state for the real HLOS interfaces
* from_tx_packets / bytes: the amount transmitted by the 'from' interface
* from_rx_packets / bytes: the amount received by the 'from' interface
*/
DEBUG_INFO("%p: Update from interface stats\n", ci);
from_ifaces_first = ecm_db_connection_from_interfaces_get_and_ref(ci, from_ifaces);
ecm_db_connection_from_node_address_get(ci, mac_addr);
ecm_interface_list_stats_update(from_ifaces_first, from_ifaces, mac_addr, false, from_tx_packets, from_tx_bytes, from_rx_packets, from_rx_bytes);
ecm_db_connection_interfaces_deref(from_ifaces, from_ifaces_first);
/*
* Iterate the 'to' side interfaces and update statistics and state for the real HLOS interfaces
* to_tx_packets / bytes: the amount transmitted by the 'to' interface
* to_rx_packets / bytes: the amount received by the 'to' interface
*/
DEBUG_INFO("%p: Update to interface stats\n", ci);
to_ifaces_first = ecm_db_connection_to_interfaces_get_and_ref(ci, to_ifaces);
ecm_db_connection_to_node_address_get(ci, mac_addr);
ecm_interface_list_stats_update(to_ifaces_first, to_ifaces, mac_addr, false, to_tx_packets, to_tx_bytes, to_rx_packets, to_rx_bytes);
ecm_db_connection_interfaces_deref(to_ifaces, to_ifaces_first);
}
EXPORT_SYMBOL(ecm_interface_stats_update);
#ifdef ECM_MULTICAST_ENABLE
/*
* ecm_interface_multicast_stats_update()
* Using the interface lists for the given connection, update the interface statistics for each.
*
* 'from interface' here is the connection 'from' side. Likewise with 'to interface'.
* TX is wrt what the interface has transmitted. RX is what the interface has received.
*/
void ecm_interface_multicast_stats_update(struct ecm_db_connection_instance *ci, uint32_t from_tx_packets, uint32_t from_tx_bytes,
uint32_t from_rx_packets, uint32_t from_rx_bytes, uint32_t to_tx_packets, uint32_t to_tx_bytes,
uint32_t to_rx_packets, uint32_t to_rx_bytes)
{
struct ecm_db_iface_instance *from_ifaces[ECM_DB_IFACE_HEIRARCHY_MAX];
struct ecm_db_iface_instance *to_list_single[ECM_DB_IFACE_HEIRARCHY_MAX];
struct ecm_db_iface_instance *to_ifaces;
struct ecm_db_iface_instance *ii_temp;
int from_ifaces_first;
int *to_ifaces_first;
int if_index;
int ret;
uint8_t mac_addr[ETH_ALEN];
/*
* Iterate the 'from' side interfaces and update statistics and state for the real HLOS interfaces
* from_tx_packets / bytes: the amount transmitted by the 'from' interface
* from_rx_packets / bytes: the amount received by the 'from' interface
*/
DEBUG_INFO("%p: Update from interface stats\n", ci);
from_ifaces_first = ecm_db_connection_from_interfaces_get_and_ref(ci, from_ifaces);
ecm_db_connection_from_node_address_get(ci, mac_addr);
ecm_interface_list_stats_update(from_ifaces_first, from_ifaces, mac_addr, false, from_tx_packets, from_tx_bytes, from_rx_packets, from_rx_bytes);
ecm_db_connection_interfaces_deref(from_ifaces, from_ifaces_first);
/*
* Iterate the 'to' side interfaces and update statistics and state for the real HLOS interfaces
* to_tx_packets / bytes: the amount transmitted by the 'to' interface
* to_rx_packets / bytes: the amount received by the 'to' interface
*/
DEBUG_INFO("%p: Update to interface stats\n", ci);
/*
* This function allocates the memory for temporary destination interface heirarchies.
* This memory needs to be free at the end.
*/
ret = ecm_db_multicast_connection_to_interfaces_get_and_ref_all(ci, &to_ifaces, &to_ifaces_first);
if (ret == 0) {
DEBUG_WARN("%p: Get and ref to all multicast detination interface heirarchies failed\n", ci);
return;
}
for (if_index = 0; if_index < ECM_DB_MULTICAST_IF_MAX; if_index++) {
if (to_ifaces_first[if_index] < ECM_DB_IFACE_HEIRARCHY_MAX) {
ii_temp = ecm_db_multicast_if_heirarchy_get(to_ifaces, if_index);
ecm_db_multicast_copy_if_heirarchy(to_list_single, ii_temp);
ecm_interface_list_stats_update(to_ifaces_first[if_index], to_list_single, mac_addr, true, to_tx_packets, to_tx_bytes, to_rx_packets, to_rx_bytes);
}
}
ecm_db_multicast_connection_to_interfaces_deref_all(to_ifaces, to_ifaces_first);
}
EXPORT_SYMBOL(ecm_interface_multicast_stats_update);
#endif
/*
* ecm_interface_regenerate_connections()
* Cause regeneration of all connections that are using the specified interface.
*/
static void ecm_interface_regenerate_connections(struct ecm_db_iface_instance *ii)
{
#ifdef ECM_DB_XREF_ENABLE
struct ecm_db_connection_instance *ci_from;
struct ecm_db_connection_instance *ci_to;
struct ecm_db_connection_instance *ci_from_nat;
struct ecm_db_connection_instance *ci_to_nat;
struct ecm_db_connection_instance *ci_mcast __attribute__ ((unused));
#endif
DEBUG_TRACE("Regenerate connections using interface: %p\n", ii);
#ifndef ECM_DB_XREF_ENABLE
/*
* An interface has changed, re-generate the connections to ensure all state is updated.
*/
ecm_db_regeneration_needed();
#else
/*
* If the interface has NO connections then we re-generate all.
*/
ci_from = ecm_db_iface_connections_from_get_and_ref_first(ii);
ci_to = ecm_db_iface_connections_to_get_and_ref_first(ii);
ci_from_nat = ecm_db_iface_connections_nat_from_get_and_ref_first(ii);
ci_to_nat = ecm_db_iface_connections_nat_to_get_and_ref_first(ii);
if (!ci_from && !ci_to && !ci_from_nat && !ci_to_nat) {
ecm_db_regeneration_needed();
DEBUG_TRACE("%p: Regenerate (ALL) COMPLETE\n", ii);
return;
}
/*
* Re-generate all connections associated with this interface
*/
DEBUG_TRACE("%p: Regenerate 'from' connections\n", ii);
while (ci_from) {
struct ecm_db_connection_instance *cin;
cin = ecm_db_connection_iface_from_get_and_ref_next(ci_from);
DEBUG_TRACE("%p: Regenerate: %p", ii, ci_from);
ecm_db_connection_regenerate(ci_from);
ecm_db_connection_deref(ci_from);
ci_from = cin;
}
DEBUG_TRACE("%p: Regenerate 'to' connections\n", ii);
while (ci_to) {
struct ecm_db_connection_instance *cin;
cin = ecm_db_connection_iface_to_get_and_ref_next(ci_to);
DEBUG_TRACE("%p: Regenerate: %p", ii, ci_to);
ecm_db_connection_regenerate(ci_to);
ecm_db_connection_deref(ci_to);
ci_to = cin;
}
/*
* GGG TODO These deprecated lists _nat_ lists will eventually be removed
*/
DEBUG_TRACE("%p: Regenerate 'from_nat' connections\n", ii);
while (ci_from_nat) {
struct ecm_db_connection_instance *cin;
cin = ecm_db_connection_iface_nat_from_get_and_ref_next(ci_from_nat);
DEBUG_TRACE("%p: Regenerate: %p", ii, ci_from_nat);
ecm_db_connection_regenerate(ci_from_nat);
ecm_db_connection_deref(ci_from_nat);
ci_from_nat = cin;
}
DEBUG_TRACE("%p: Regenerate 'to_nat' connections\n", ii);
while (ci_to_nat) {
struct ecm_db_connection_instance *cin;
cin = ecm_db_connection_iface_nat_to_get_and_ref_next(ci_to_nat);
DEBUG_TRACE("%p: Regenerate: %p", ii, ci_to_nat);
ecm_db_connection_regenerate(ci_to_nat);
ecm_db_connection_deref(ci_to_nat);
ci_to_nat = cin;
}
#ifdef ECM_MULTICAST_ENABLE
/*
* Multicasts would not have recorded in the lists above.
* Our only way to re-gen those is to iterate all multicasts.
* GGG TODO This will be optimised in a future release.
*/
ci_mcast = ecm_db_connections_get_and_ref_first();
while (ci_mcast) {
struct ecm_db_connection_instance *cin;
/*
* Multicast and NOT flagged for re-gen?
*/
if (ecm_db_multicast_connection_to_interfaces_set_check(ci_mcast)
&& ecm_db_connection_regeneration_required_peek(ci_mcast)) {
ecm_db_connection_regenerate(ci_mcast);
}
cin = ecm_db_connection_get_and_ref_next(ci_mcast);
ecm_db_connection_deref(ci_mcast);
ci_mcast = cin;
}
#endif
#endif
DEBUG_TRACE("%p: Regenerate COMPLETE\n", ii);
}
/*
* ecm_interface_dev_regenerate_connections()
* Cause regeneration of all connections that are using the specified interface.
*/
void ecm_interface_dev_regenerate_connections(struct net_device *dev)
{
struct ecm_db_iface_instance *ii;
DEBUG_INFO("Regenerate connections for: %p (%s)\n", dev, dev->name);
/*
* If the interface is known to us then we will get it returned by this
* function and process it accordingly.
*/
ii = ecm_db_iface_find_and_ref_by_interface_identifier(dev->ifindex);
if (!ii) {
DEBUG_WARN("%p: No interface instance could be established for this dev\n", dev);
return;
}
ecm_interface_regenerate_connections(ii);
DEBUG_TRACE("%p: Regenerate for %p: COMPLETE\n", dev, ii);
ecm_db_iface_deref(ii);
}
/*
* ecm_interface_defunct_connections()
* Cause defunct of all connections that are using the specified interface.
*/
static void ecm_interface_defunct_connections(struct ecm_db_iface_instance *ii)
{
#ifndef ECM_DB_XREF_ENABLE
ecm_db_connection_defunct_all();
#else
struct ecm_db_connection_instance *ci_from;
struct ecm_db_connection_instance *ci_to;
struct ecm_db_connection_instance *ci_from_nat;
struct ecm_db_connection_instance *ci_to_nat;
struct ecm_db_connection_instance *ci_mcast __attribute__ ((unused));
DEBUG_TRACE("defunct connections using interface: %p\n", ii);
ci_from = ecm_db_iface_connections_from_get_and_ref_first(ii);
ci_to = ecm_db_iface_connections_to_get_and_ref_first(ii);
ci_from_nat = ecm_db_iface_connections_nat_from_get_and_ref_first(ii);
ci_to_nat = ecm_db_iface_connections_nat_to_get_and_ref_first(ii);
/*
* Defunct ALL if all the four connection instances are NULL
*/
if (!ci_from && !ci_to && !ci_from_nat && !ci_to_nat) {
ecm_db_connection_defunct_all();
DEBUG_TRACE("%p: Defunct (ALL) COMPLETE\n", ii);
return;
}
/*
* Defunct all connections associated with this interface
*/
DEBUG_TRACE("%p: Defunct 'from' connections\n", ii);
while (ci_from) {
struct ecm_db_connection_instance *cin;
cin = ecm_db_connection_iface_from_get_and_ref_next(ci_from);
DEBUG_TRACE("%p: Defunct: %p", ii, ci_from);
ecm_db_connection_make_defunct(ci_from);
ecm_db_connection_deref(ci_from);
ci_from = cin;
}
DEBUG_TRACE("%p: Defunct 'to' connections\n", ii);
while (ci_to) {
struct ecm_db_connection_instance *cin;
cin = ecm_db_connection_iface_from_get_and_ref_next(ci_to);
DEBUG_TRACE("%p: Defunct: %p", ii, ci_to);
ecm_db_connection_make_defunct(ci_to);
ecm_db_connection_deref(ci_to);
ci_to = cin;
}
DEBUG_TRACE("%p: Defunct 'from_nat' connections\n", ii);
while (ci_from_nat) {
struct ecm_db_connection_instance *cin;
cin = ecm_db_connection_iface_from_get_and_ref_next(ci_from_nat);
DEBUG_TRACE("%p: Defunct: %p", ii, ci_from_nat);
ecm_db_connection_make_defunct(ci_from_nat);
ecm_db_connection_deref(ci_from_nat);
ci_from_nat = cin;
}
DEBUG_TRACE("%p: Defunct 'to_nat' connections\n", ii);
while (ci_to_nat) {
struct ecm_db_connection_instance *cin;
cin = ecm_db_connection_iface_from_get_and_ref_next(ci_to_nat);
DEBUG_TRACE("%p: Defunct: %p", ii, ci_to_nat);
ecm_db_connection_make_defunct(ci_to_nat);
ecm_db_connection_deref(ci_to_nat);
ci_to_nat = cin;
}
#endif
DEBUG_TRACE("%p: Defunct COMPLETE\n", ii);
}
/*
* ecm_interface_dev_defunct_connections()
* Cause defunct of all connections that are using the specified interface.
*/
void ecm_interface_dev_defunct_connections(struct net_device *dev)
{
struct ecm_db_iface_instance *ii;
DEBUG_INFO("defunct connections for: %p (%s)\n", dev, dev->name);
/*
* If the interface is known to us then we will get it returned by this
* function and process it accordingly.
*/
ii = ecm_db_iface_find_and_ref_by_interface_identifier(dev->ifindex);
if (!ii) {
DEBUG_WARN("%p: No interface instance could be established for this dev\n", dev);
return;
}
ecm_interface_defunct_connections(ii);
DEBUG_TRACE("%p: defunct for %p: COMPLETE\n", dev, ii);
ecm_db_iface_deref(ii);
}
/*
* ecm_interface_mtu_change()
* MTU of interface has changed
*/
static void ecm_interface_mtu_change(struct net_device *dev)
{
int mtu;
struct ecm_db_iface_instance *ii;
mtu = dev->mtu;
DEBUG_INFO("%p (%s): MTU Change to: %d\n", dev, dev->name, mtu);
/*
* Find the interface for the given device.
*/
ii = ecm_db_iface_find_and_ref_by_interface_identifier(dev->ifindex);
if (!ii) {
DEBUG_WARN("%p: No interface instance could be established for this dev\n", dev);
return;
}
/*
* Change the mtu
*/
ecm_db_iface_mtu_reset(ii, mtu);
DEBUG_TRACE("%p (%s): MTU Changed to: %d\n", dev, dev->name, mtu);
if (netif_is_bond_slave(dev)) {
struct net_device *master = NULL;
master = ecm_interface_get_and_hold_dev_master(dev);
DEBUG_ASSERT(master, "Expected a master\n");
ecm_interface_dev_regenerate_connections(master);
dev_put(master);
} else {
ecm_interface_regenerate_connections(ii);
}
DEBUG_TRACE("%p: Regenerate for %p: COMPLETE\n", dev, ii);
ecm_db_iface_deref(ii);
}
/*
* ecm_interface_netdev_notifier_callback()
* Netdevice notifier callback to inform us of change of state of a netdevice
*/
static int ecm_interface_netdev_notifier_callback(struct notifier_block *this, unsigned long event, void *ptr)
{
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(3, 10, 0))
struct net_device *dev __attribute__ ((unused)) = (struct net_device *)ptr;
#else
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
#endif
struct net_device *master = NULL;
DEBUG_INFO("Net device notifier for: %p, name: %s, event: %lx\n", dev, dev->name, event);
switch (event) {
case NETDEV_DOWN:
DEBUG_INFO("Net device: %p, DOWN\n", dev);
if (netif_is_bond_slave(dev)) {
master = ecm_interface_get_and_hold_dev_master(dev);
DEBUG_ASSERT(master, "Expected a master\n");
ecm_interface_dev_defunct_connections(master);
dev_put(master);
} else {
ecm_interface_dev_defunct_connections(dev);
}
break;
case NETDEV_CHANGE:
DEBUG_INFO("Net device: %p, CHANGE\n", dev);
if (!netif_carrier_ok(dev)) {
DEBUG_INFO("Net device: %p, CARRIER BAD\n", dev);
if (netif_is_bond_slave(dev)) {
master = ecm_interface_get_and_hold_dev_master(dev);
DEBUG_ASSERT(master, "Expected a master.\n");
ecm_interface_dev_defunct_connections(master);
dev_put(master);
} else {
ecm_interface_dev_defunct_connections(dev);
}
}
break;
case NETDEV_CHANGEMTU:
DEBUG_INFO("Net device: %p, MTU CHANGE\n", dev);
ecm_interface_mtu_change(dev);
break;
default:
DEBUG_TRACE("Net device: %p, UNHANDLED: %lx\n", dev, event);
break;
}
return NOTIFY_DONE;
}
/*
* ecm_interface_node_connections_defunct()
* Defunct the connections on this node.
*/
void ecm_interface_node_connections_defunct(uint8_t *mac)
{
struct ecm_db_node_instance *ni = NULL;
if (unlikely(!mac)) {
DEBUG_WARN("mac address is null\n");
return;
}
ni = ecm_db_node_chain_get_and_ref_first(mac);
while (ni) {
struct ecm_db_node_instance *nin;
if (ecm_db_node_is_mac_addr_equal(ni, mac)) {
ecm_db_traverse_node_from_connection_list_and_defunct(ni);
ecm_db_traverse_node_to_connection_list_and_defunct(ni);
ecm_db_traverse_node_from_nat_connection_list_and_defunct(ni);
ecm_db_traverse_node_to_nat_connection_list_and_defunct(ni);
}
/*
* Get next node in the chain
*/
nin = ecm_db_node_chain_get_and_ref_next(ni);
ecm_db_node_deref(ni);
ni = nin;
}
}
EXPORT_SYMBOL(ecm_interface_node_connections_defunct);
/*
* struct notifier_block ecm_interface_netdev_notifier
* Registration for net device changes of state.
*/
static struct notifier_block ecm_interface_netdev_notifier __read_mostly = {
.notifier_call = ecm_interface_netdev_notifier_callback,
};
#if defined(ECM_DB_XREF_ENABLE) && defined(ECM_BAND_STEERING_ENABLE)
/*
* ecm_interfae_node_br_fdb_notify_event()
* This is a call back for "bridge fdb update event/ageing timer expire
* event".
*/
static int ecm_interface_node_br_fdb_notify_event(struct notifier_block *nb,
unsigned long val,
void *data)
{
uint8_t *mac = (uint8_t *)data;
if (ECM_FRONT_END_TYPE_NSS == ecm_front_end_type_get()) {
DEBUG_INFO("FDB updated for node %pM\n", mac);
ecm_interface_node_connections_defunct(mac);
}
return NOTIFY_DONE;
}
static struct notifier_block ecm_interface_node_br_fdb_update_nb = {
.notifier_call = ecm_interface_node_br_fdb_notify_event,
};
static int ecm_interface_node_br_fdb_delete_event(struct notifier_block *nb,
unsigned long event,
void *ctx)
{
struct br_fdb_event *fe = (struct br_fdb_event *)ctx;
if ((event != BR_FDB_EVENT_DEL) || fe->is_local) {
DEBUG_WARN("local fdb or not deleting event, ignore\n");
return NOTIFY_DONE;
}
return ecm_interface_node_br_fdb_notify_event(nb, event, fe->addr);
}
static struct notifier_block ecm_interface_node_br_fdb_delete_nb = {
.notifier_call = ecm_interface_node_br_fdb_delete_event,
};
#endif
#ifdef ECM_MULTICAST_ENABLE
/*
* ecm_interface_multicast_find_outdated_iface_instances()
*
* Called in the case of Routing/Bridging Multicast update events.
*
* This function takes a list of ifindex for the connection which was received
* from MFC or bridge snooper, compares it against the existing list of interfaces
* in the DB connection, and extracts the list of those interfaces that have left
* the multicast group.
*
* ci A DB connection instance.
* mc_updates Part of return Information. The function will mark the index of those
* interfaces in the DB connection 'to_mcast_interfaces' array that have
* left the group, in the mc_updates->if_leave_idx array. The caller uses this
* information to delete those outdated interface heirarchies from the
* connection.
* is_bridged True if the function called due to bridge multicast snooper update event.
* dst_dev Holds the netdevice ifindex number of the new list of interfaces as reported
* by the update from MFC or Bridge snooper.
* max_to_dev Size of the array 'dst_dev'
*
* Return true if outdated interfaces found
*/
static bool ecm_interface_multicast_find_outdated_iface_instances(struct ecm_db_connection_instance *ci, struct ecm_multicast_if_update *mc_updates,
uint32_t flags, bool is_br_snooper, uint32_t *mc_dst_if_index, uint32_t max_to_dev)
{
struct ecm_db_iface_instance *mc_ifaces;
struct ecm_db_iface_instance *ii_temp;
struct ecm_db_iface_instance *ii_single;
struct ecm_db_iface_instance **ifaces;
struct ecm_db_iface_instance *to_iface;
int32_t *to_iface_first;
int32_t *mc_ifaces_first;
uint32_t *dst_if_index;
ecm_db_iface_type_t ii_type;
int32_t heirarchy_index;
int32_t if_index;
int32_t if_cnt = 0;
int found = 0;
int ii;
int ret;
int32_t ifaces_identifier;
ret = ecm_db_multicast_connection_to_interfaces_get_and_ref_all(ci, &mc_ifaces, &mc_ifaces_first);
if (ret == 0) {
DEBUG_WARN("%p: multicast interfaces ref fail!\n", ci);
return false;
}
/*
* Loop through the current interface list in the DB
* connection 'to_mcast_interfaces' array
*/
for (heirarchy_index = 0; heirarchy_index < ECM_DB_MULTICAST_IF_MAX; heirarchy_index++) {
found = 0;
to_iface_first = ecm_db_multicast_if_first_get_at_index(mc_ifaces_first, heirarchy_index);
/*
* Invalid interface entry, skip
*/
if (*to_iface_first == ECM_DB_IFACE_HEIRARCHY_MAX) {
continue;
}
ii_temp = ecm_db_multicast_if_heirarchy_get(mc_ifaces, heirarchy_index);
ii_single = ecm_db_multicast_if_instance_get_at_index(ii_temp, ECM_DB_IFACE_HEIRARCHY_MAX - 1);
ifaces = (struct ecm_db_iface_instance **)ii_single;
to_iface = *ifaces;
ii_type = ecm_db_connection_iface_type_get(to_iface);
/*
* If the update was received from bridge snooper, do not consider entries in the
* interface list that are not part of a bridge.
*/
if (is_br_snooper && (ii_type != ECM_DB_IFACE_TYPE_BRIDGE)) {
continue;
}
/*
* If the update was received from MFC, do not consider entries in the
* interface list that are part of a bridge. The bridge entries will be
* taken care by the Bridge Snooper Callback
*/
if (ii_type == ECM_DB_IFACE_TYPE_BRIDGE) {
if (!is_br_snooper && !(flags & ECM_DB_MULTICAST_CONNECTION_BRIDGE_DEV_SET_FLAG)) {
continue;
}
}
/*
* Try to find a match in the newly received interface list, for any of
* the interface instance in the heirarchy. If found, it means that this
* interface has not left the group. If not found, it means that this
* interface has left the group.
*/
for (ii = ECM_DB_IFACE_HEIRARCHY_MAX - 1; ii >= *to_iface_first; ii--) {
ii_single = ecm_db_multicast_if_instance_get_at_index(ii_temp, ii);
ifaces = (struct ecm_db_iface_instance **)ii_single;
to_iface = *ifaces;
ii_type = ecm_db_connection_iface_type_get(to_iface);
ifaces_identifier = ecm_db_iface_interface_identifier_get(to_iface);
for (if_index = 0; if_index < max_to_dev; if_index++) {
dst_if_index = ecm_db_multicast_if_num_get_at_index(mc_dst_if_index, if_index);
if (*dst_if_index == ifaces_identifier) {
found = 1;
break;
}
}
if (found) {
break;
}
}
/*
* We did not find a match for the interface in the present list. So mark
* if as one that has left the group.
*/
if (!found) {
if_cnt++;
mc_updates->if_leave_idx[heirarchy_index] = 1;
}
}
ecm_db_multicast_connection_to_interfaces_deref_all(mc_ifaces, mc_ifaces_first);
mc_updates->if_leave_cnt = if_cnt;
return (if_cnt > 0);
}
/*
* ecm_interface_multicast_find_new_iface_instances()
*
* Called in the case of Routing/Bridging Multicast update events.
*
* This function takes a list of ifindex for the connection which was received
* from MFC or bridge snooper, compares it against the existing list of interfaces
* in the DB connection, and extracts the list of the new joinees for the multicast
* group.
*
* ci A DB connection instance.
* mc_updates Part of return Information. The function will mark the index of those
* interfaces in the 'dst_dev' array that have joined the group, in the
* mc_updates->if_join_idx array. The caller uses this information to add the new
* interface heirarchies into the connection.
* dst_dev Holds the netdevice ifindex number of the new list of interfaces as reported
* by the update from MFC or Bridge snooper.
* max_to_dev Size of the array 'dst_dev'
*
* Return true if new joinees found
*/
static bool ecm_interface_multicast_find_new_iface_instances(struct ecm_db_connection_instance *ci,
struct ecm_multicast_if_update *mc_updates, uint32_t *mc_dst_if_index, uint32_t max_to_dev)
{
struct ecm_db_iface_instance *mc_ifaces;
struct ecm_db_iface_instance *ii_temp;
struct ecm_db_iface_instance *ii_single;
struct ecm_db_iface_instance **ifaces;
int32_t *mc_ifaces_first;
int32_t *to_list_first;
int32_t heirarchy_index;
int32_t if_index;
int32_t if_cnt = 0;
int found = 0;
int ii;
int ret;
uint32_t *dst_if_index;
int32_t ifaces_identifier;
struct ecm_db_iface_instance *to_list;
ret = ecm_db_multicast_connection_to_interfaces_get_and_ref_all(ci, &mc_ifaces, &mc_ifaces_first);
if (ret == 0) {
DEBUG_WARN("%p: multicast interfaces ref fail!\n", ci);
return false;
}
/*
* Loop through the new interface list 'dst_dev'
*/
for (if_index = 0; if_index < max_to_dev; if_index++) {
found = 0;
dst_if_index = ecm_db_multicast_if_num_get_at_index(mc_dst_if_index, if_index);
if (*dst_if_index == 0) {
continue;
}
for (heirarchy_index = 0; heirarchy_index < ECM_DB_MULTICAST_IF_MAX ; heirarchy_index++) {
to_list_first = ecm_db_multicast_if_first_get_at_index(mc_ifaces_first, heirarchy_index);
/*
* Invalid interface entry, skip
*/
if (*to_list_first == ECM_DB_IFACE_HEIRARCHY_MAX) {
continue;
}
ii_temp = ecm_db_multicast_if_heirarchy_get(mc_ifaces, heirarchy_index);
/*
* Try to find a match for this ifindex (dst_dev[if_index]), in any of the
* interface instance in the heirarchy. If not found, it means that this
* ifindex has joined the group. If found, it means that this ifindex was
* already part of the list of destination interfaces.
*/
for (ii = ECM_DB_IFACE_HEIRARCHY_MAX - 1; ii >= *to_list_first; ii--) {
ii_single = ecm_db_multicast_if_instance_get_at_index(ii_temp, ii);
ifaces = (struct ecm_db_iface_instance **)ii_single;
to_list = *ifaces;
ifaces_identifier = ecm_db_iface_interface_identifier_get(to_list);
if (*dst_if_index == ifaces_identifier) {
found = 1;
break;
}
}
if (found) {
break;
}
}
/*
* We did not find a match for the interface in the present list. So mark
* it as one that has joined the group.
*/
if (!found) {
/*
* Store the if index of the new joinee
*/
mc_updates->join_dev[if_cnt] = *dst_if_index;
/*
* Identify a new vacant slot in the 'to_mcast_interfaces' to place
* the new interface
*/
for (heirarchy_index = 0; heirarchy_index < ECM_DB_MULTICAST_IF_MAX ; heirarchy_index++) {
to_list_first = ecm_db_multicast_if_first_get_at_index(mc_ifaces_first, heirarchy_index);
if (*to_list_first == ECM_DB_IFACE_HEIRARCHY_MAX) {
mc_updates->if_join_idx[heirarchy_index] = 1;
break;
}
}
if_cnt++;
}
}
ecm_db_multicast_connection_to_interfaces_deref_all(mc_ifaces, mc_ifaces_first);
mc_updates->if_join_cnt = if_cnt;
return (if_cnt > 0);
}
/*
* ecm_interface_multicast_find_updates_to_iface_list()
* Process IGMP/MLD updates either from MFC or bridge snooper. Identity the interfaces
* that have left the group and new interfaces that have joined the group.
*
* The function returns true if there was any update necessary to the current destination
* interface list
*/
bool ecm_interface_multicast_find_updates_to_iface_list(struct ecm_db_connection_instance *ci, struct ecm_multicast_if_update *mc_updates,
uint32_t flags, bool is_br_snooper, uint32_t *mc_dst_if_index, uint32_t max_to_dev)
{
bool join;
bool leave;
/*
* Find destination interfaces that have left the group
*/
leave = ecm_interface_multicast_find_outdated_iface_instances(ci, mc_updates, flags, is_br_snooper, mc_dst_if_index, max_to_dev);
/*
* Find new destination interfaces that have joined the group
*/
join = ecm_interface_multicast_find_new_iface_instances(ci, mc_updates, mc_dst_if_index, max_to_dev);
return (leave || join);
}
EXPORT_SYMBOL(ecm_interface_multicast_find_updates_to_iface_list);
#endif
#ifdef ECM_DB_XREF_ENABLE
/*
* ecm_interface_neigh_mac_update_notify_event()
* Neighbour mac address change handler.
*/
static int ecm_interface_neigh_mac_update_notify_event(struct notifier_block *nb,
unsigned long val,
void *data)
{
struct neigh_mac_update *nmu = (struct neigh_mac_update *)data;
/*
* If the old and new mac addresses are equal, do nothing.
* This case shouldn't happen.
*/
if (!ecm_mac_addr_equal(nmu->old_mac, nmu->update_mac)) {
DEBUG_TRACE("old and new mac addresses are equal: %pM\n", nmu->old_mac);
return NOTIFY_DONE;
}
/*
* If the old mac is zero, do nothing. When a host joins the arp table first
* time, its old mac comes as zero. We shouldn't handle this case, because
* there is not any connection in ECM db with zero mac.
*/
if (is_zero_ether_addr(nmu->old_mac)) {
DEBUG_WARN("old mac is zero\n");
return NOTIFY_DONE;
}
DEBUG_TRACE("old mac: %pM new mac: %pM\n", nmu->old_mac, nmu->update_mac);
DEBUG_INFO("neigh mac update notify for node %pM\n", nmu->old_mac);
ecm_interface_node_connections_defunct((uint8_t *)nmu->old_mac);
return NOTIFY_DONE;
}
/*
* struct notifier_block ecm_interface_neigh_mac_update_nb
* Registration for neighbour mac address update.
*/
static struct notifier_block ecm_interface_neigh_mac_update_nb = {
.notifier_call = ecm_interface_neigh_mac_update_notify_event,
};
#endif
/*
* ecm_interface_wifi_event_iwevent
* wireless event handler
*/
static int ecm_interface_wifi_event_iwevent(int ifindex, unsigned char *buf, size_t len)
{
struct iw_event iwe_buf, *iwe = &iwe_buf;
char *pos, *end;
pos = buf;
end = buf + len;
while (pos + IW_EV_LCP_LEN <= end) {
/*
* Copy the base data structure to get iwe->len
*/
memcpy(&iwe_buf, pos, IW_EV_LCP_LEN);
/*
* Check that len is valid and that we have that much in the buffer.
*
*/
if (iwe->len < IW_EV_LCP_LEN) {
return -1;
}
if ((iwe->len > sizeof (struct iw_event)) || (iwe->len + pos) > end) {
return -1;
}
/*
* Do the copy again with the full length.
*/
memcpy(&iwe_buf, pos, iwe->len);
if (iwe->cmd == IWEVREGISTERED) {
DEBUG_INFO("STA %pM joining\n", (uint8_t *)iwe->u.addr.sa_data);
} else if (iwe->cmd == IWEVEXPIRED) {
DEBUG_INFO("STA %pM leaving\n", (uint8_t *)iwe->u.addr.sa_data);
ecm_interface_node_connections_defunct((uint8_t *)iwe->u.addr.sa_data);
} else {
DEBUG_INFO("iwe->cmd is %d for STA %pM\n", iwe->cmd, (unsigned char *) iwe->u.addr.sa_data);
}
pos += iwe->len;
}
return 0;
}
/*
* ecm_interface_wifi_event_newlink
* Link event handler
*/
static int ecm_interface_wifi_event_newlink(struct ifinfomsg *ifi, unsigned char *buf, size_t len)
{
struct rtattr *attr;
int attrlen, rta_len;
DEBUG_TRACE("Event from interface %d\n", ifi->ifi_index);
attrlen = len;
attr = (struct rtattr *) buf;
rta_len = RTA_ALIGN(sizeof(struct rtattr));
while (RTA_OK(attr, attrlen)) {
if (attr->rta_type == IFLA_WIRELESS) {
ecm_interface_wifi_event_iwevent(ifi->ifi_index, ((char *) attr) + rta_len, attr->rta_len - rta_len);
}
attr = RTA_NEXT(attr, attrlen);
}
return 0;
}
/*
* ecm_interface_wifi_event_handler
* Netlink event handler
*/
static int ecm_interface_wifi_event_handler(unsigned char *buf, int len)
{
struct nlmsghdr *nlh;
struct ifinfomsg *ifi;
int left;
nlh = (struct nlmsghdr *) buf;
left = len;
while (NLMSG_OK(nlh, left)) {
switch (nlh->nlmsg_type) {
case RTM_NEWLINK:
case RTM_DELLINK:
if (NLMSG_PAYLOAD(nlh, 0) < sizeof(struct ifinfomsg)) {
DEBUG_INFO("invalid netlink message\n");
break;
}
ifi = NLMSG_DATA(nlh);
DEBUG_INFO("ifi->ifi_family: %d\n", ifi->ifi_family);
if (ifi->ifi_family != AF_BRIDGE) {
ecm_interface_wifi_event_newlink(ifi, (u8 *)ifi + NLMSG_ALIGN(sizeof(struct ifinfomsg)),
NLMSG_PAYLOAD(nlh, sizeof(struct ifinfomsg)));
}
break;
}
nlh = NLMSG_NEXT(nlh, left);
}
return 0;
}
/*
* ecm_interface_wifi_event_rx
* Receive netlink message from socket
*/
static int ecm_interface_wifi_event_rx(struct socket *sock, struct sockaddr_nl *addr, unsigned char *buf, int len)
{
struct msghdr msg;
struct iovec iov;
mm_segment_t oldfs;
int size;
iov.iov_base = buf;
iov.iov_len = len;
msg.msg_flags = 0;
msg.msg_name = addr;
msg.msg_namelen = sizeof(struct sockaddr_nl);
msg.msg_control = NULL;
msg.msg_controllen = 0;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 19, 0))
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
#else
iov_iter_init(&msg.msg_iter, READ, &iov, 1, 1);
#endif
oldfs = get_fs();
set_fs(KERNEL_DS);
size = sock_recvmsg(sock, &msg, len, msg.msg_flags);
set_fs(oldfs);
return size;
}
/*
* ecm_interface_wifi_event_thread
*/
static void ecm_interface_wifi_event_thread(void)
{
int err;
int size;
struct sockaddr_nl saddr;
unsigned char buf[512];
int len = sizeof(buf);
allow_signal(SIGKILL|SIGSTOP);
err = sock_create(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE, &__ewn.sock);
if (err < 0) {
DEBUG_ERROR("failed to create sock\n");
goto exit1;
}
memset(&saddr, 0, sizeof(saddr));
saddr.nl_family = AF_NETLINK;
saddr.nl_groups = RTNLGRP_LINK;
saddr.nl_pid = current->pid;
err = __ewn.sock->ops->bind(__ewn.sock, (struct sockaddr *)&saddr, sizeof(struct sockaddr));
if (err < 0) {
DEBUG_ERROR("failed to bind sock\n");
goto exit2;
}
DEBUG_INFO("ecm_interface_wifi_event thread started\n");
while (!kthread_should_stop()) {
size = ecm_interface_wifi_event_rx(__ewn.sock, &saddr, buf, len);
DEBUG_TRACE("got a netlink msg with len %d\n", size);
if (signal_pending(current))
break;
if (size < 0) {
DEBUG_WARN("netlink rx error\n");
} else {
ecm_interface_wifi_event_handler(buf, size);
}
}
DEBUG_INFO("ecm_interface_wifi_event thread stopped\n");
exit2:
sock_release(__ewn.sock);
exit1:
__ewn.sock = NULL;
return;
}
/*
* ecm_interface_wifi_event_start()
*/
int ecm_interface_wifi_event_start(void)
{
if (__ewn.thread) {
return 0;
}
__ewn.thread = kthread_run((void *)ecm_interface_wifi_event_thread, NULL, "ECM_wifi_event");
if (IS_ERR(__ewn.thread)) {
DEBUG_ERROR("Unable to start kernel thread\n");
return -ENOMEM;
}
return 0;
}
/*
* ecm_interface_wifi_event_stop()
*/
int ecm_interface_wifi_event_stop(void)
{
int err;
if (__ewn.thread == NULL) {
return 0;
}
DEBUG_INFO("kill ecm_interface_wifi_event thread\n");
force_sig(SIGKILL, __ewn.thread);
err = kthread_stop(__ewn.thread);
__ewn.thread = NULL;
return err;
}
/*
* ecm_interface_src_check_handler()
* Source interface check sysctl node handler.
*/
static int ecm_interface_src_check_handler(struct ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos)
{
int ret;
int current_value;
/*
* Take the current value
*/
current_value = ecm_interface_src_check;
/*
* Write the variable with user input
*/
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (ret || (!write)) {
return ret;
}
if (ECM_FRONT_END_TYPE_NSS != ecm_front_end_type_get()) {
DEBUG_WARN("Source interface check is for NSS only.\n");
return -EINVAL;
}
if ((ecm_interface_src_check != 1) && (ecm_interface_src_check != 0)) {
DEBUG_WARN("Invalid input. Valid values 0/1\n");
ecm_interface_src_check = current_value;
return -EINVAL;
}
return ret;
}
static struct ctl_table ecm_interface_table[] = {
{
.procname = "src_interface_check",
.data = &ecm_interface_src_check,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &ecm_interface_src_check_handler,
},
{ }
};
static struct ctl_table ecm_interface_root_dir[] = {
{
.procname = "ecm",
.mode = 0555,
.child = ecm_interface_table,
},
{ }
};
static struct ctl_table ecm_interface_root[] = {
{
.procname = "net",
.mode = 0555,
.child = ecm_interface_root_dir,
},
{ }
};
/*
* ecm_interface_init()
*/
int ecm_interface_init(void)
{
int result;
DEBUG_INFO("ECM Interface init\n");
/*
* Register sysctl table.
*/
ecm_interface_ctl_table_header = register_sysctl_table(ecm_interface_root);
result = register_netdevice_notifier(&ecm_interface_netdev_notifier);
if (result != 0) {
DEBUG_ERROR("Failed to register netdevice notifier %d\n", result);
unregister_sysctl_table(ecm_interface_ctl_table_header);
return result;
}
#if defined(ECM_DB_XREF_ENABLE) && defined(ECM_BAND_STEERING_ENABLE)
/*
* register for bridge fdb database modificationevents
*/
br_fdb_update_register_notify(&ecm_interface_node_br_fdb_update_nb);
br_fdb_register_notify(&ecm_interface_node_br_fdb_delete_nb);
#endif
#ifdef ECM_DB_XREF_ENABLE
neigh_mac_update_register_notify(&ecm_interface_neigh_mac_update_nb);
#endif
ecm_interface_wifi_event_start();
return 0;
}
EXPORT_SYMBOL(ecm_interface_init);
/*
* ecm_interface_exit()
*/
void ecm_interface_exit(void)
{
DEBUG_INFO("ECM Interface exit\n");
spin_lock_bh(&ecm_interface_lock);
ecm_interface_terminate_pending = true;
spin_unlock_bh(&ecm_interface_lock);
unregister_netdevice_notifier(&ecm_interface_netdev_notifier);
#ifdef ECM_DB_XREF_ENABLE
neigh_mac_update_unregister_notify(&ecm_interface_neigh_mac_update_nb);
#endif
#if defined(ECM_DB_XREF_ENABLE) && defined(ECM_BAND_STEERING_ENABLE)
/*
* unregister for bridge fdb update events
*/
br_fdb_update_unregister_notify(&ecm_interface_node_br_fdb_update_nb);
br_fdb_unregister_notify(&ecm_interface_node_br_fdb_delete_nb);
#endif
ecm_interface_wifi_event_stop();
/*
* Unregister sysctl table.
*/
if (ecm_interface_ctl_table_header) {
unregister_sysctl_table(ecm_interface_ctl_table_header);
}
}
EXPORT_SYMBOL(ecm_interface_exit);