| /* |
| ************************************************************************** |
| * Copyright (c) 2014,2015 The Linux Foundation. All rights reserved. |
| * Permission to use, copy, modify, and/or distribute this software for |
| * any purpose with or without fee is hereby granted, provided that the |
| * above copyright notice and this permission notice appear in all copies. |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT |
| * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| ************************************************************************** |
| */ |
| |
| #include <linux/version.h> |
| #include <linux/types.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/module.h> |
| #include <linux/skbuff.h> |
| #include <linux/icmp.h> |
| #include <linux/kthread.h> |
| #include <linux/pkt_sched.h> |
| #include <linux/string.h> |
| #include <net/ip6_route.h> |
| #include <net/ip6_fib.h> |
| #include <net/ipv6.h> |
| #include <net/route.h> |
| #include <net/ip_fib.h> |
| #include <net/ip.h> |
| #include <net/tcp.h> |
| #include <asm/unaligned.h> |
| #include <asm/uaccess.h> /* for put_user */ |
| #include <linux/inet.h> |
| #include <linux/in6.h> |
| #include <linux/in.h> |
| #include <linux/udp.h> |
| #include <linux/tcp.h> |
| #include <linux/if_bridge.h> |
| |
| |
| #include <linux/inetdevice.h> |
| #if defined(ECM_INTERFACE_TUNIPIP6_ENABLE) || defined(ECM_INTERFACE_SIT_ENABLE) |
| #include <net/ipip.h> |
| #endif |
| #include <net/ip6_tunnel.h> |
| #include <net/addrconf.h> |
| #include <linux/if_arp.h> |
| #include <linux/netfilter_ipv4.h> |
| #include <linux/netfilter_bridge.h> |
| #include <linux/if_bridge.h> |
| #include <net/arp.h> |
| #include <net/netfilter/nf_conntrack.h> |
| #include <net/netfilter/nf_conntrack_acct.h> |
| #include <net/netfilter/nf_conntrack_helper.h> |
| #include <net/netfilter/nf_conntrack_l4proto.h> |
| #include <net/netfilter/nf_conntrack_l3proto.h> |
| #include <net/netfilter/nf_conntrack_zones.h> |
| #include <net/netfilter/nf_conntrack_core.h> |
| #include <net/netfilter/ipv4/nf_conntrack_ipv4.h> |
| #include <net/netfilter/ipv4/nf_defrag_ipv4.h> |
| #ifdef ECM_INTERFACE_VLAN_ENABLE |
| #include <linux/../../net/8021q/vlan.h> |
| #include <linux/if_vlan.h> |
| #endif |
| #ifdef ECM_INTERFACE_PPP_ENABLE |
| #include <linux/if_pppox.h> |
| #endif |
| |
| /* |
| * Debug output levels |
| * 0 = OFF |
| * 1 = ASSERTS / ERRORS |
| * 2 = 1 + WARN |
| * 3 = 2 + INFO |
| * 4 = 3 + TRACE |
| */ |
| #define DEBUG_LEVEL ECM_INTERFACE_DEBUG_LEVEL |
| |
| #include <nss_api_if.h> |
| |
| #include "ecm_types.h" |
| #include "ecm_db_types.h" |
| #include "ecm_tracker.h" |
| #include "ecm_classifier.h" |
| #include "ecm_front_end_types.h" |
| #include "ecm_tracker_datagram.h" |
| #include "ecm_tracker_udp.h" |
| #include "ecm_tracker_tcp.h" |
| #include "ecm_db.h" |
| #include "ecm_interface.h" |
| |
| #ifdef ECM_IPV6_ENABLE |
| /* |
| * TODO: Remove once the Linux image and headers get propogated. |
| */ |
| struct net_device *ipv6_dev_find(struct net *net, struct in6_addr *addr, int strict); |
| #endif |
| |
| /* |
| * Locking - concurrency control |
| */ |
| static DEFINE_SPINLOCK(ecm_interface_lock); /* Protect against SMP access between netfilter, events and private threaded function. */ |
| |
| /* |
| * Management thread control |
| */ |
| static bool ecm_interface_terminate_pending = false; /* True when the user has signalled we should quit */ |
| |
| /* |
| * ecm_interface_get_and_hold_dev_master() |
| * Returns the master device of a net device if any. |
| */ |
| struct net_device *ecm_interface_get_and_hold_dev_master(struct net_device *dev) |
| { |
| struct net_device *master; |
| #if (LINUX_VERSION_CODE > KERNEL_VERSION(3,6,0)) |
| rcu_read_lock(); |
| master = netdev_master_upper_dev_get_rcu(dev); |
| if (!master) { |
| rcu_read_unlock(); |
| return NULL; |
| } |
| dev_hold(master); |
| rcu_read_unlock(); |
| #else |
| master = dev->master; |
| if (!master) { |
| return NULL; |
| } |
| dev_hold(master); |
| #endif |
| return master; |
| } |
| EXPORT_SYMBOL(ecm_interface_get_and_hold_dev_master); |
| |
| /* |
| * ecm_interface_dev_find_by_local_addr_ipv4() |
| * Return a hold to the device for the given local IP address. Returns NULL on failure. |
| */ |
| static struct net_device *ecm_interface_dev_find_by_local_addr_ipv4(ip_addr_t addr) |
| { |
| __be32 be_addr; |
| struct net_device *dev; |
| |
| ECM_IP_ADDR_TO_NIN4_ADDR(be_addr, addr); |
| dev = ip_dev_find(&init_net, be_addr); |
| return dev; |
| } |
| |
| #ifdef ECM_IPV6_ENABLE |
| /* |
| * ecm_interface_dev_find_by_local_addr_ipv6() |
| * Return a hold to the device for the given local IP address. Returns NULL on failure. |
| */ |
| static struct net_device *ecm_interface_dev_find_by_local_addr_ipv6(ip_addr_t addr) |
| { |
| struct in6_addr addr6; |
| struct net_device *dev; |
| |
| ECM_IP_ADDR_TO_NIN6_ADDR(addr6, addr); |
| dev = (struct net_device *)ipv6_dev_find(&init_net, &addr6, 1); |
| return dev; |
| } |
| #endif |
| |
| /* |
| * ecm_interface_dev_find_by_local_addr() |
| * Return the device on which the local address resides. |
| * |
| * Returns a hold to the device or NULL on failure. |
| */ |
| struct net_device *ecm_interface_dev_find_by_local_addr(ip_addr_t addr) |
| { |
| char __attribute__((unused)) addr_str[40]; |
| |
| DEBUG_ECM_IP_ADDR_TO_STRING(addr_str, addr); |
| DEBUG_TRACE("Locate dev for: %s\n", addr_str); |
| |
| if (ECM_IP_ADDR_IS_V4(addr)) { |
| return ecm_interface_dev_find_by_local_addr_ipv4(addr); |
| } |
| |
| #ifdef ECM_IPV6_ENABLE |
| return ecm_interface_dev_find_by_local_addr_ipv6(addr); |
| #else |
| return NULL; |
| #endif |
| } |
| EXPORT_SYMBOL(ecm_interface_dev_find_by_local_addr); |
| |
| /* |
| * ecm_interface_dev_find_by_addr() |
| * Return the net device on which the given IP address resides. Returns NULL on faiure. |
| * |
| * NOTE: The device may be the device upon which has a default gateway to reach the address. |
| * from_local_addr is true when the device was found by a local address search. |
| */ |
| struct net_device *ecm_interface_dev_find_by_addr(ip_addr_t addr, bool *from_local_addr) |
| { |
| char __attribute__((unused)) addr_str[40]; |
| struct ecm_interface_route ecm_rt; |
| struct net_device *dev; |
| struct dst_entry *dst; |
| |
| DEBUG_ECM_IP_ADDR_TO_STRING(addr_str, addr); |
| |
| /* |
| * Is the address a local IP? |
| */ |
| DEBUG_TRACE("find net device for address: %s\n", addr_str); |
| dev = ecm_interface_dev_find_by_local_addr(addr); |
| if (dev) { |
| *from_local_addr = true; |
| DEBUG_TRACE("addr: %s is local: %p (%s)\n", addr_str, dev, dev->name); |
| return dev; |
| } |
| |
| DEBUG_TRACE("addr: %s is not local\n", addr_str); |
| |
| /* |
| * Try a route to the address instead |
| * NOTE: This will locate a route entry in the route destination *cache*. |
| */ |
| if (!ecm_interface_find_route_by_addr(addr, &ecm_rt)) { |
| DEBUG_WARN("addr: %s - no dev locatable\n", addr_str); |
| return NULL; |
| } |
| |
| *from_local_addr = false; |
| dst = ecm_rt.dst; |
| dev = dst->dev; |
| dev_hold(dev); |
| ecm_interface_route_release(&ecm_rt); |
| DEBUG_TRACE("dest_addr: %s uses dev: %p(%s)\n", addr_str, dev, dev->name); |
| return dev; |
| } |
| EXPORT_SYMBOL(ecm_interface_dev_find_by_addr); |
| |
| #ifdef ECM_IPV6_ENABLE |
| /* |
| * ecm_interface_mac_addr_get_ipv6() |
| * Return mac for an IPv6 address |
| * |
| * GGG TODO Need to make sure this also works for local IP addresses too. |
| */ |
| static bool ecm_interface_mac_addr_get_ipv6(ip_addr_t addr, uint8_t *mac_addr, bool *on_link, ip_addr_t gw_addr) |
| { |
| struct in6_addr daddr; |
| struct ecm_interface_route ecm_rt; |
| struct neighbour *neigh; |
| struct rt6_info *rt; |
| struct dst_entry *dst; |
| |
| /* |
| * Get the MAC address that corresponds to IP address given. |
| * We look up the rt6_info entries and, from its neighbour structure, obtain the hardware address. |
| * This means we will also work if the neighbours are routers too. |
| */ |
| ECM_IP_ADDR_TO_NIN6_ADDR(daddr, addr); |
| if (!ecm_interface_find_route_by_addr(addr, &ecm_rt)) { |
| *on_link = false; |
| return false; |
| } |
| DEBUG_ASSERT(!ecm_rt.v4_route, "Did not locate a v6 route!\n"); |
| |
| /* |
| * Is this destination on link or off-link via a gateway? |
| */ |
| rt = ecm_rt.rt.rtv6; |
| if (!ECM_IP_ADDR_MATCH(rt->rt6i_dst.addr.in6_u.u6_addr32, rt->rt6i_gateway.in6_u.u6_addr32) || (rt->rt6i_flags & RTF_GATEWAY)) { |
| *on_link = false; |
| ECM_NIN6_ADDR_TO_IP_ADDR(gw_addr, rt->rt6i_gateway) |
| } else { |
| *on_link = true; |
| } |
| |
| rcu_read_lock(); |
| dst = ecm_rt.dst; |
| #if (LINUX_VERSION_CODE <= KERNEL_VERSION(3,6,0)) |
| neigh = dst_get_neighbour_noref(dst); |
| if (neigh) { |
| neigh_hold(neigh); |
| } |
| #else |
| neigh = dst_neigh_lookup(dst, &daddr); |
| #endif |
| if (!neigh) { |
| neigh = neigh_lookup(&nd_tbl, &daddr, dst->dev); |
| } |
| |
| if (!neigh) { |
| rcu_read_unlock(); |
| ecm_interface_route_release(&ecm_rt); |
| DEBUG_WARN("No neigh reference\n"); |
| return false; |
| } |
| if (!(neigh->nud_state & NUD_VALID)) { |
| rcu_read_unlock(); |
| neigh_release(neigh); |
| ecm_interface_route_release(&ecm_rt); |
| DEBUG_WARN("NUD invalid\n"); |
| return false; |
| } |
| if (!neigh->dev) { |
| rcu_read_unlock(); |
| neigh_release(neigh); |
| ecm_interface_route_release(&ecm_rt); |
| DEBUG_WARN("Neigh dev invalid\n"); |
| return false; |
| } |
| |
| /* |
| * If neigh->dev is a loopback then addr is a local address in which case we take the MAC from given device |
| */ |
| if (neigh->dev->flags & IFF_LOOPBACK) { |
| // GGG TODO Create an equivalent logic to that for ipv4, maybe need to create an ip6_dev_find()? |
| DEBUG_TRACE("local address " ECM_IP_ADDR_OCTAL_FMT " (found loopback)\n", ECM_IP_ADDR_TO_OCTAL(addr)); |
| memset(mac_addr, 0, 6); |
| } else { |
| memcpy(mac_addr, neigh->ha, 6); |
| } |
| rcu_read_unlock(); |
| neigh_release(neigh); |
| ecm_interface_route_release(&ecm_rt); |
| |
| DEBUG_TRACE(ECM_IP_ADDR_OCTAL_FMT " maps to %pM\n", ECM_IP_ADDR_TO_OCTAL(addr), mac_addr); |
| return true; |
| } |
| #endif |
| |
| /* |
| * ecm_interface_mac_addr_get_ipv4() |
| * Return mac for an IPv4 address |
| */ |
| static bool ecm_interface_mac_addr_get_ipv4(ip_addr_t addr, uint8_t *mac_addr, bool *on_link, ip_addr_t gw_addr) |
| { |
| struct neighbour *neigh; |
| struct ecm_interface_route ecm_rt; |
| struct rtable *rt; |
| struct dst_entry *dst; |
| __be32 ipv4_addr; |
| |
| /* |
| * Get the MAC address that corresponds to IP address given. |
| * We look up the rtable entries and, from its neighbour structure, obtain the hardware address. |
| * This means we will also work if the neighbours are routers too. |
| * We also locate the MAC if the address is a local host address. |
| */ |
| ECM_IP_ADDR_TO_NIN4_ADDR(ipv4_addr, addr); |
| if (!ecm_interface_find_route_by_addr(addr, &ecm_rt)) { |
| *on_link = false; |
| return false; |
| } |
| DEBUG_ASSERT(ecm_rt.v4_route, "Did not locate a v4 route!\n"); |
| DEBUG_TRACE("Found route\n"); |
| |
| /* |
| * Is this destination on link or off-link via a gateway? |
| */ |
| rt = ecm_rt.rt.rtv4; |
| #if (LINUX_VERSION_CODE <= KERNEL_VERSION(3,6,0)) |
| if ((rt->rt_dst != rt->rt_gateway) || (rt->rt_flags & RTF_GATEWAY)) { |
| #else |
| if (rt->rt_uses_gateway || (rt->rt_flags & RTF_GATEWAY)) { |
| #endif |
| *on_link = false; |
| ECM_NIN4_ADDR_TO_IP_ADDR(gw_addr, rt->rt_gateway) |
| } else { |
| *on_link = true; |
| } |
| |
| /* |
| * Get the neighbour entry for the address |
| */ |
| rcu_read_lock(); |
| dst = ecm_rt.dst; |
| #if (LINUX_VERSION_CODE <= KERNEL_VERSION(3,6,0)) |
| neigh = dst_get_neighbour_noref(dst); |
| if (neigh) { |
| neigh_hold(neigh); |
| } |
| #else |
| neigh = dst_neigh_lookup(dst, &ipv4_addr); |
| #endif |
| if (!neigh) { |
| neigh = neigh_lookup(&arp_tbl, &ipv4_addr, dst->dev); |
| } |
| if (!neigh) { |
| rcu_read_unlock(); |
| ecm_interface_route_release(&ecm_rt); |
| DEBUG_WARN("no neigh\n"); |
| return false; |
| } |
| if (!(neigh->nud_state & NUD_VALID)) { |
| rcu_read_unlock(); |
| neigh_release(neigh); |
| ecm_interface_route_release(&ecm_rt); |
| DEBUG_WARN("neigh nud state is not valid\n"); |
| return false; |
| } |
| if (!neigh->dev) { |
| rcu_read_unlock(); |
| neigh_release(neigh); |
| ecm_interface_route_release(&ecm_rt); |
| DEBUG_WARN("neigh has no device\n"); |
| return false; |
| } |
| |
| /* |
| * If the device is loopback this will be because the address is a local address |
| * In this case locate the device that has this local address and get its mac. |
| */ |
| if (neigh->dev->type == ARPHRD_LOOPBACK) { |
| struct net_device *dev; |
| |
| DEBUG_TRACE("%pI4 finds loopback device, dev: %p (%s)\n", &ipv4_addr, neigh->dev, neigh->dev->name); |
| rcu_read_unlock(); |
| neigh_release(neigh); |
| ecm_interface_route_release(&ecm_rt); |
| |
| /* |
| * Lookup the device that has this IP address assigned |
| */ |
| dev = ip_dev_find(&init_net, ipv4_addr); |
| if (!dev) { |
| DEBUG_WARN("Unable to locate dev for: %pI4\n", &ipv4_addr); |
| return false; |
| } |
| memcpy(mac_addr, dev->dev_addr, (size_t)dev->addr_len); |
| DEBUG_TRACE("is local addr: %pI4, mac: %pM, dev ifindex: %d, dev: %p (%s), dev_type: %d\n", |
| &ipv4_addr, mac_addr, dev->ifindex, dev, dev->name, dev->type); |
| dev_put(dev); |
| return true; |
| } |
| |
| if (!(neigh->dev->flags & IFF_NOARP)) { |
| memcpy(mac_addr, neigh->ha, (size_t)neigh->dev->addr_len); |
| } else { |
| DEBUG_TRACE("non-arp device: %p (%s, type: %d) to reach %pI4\n", neigh->dev, neigh->dev->name, neigh->dev->type, &ipv4_addr); |
| memset(mac_addr, 0, 6); |
| } |
| DEBUG_TRACE("addr: %pI4, mac: %pM, iif: %d, neigh dev ifindex: %d, dev: %p (%s), dev_type: %d\n", |
| &ipv4_addr, mac_addr, rt->rt_iif, neigh->dev->ifindex, neigh->dev, neigh->dev->name, neigh->dev->type); |
| |
| rcu_read_unlock(); |
| neigh_release(neigh); |
| ecm_interface_route_release(&ecm_rt); |
| return true; |
| } |
| |
| /* |
| * ecm_interface_mac_addr_get() |
| * Return the mac address for the given IP address. Returns false on failure. |
| * |
| * dev is the device on which the addr was sent/received. If addr is a local address then mac shall be the given dev mac. |
| * |
| * GGG TODO Make this function work for IPv6!!!!!!!!!!!!!! |
| */ |
| bool ecm_interface_mac_addr_get(ip_addr_t addr, uint8_t *mac_addr, bool *on_link, ip_addr_t gw_addr) |
| { |
| if (ECM_IP_ADDR_IS_V4(addr)) { |
| return ecm_interface_mac_addr_get_ipv4(addr, mac_addr, on_link, gw_addr); |
| } |
| |
| #ifdef ECM_IPV6_ENABLE |
| return ecm_interface_mac_addr_get_ipv6(addr, mac_addr, on_link, gw_addr); |
| #else |
| return false; |
| #endif |
| } |
| EXPORT_SYMBOL(ecm_interface_mac_addr_get); |
| |
| /* |
| * ecm_interface_addr_find_route_by_addr_ipv4() |
| * Return the route for the given IP address. Returns NULL on failure. |
| */ |
| static bool ecm_interface_find_route_by_addr_ipv4(ip_addr_t addr, struct ecm_interface_route *ecm_rt) |
| { |
| __be32 be_addr; |
| |
| /* |
| * Get a route to the given IP address, this will allow us to also find the interface |
| * it is using to communicate with that IP address. |
| */ |
| ECM_IP_ADDR_TO_NIN4_ADDR(be_addr, addr); |
| ecm_rt->rt.rtv4 = ip_route_output(&init_net, be_addr, 0, 0, 0); |
| if (IS_ERR(ecm_rt->rt.rtv4)) { |
| DEBUG_TRACE("No output route to: %pI4n\n", &be_addr); |
| return false; |
| } |
| DEBUG_TRACE("Output route to: %pI4n is: %p\n", &be_addr, ecm_rt->rt.rtv4); |
| ecm_rt->dst = (struct dst_entry *)ecm_rt->rt.rtv4; |
| ecm_rt->v4_route = true; |
| return true; |
| } |
| |
| #ifdef ECM_IPV6_ENABLE |
| /* |
| * ecm_interface_addr_find_route_by_addr_ipv6() |
| * Return the route for the given IP address. Returns NULL on failure. |
| */ |
| static bool ecm_interface_find_route_by_addr_ipv6(ip_addr_t addr, struct ecm_interface_route *ecm_rt) |
| { |
| struct in6_addr naddr; |
| |
| ECM_IP_ADDR_TO_NIN6_ADDR(naddr, addr); |
| |
| /* |
| * Get a route to the given IP address, this will allow us to also find the interface |
| * it is using to communicate with that IP address. |
| */ |
| ecm_rt->rt.rtv6 = rt6_lookup(&init_net, &naddr, NULL, 0, 0); |
| if (!ecm_rt->rt.rtv6) { |
| DEBUG_TRACE("No output route to: " ECM_IP_ADDR_OCTAL_FMT "\n", ECM_IP_ADDR_TO_OCTAL(addr)); |
| return NULL; |
| } |
| DEBUG_TRACE("Output route to: " ECM_IP_ADDR_OCTAL_FMT " is: %p\n", ECM_IP_ADDR_TO_OCTAL(addr), ecm_rt->rt.rtv6); |
| ecm_rt->dst = (struct dst_entry *)ecm_rt->rt.rtv6; |
| ecm_rt->v4_route = false; |
| return true; |
| } |
| #endif |
| |
| /* |
| * ecm_interface_addr_find_route_by_addr() |
| * Return the route (in the given parameter) for the given IP address. Returns false on failure. |
| * |
| * Route is the device on which the addr is reachable, which may be loopback for local addresses. |
| * |
| * Returns true if the route was able to be located. The route must be released using ecm_interface_route_release(). |
| */ |
| bool ecm_interface_find_route_by_addr(ip_addr_t addr, struct ecm_interface_route *ecm_rt) |
| { |
| char __attribute__((unused)) addr_str[40]; |
| |
| DEBUG_ECM_IP_ADDR_TO_STRING(addr_str, addr); |
| DEBUG_TRACE("Locate route to: %s\n", addr_str); |
| |
| if (ECM_IP_ADDR_IS_V4(addr)) { |
| return ecm_interface_find_route_by_addr_ipv4(addr, ecm_rt); |
| } |
| |
| #ifdef ECM_IPV6_ENABLE |
| return ecm_interface_find_route_by_addr_ipv6(addr, ecm_rt); |
| #else |
| return false; |
| #endif |
| } |
| EXPORT_SYMBOL(ecm_interface_find_route_by_addr); |
| |
| /* |
| * ecm_interface_route_release() |
| * Release an ecm route |
| */ |
| void ecm_interface_route_release(struct ecm_interface_route *rt) |
| { |
| dst_release(rt->dst); |
| } |
| EXPORT_SYMBOL(ecm_interface_route_release); |
| |
| #ifdef ECM_INTERFACE_PPP_ENABLE |
| /* |
| * ecm_interface_skip_l2tp_pptp() |
| * skip l2tp/pptp tunnel encapsulated traffic |
| * |
| * ECM does not handle L2TP or PPTP encapsulated packets, |
| * this function detects packets of that type so they can be skipped over to improve their throughput. |
| */ |
| bool ecm_interface_skip_l2tp_pptp(struct sk_buff *skb, const struct net_device *out) |
| { |
| struct ppp_channel *ppp_chan[1]; |
| int px_proto; |
| |
| /* |
| * skip first pass of l2tp/pptp tunnel encapsulated traffic |
| */ |
| if (out->type == ARPHRD_PPP) { |
| if (ppp_hold_channels((struct net_device *)out, ppp_chan, 1) == 1) { |
| px_proto = ppp_channel_get_protocol(ppp_chan[0]); |
| ppp_release_channels(ppp_chan, 1); |
| return ((px_proto == PX_PROTO_OL2TP) || (px_proto == PX_PROTO_PPTP)); |
| } |
| } |
| |
| /* |
| * skip second pass of l2tp tunnel encapsulated traffic |
| */ |
| if (!skb->sk) { |
| return false; |
| } |
| |
| if (skb->sk->sk_protocol != IPPROTO_UDP) { |
| return false; |
| } |
| |
| if (unlikely(udp_sk(skb->sk)->encap_type == UDP_ENCAP_L2TPINUDP)) { |
| return true; |
| } |
| |
| return false; |
| } |
| #endif |
| |
| #ifdef ECM_INTERFACE_VLAN_ENABLE |
| /* |
| * ecm_interface_vlan_interface_establish() |
| * Returns a reference to a iface of the VLAN type, possibly creating one if necessary. |
| * Returns NULL on failure or a reference to interface. |
| */ |
| static struct ecm_db_iface_instance *ecm_interface_vlan_interface_establish(struct ecm_db_interface_info_vlan *type_info, |
| char *dev_name, int32_t dev_interface_num, int32_t nss_interface_num, int32_t mtu) |
| { |
| struct ecm_db_iface_instance *nii; |
| struct ecm_db_iface_instance *ii; |
| |
| DEBUG_INFO("Establish VLAN iface: %s with address: %pM, vlan tag: %u, vlan_tpid: %x MTU: %d, if num: %d, nss if id: %d\n", |
| dev_name, type_info->address, type_info->vlan_tag, type_info->vlan_tpid, mtu, dev_interface_num, nss_interface_num); |
| |
| /* |
| * Locate the iface |
| */ |
| ii = ecm_db_iface_find_and_ref_vlan(type_info->address, type_info->vlan_tag, type_info->vlan_tpid); |
| if (ii) { |
| DEBUG_TRACE("%p: iface established\n", ii); |
| return ii; |
| } |
| |
| /* |
| * No iface - create one |
| */ |
| nii = ecm_db_iface_alloc(); |
| if (!nii) { |
| DEBUG_WARN("Failed to establish iface\n"); |
| return NULL; |
| } |
| |
| /* |
| * Add iface into the database, atomically to avoid races creating the same thing |
| */ |
| spin_lock_bh(&ecm_interface_lock); |
| ii = ecm_db_iface_find_and_ref_vlan(type_info->address, type_info->vlan_tag, type_info->vlan_tpid); |
| if (ii) { |
| spin_unlock_bh(&ecm_interface_lock); |
| ecm_db_iface_deref(nii); |
| return ii; |
| } |
| ecm_db_iface_add_vlan(nii, type_info->address, type_info->vlan_tag, type_info->vlan_tpid, dev_name, |
| mtu, dev_interface_num, nss_interface_num, NULL, nii); |
| spin_unlock_bh(&ecm_interface_lock); |
| |
| DEBUG_TRACE("%p: vlan iface established\n", nii); |
| return nii; |
| } |
| #endif |
| |
| /* |
| * ecm_interface_bridge_interface_establish() |
| * Returns a reference to a iface of the BRIDGE type, possibly creating one if necessary. |
| * Returns NULL on failure or a reference to interface. |
| */ |
| static struct ecm_db_iface_instance *ecm_interface_bridge_interface_establish(struct ecm_db_interface_info_bridge *type_info, |
| char *dev_name, int32_t dev_interface_num, int32_t nss_interface_num, int32_t mtu) |
| { |
| struct ecm_db_iface_instance *nii; |
| struct ecm_db_iface_instance *ii; |
| |
| DEBUG_INFO("Establish BRIDGE iface: %s with address: %pM, MTU: %d, if num: %d, nss if id: %d\n", |
| dev_name, type_info->address, mtu, dev_interface_num, nss_interface_num); |
| |
| /* |
| * Locate the iface |
| */ |
| ii = ecm_db_iface_find_and_ref_bridge(type_info->address); |
| if (ii) { |
| DEBUG_TRACE("%p: iface established\n", ii); |
| return ii; |
| } |
| |
| /* |
| * No iface - create one |
| */ |
| nii = ecm_db_iface_alloc(); |
| if (!nii) { |
| DEBUG_WARN("Failed to establish iface\n"); |
| return NULL; |
| } |
| |
| /* |
| * Add iface into the database, atomically to avoid races creating the same thing |
| */ |
| spin_lock_bh(&ecm_interface_lock); |
| ii = ecm_db_iface_find_and_ref_bridge(type_info->address); |
| if (ii) { |
| spin_unlock_bh(&ecm_interface_lock); |
| ecm_db_iface_deref(nii); |
| return ii; |
| } |
| ecm_db_iface_add_bridge(nii, type_info->address, dev_name, |
| mtu, dev_interface_num, nss_interface_num, NULL, nii); |
| spin_unlock_bh(&ecm_interface_lock); |
| |
| DEBUG_TRACE("%p: bridge iface established\n", nii); |
| return nii; |
| } |
| |
| #ifdef ECM_INTERFACE_BOND_ENABLE |
| /* |
| * ecm_interface_lag_interface_establish() |
| * Returns a reference to a iface of the LAG type, possibly creating one if necessary. |
| * Returns NULL on failure or a reference to interface. |
| */ |
| static struct ecm_db_iface_instance *ecm_interface_lag_interface_establish(struct ecm_db_interface_info_lag *type_info, |
| char *dev_name, int32_t dev_interface_num, int32_t nss_interface_num, int32_t mtu) |
| { |
| struct ecm_db_iface_instance *nii; |
| struct ecm_db_iface_instance *ii; |
| |
| DEBUG_INFO("Establish LAG iface: %s with address: %pM, MTU: %d, if num: %d, nss if id: %d\n", |
| dev_name, type_info->address, mtu, dev_interface_num, nss_interface_num); |
| |
| /* |
| * Locate the iface |
| */ |
| ii = ecm_db_iface_find_and_ref_lag(type_info->address); |
| if (ii) { |
| DEBUG_TRACE("%p: iface established\n", ii); |
| return ii; |
| } |
| |
| /* |
| * No iface - create one |
| */ |
| nii = ecm_db_iface_alloc(); |
| if (!nii) { |
| DEBUG_WARN("Failed to establish iface\n"); |
| return NULL; |
| } |
| |
| /* |
| * Add iface into the database, atomically to avoid races creating the same thing |
| */ |
| spin_lock_bh(&ecm_interface_lock); |
| ii = ecm_db_iface_find_and_ref_lag(type_info->address); |
| if (ii) { |
| spin_unlock_bh(&ecm_interface_lock); |
| ecm_db_iface_deref(nii); |
| return ii; |
| } |
| ecm_db_iface_add_lag(nii, type_info->address, dev_name, |
| mtu, dev_interface_num, nss_interface_num, NULL, nii); |
| spin_unlock_bh(&ecm_interface_lock); |
| |
| DEBUG_TRACE("%p: lag iface established\n", nii); |
| return nii; |
| } |
| #endif |
| |
| /* |
| * ecm_interface_ethernet_interface_establish() |
| * Returns a reference to a iface of the ETHERNET type, possibly creating one if necessary. |
| * Returns NULL on failure or a reference to interface. |
| */ |
| static struct ecm_db_iface_instance *ecm_interface_ethernet_interface_establish(struct ecm_db_interface_info_ethernet *type_info, |
| char *dev_name, int32_t dev_interface_num, int32_t nss_interface_num, int32_t mtu) |
| { |
| struct ecm_db_iface_instance *nii; |
| struct ecm_db_iface_instance *ii; |
| |
| DEBUG_INFO("Establish ETHERNET iface: %s with address: %pM, MTU: %d, if num: %d, nss if id: %d\n", |
| dev_name, type_info->address, mtu, dev_interface_num, nss_interface_num); |
| |
| /* |
| * Locate the iface |
| */ |
| ii = ecm_db_iface_ifidx_find_and_ref_ethernet(type_info->address, dev_interface_num); |
| |
| if (ii) { |
| DEBUG_TRACE("%p: iface established\n", ii); |
| return ii; |
| } |
| |
| /* |
| * No iface - create one |
| */ |
| nii = ecm_db_iface_alloc(); |
| if (!nii) { |
| DEBUG_WARN("Failed to establish iface\n"); |
| return NULL; |
| } |
| |
| /* |
| * Add iface into the database, atomically to avoid races creating the same thing |
| */ |
| spin_lock_bh(&ecm_interface_lock); |
| ii = ecm_db_iface_ifidx_find_and_ref_ethernet(type_info->address, dev_interface_num); |
| if (ii) { |
| spin_unlock_bh(&ecm_interface_lock); |
| ecm_db_iface_deref(nii); |
| return ii; |
| } |
| ecm_db_iface_add_ethernet(nii, type_info->address, dev_name, |
| mtu, dev_interface_num, nss_interface_num, NULL, nii); |
| spin_unlock_bh(&ecm_interface_lock); |
| |
| DEBUG_TRACE("%p: ethernet iface established\n", nii); |
| return nii; |
| } |
| |
| #ifdef ECM_INTERFACE_PPP_ENABLE |
| /* |
| * ecm_interface_pppoe_interface_establish() |
| * Returns a reference to a iface of the PPPoE type, possibly creating one if necessary. |
| * Returns NULL on failure or a reference to interface. |
| */ |
| static struct ecm_db_iface_instance *ecm_interface_pppoe_interface_establish(struct ecm_db_interface_info_pppoe *type_info, |
| char *dev_name, int32_t dev_interface_num, int32_t nss_interface_num, int32_t mtu) |
| { |
| struct ecm_db_iface_instance *nii; |
| struct ecm_db_iface_instance *ii; |
| |
| DEBUG_INFO("Establish PPPoE iface: %s with session id: %u, remote mac: %pM, MTU: %d, if num: %d, nss if id: %d\n", |
| dev_name, type_info->pppoe_session_id, type_info->remote_mac, mtu, dev_interface_num, nss_interface_num); |
| |
| /* |
| * Locate the iface |
| */ |
| ii = ecm_db_iface_find_and_ref_pppoe(type_info->pppoe_session_id, type_info->remote_mac); |
| if (ii) { |
| DEBUG_TRACE("%p: iface established\n", ii); |
| return ii; |
| } |
| |
| /* |
| * No iface - create one |
| */ |
| nii = ecm_db_iface_alloc(); |
| if (!nii) { |
| DEBUG_WARN("Failed to establish iface\n"); |
| return NULL; |
| } |
| |
| /* |
| * Add iface into the database, atomically to avoid races creating the same thing |
| */ |
| spin_lock_bh(&ecm_interface_lock); |
| ii = ecm_db_iface_find_and_ref_pppoe(type_info->pppoe_session_id, type_info->remote_mac); |
| if (ii) { |
| spin_unlock_bh(&ecm_interface_lock); |
| ecm_db_iface_deref(nii); |
| return ii; |
| } |
| ecm_db_iface_add_pppoe(nii, type_info->pppoe_session_id, type_info->remote_mac, dev_name, |
| mtu, dev_interface_num, nss_interface_num, NULL, nii); |
| spin_unlock_bh(&ecm_interface_lock); |
| |
| DEBUG_TRACE("%p: pppoe iface established\n", nii); |
| return nii; |
| } |
| #endif |
| |
| /* |
| * ecm_interface_unknown_interface_establish() |
| * Returns a reference to a iface of the UNKNOWN type, possibly creating one if necessary. |
| * Returns NULL on failure or a reference to interface. |
| */ |
| static struct ecm_db_iface_instance *ecm_interface_unknown_interface_establish(struct ecm_db_interface_info_unknown *type_info, |
| char *dev_name, int32_t dev_interface_num, int32_t nss_interface_num, int32_t mtu) |
| { |
| struct ecm_db_iface_instance *nii; |
| struct ecm_db_iface_instance *ii; |
| |
| DEBUG_INFO("Establish UNKNOWN iface: %s with os_specific_ident: %u, MTU: %d, if num: %d, nss if id: %d\n", |
| dev_name, type_info->os_specific_ident, mtu, dev_interface_num, nss_interface_num); |
| |
| /* |
| * Locate the iface |
| */ |
| ii = ecm_db_iface_find_and_ref_unknown(type_info->os_specific_ident); |
| if (ii) { |
| DEBUG_TRACE("%p: iface established\n", ii); |
| return ii; |
| } |
| |
| /* |
| * No iface - create one |
| */ |
| nii = ecm_db_iface_alloc(); |
| if (!nii) { |
| DEBUG_WARN("Failed to establish iface\n"); |
| return NULL; |
| } |
| |
| /* |
| * Add iface into the database, atomically to avoid races creating the same thing |
| */ |
| spin_lock_bh(&ecm_interface_lock); |
| ii = ecm_db_iface_find_and_ref_unknown(type_info->os_specific_ident); |
| if (ii) { |
| spin_unlock_bh(&ecm_interface_lock); |
| ecm_db_iface_deref(nii); |
| return ii; |
| } |
| ecm_db_iface_add_unknown(nii, type_info->os_specific_ident, dev_name, |
| mtu, dev_interface_num, nss_interface_num, NULL, nii); |
| spin_unlock_bh(&ecm_interface_lock); |
| |
| DEBUG_TRACE("%p: unknown iface established\n", nii); |
| return nii; |
| } |
| |
| /* |
| * ecm_interface_loopback_interface_establish() |
| * Returns a reference to a iface of the LOOPBACK type, possibly creating one if necessary. |
| * Returns NULL on failure or a reference to interface. |
| */ |
| static struct ecm_db_iface_instance *ecm_interface_loopback_interface_establish(struct ecm_db_interface_info_loopback *type_info, |
| char *dev_name, int32_t dev_interface_num, int32_t nss_interface_num, int32_t mtu) |
| { |
| struct ecm_db_iface_instance *nii; |
| struct ecm_db_iface_instance *ii; |
| |
| DEBUG_INFO("Establish LOOPBACK iface: %s with os_specific_ident: %u, MTU: %d, if num: %d, nss if id: %d\n", |
| dev_name, type_info->os_specific_ident, mtu, dev_interface_num, nss_interface_num); |
| |
| /* |
| * Locate the iface |
| */ |
| ii = ecm_db_iface_find_and_ref_loopback(type_info->os_specific_ident); |
| if (ii) { |
| DEBUG_TRACE("%p: iface established\n", ii); |
| return ii; |
| } |
| |
| /* |
| * No iface - create one |
| */ |
| nii = ecm_db_iface_alloc(); |
| if (!nii) { |
| DEBUG_WARN("Failed to establish iface\n"); |
| return NULL; |
| } |
| |
| /* |
| * Add iface into the database, atomically to avoid races creating the same thing |
| */ |
| spin_lock_bh(&ecm_interface_lock); |
| ii = ecm_db_iface_find_and_ref_loopback(type_info->os_specific_ident); |
| if (ii) { |
| spin_unlock_bh(&ecm_interface_lock); |
| ecm_db_iface_deref(nii); |
| return ii; |
| } |
| ecm_db_iface_add_loopback(nii, type_info->os_specific_ident, dev_name, |
| mtu, dev_interface_num, nss_interface_num, NULL, nii); |
| spin_unlock_bh(&ecm_interface_lock); |
| |
| DEBUG_TRACE("%p: loopback iface established\n", nii); |
| return nii; |
| } |
| |
| #ifdef ECM_INTERFACE_IPSEC_ENABLE |
| /* |
| * ecm_interface_ipsec_tunnel_interface_establish() |
| * Returns a reference to a iface of the IPSEC_TUNNEL type, possibly creating one if necessary. |
| * Returns NULL on failure or a reference to interface. |
| * |
| * NOTE: GGG TODO THIS NEEDS TO TAKE A PROPER APPROACH TO IPSEC TUNNELS USING ENDPOINT ADDRESSING AS THE TYPE INFO KEYS |
| */ |
| static struct ecm_db_iface_instance *ecm_interface_ipsec_tunnel_interface_establish(struct ecm_db_interface_info_ipsec_tunnel *type_info, |
| char *dev_name, int32_t dev_interface_num, int32_t nss_interface_num, int32_t mtu) |
| { |
| struct ecm_db_iface_instance *nii; |
| struct ecm_db_iface_instance *ii; |
| |
| DEBUG_INFO("Establish IPSEC_TUNNEL iface: %s with os_specific_ident: %u, MTU: %d, if num: %d, nss if id: %d\n", |
| dev_name, type_info->os_specific_ident, mtu, dev_interface_num, nss_interface_num); |
| |
| /* |
| * Locate the iface |
| */ |
| ii = ecm_db_iface_find_and_ref_ipsec_tunnel(type_info->os_specific_ident); |
| if (ii) { |
| DEBUG_TRACE("%p: iface established\n", ii); |
| return ii; |
| } |
| |
| /* |
| * No iface - create one |
| */ |
| nii = ecm_db_iface_alloc(); |
| if (!nii) { |
| DEBUG_WARN("Failed to establish iface\n"); |
| return NULL; |
| } |
| |
| /* |
| * Add iface into the database, atomically to avoid races creating the same thing |
| */ |
| spin_lock_bh(&ecm_interface_lock); |
| ii = ecm_db_iface_find_and_ref_ipsec_tunnel(type_info->os_specific_ident); |
| if (ii) { |
| spin_unlock_bh(&ecm_interface_lock); |
| ecm_db_iface_deref(nii); |
| return ii; |
| } |
| ecm_db_iface_add_ipsec_tunnel(nii, type_info->os_specific_ident, dev_name, |
| mtu, dev_interface_num, nss_interface_num, NULL, nii); |
| spin_unlock_bh(&ecm_interface_lock); |
| |
| DEBUG_TRACE("%p: ipsec_tunnel iface established\n", nii); |
| return nii; |
| } |
| #endif |
| |
| #ifdef ECM_INTERFACE_SIT_ENABLE |
| #ifdef CONFIG_IPV6_SIT_6RD |
| /* |
| * ecm_interface_sit_interface_establish() |
| * Returns a reference to a iface of the SIT type, possibly creating one if necessary. |
| * Returns NULL on failure or a reference to interface. |
| */ |
| static struct ecm_db_iface_instance *ecm_interface_sit_interface_establish(struct ecm_db_interface_info_sit *type_info, |
| char *dev_name, int32_t dev_interface_num, int32_t nss_interface_num, int32_t mtu) |
| { |
| struct ecm_db_iface_instance *nii; |
| struct ecm_db_iface_instance *ii; |
| |
| DEBUG_INFO("Establish SIT iface: %s with saddr: " ECM_IP_ADDR_OCTAL_FMT ", daddr: " ECM_IP_ADDR_OCTAL_FMT ", MTU: %d, if num: %d, nss if id: %d\n", |
| dev_name, ECM_IP_ADDR_TO_OCTAL(type_info->saddr), ECM_IP_ADDR_TO_OCTAL(type_info->daddr), mtu, dev_interface_num, nss_interface_num); |
| |
| /* |
| * Locate the iface |
| */ |
| ii = ecm_db_iface_find_and_ref_sit(type_info->saddr, type_info->daddr); |
| if (ii) { |
| DEBUG_TRACE("%p: iface established\n", ii); |
| return ii; |
| } |
| |
| /* |
| * No iface - create one |
| */ |
| nii = ecm_db_iface_alloc(); |
| if (!nii) { |
| DEBUG_WARN("Failed to establish iface\n"); |
| return NULL; |
| } |
| |
| /* |
| * Add iface into the database, atomically to avoid races creating the same thing |
| */ |
| spin_lock_bh(&ecm_interface_lock); |
| ii = ecm_db_iface_find_and_ref_sit(type_info->saddr, type_info->daddr); |
| if (ii) { |
| spin_unlock_bh(&ecm_interface_lock); |
| ecm_db_iface_deref(nii); |
| return ii; |
| } |
| ecm_db_iface_add_sit(nii, type_info, dev_name, mtu, dev_interface_num, |
| nss_interface_num, NULL, nii); |
| spin_unlock_bh(&ecm_interface_lock); |
| |
| DEBUG_TRACE("%p: sit iface established\n", nii); |
| return nii; |
| } |
| #endif |
| #endif |
| |
| #ifdef ECM_INTERFACE_TUNIPIP6_ENABLE |
| #ifdef ECM_IPV6_ENABLE |
| /* |
| * ecm_interface_tunipip6_interface_establish() |
| * Returns a reference to a iface of the TUNIPIP6 type, possibly creating one if necessary. |
| * Returns NULL on failure or a reference to interface. |
| */ |
| static struct ecm_db_iface_instance *ecm_interface_tunipip6_interface_establish(struct ecm_db_interface_info_tunipip6 *type_info, |
| char *dev_name, int32_t dev_interface_num, int32_t nss_interface_num, int32_t mtu) |
| { |
| struct ecm_db_iface_instance *nii; |
| struct ecm_db_iface_instance *ii; |
| |
| DEBUG_INFO("Establish TUNIPIP6 iface: %s with saddr: " ECM_IP_ADDR_OCTAL_FMT ", daddr: " ECM_IP_ADDR_OCTAL_FMT ", MTU: %d, if num: %d, nss if id: %d\n", |
| dev_name, ECM_IP_ADDR_TO_OCTAL(type_info->saddr), ECM_IP_ADDR_TO_OCTAL(type_info->daddr), mtu, dev_interface_num, nss_interface_num); |
| |
| /* |
| * Locate the iface |
| */ |
| ii = ecm_db_iface_find_and_ref_tunipip6(type_info->saddr, type_info->daddr); |
| if (ii) { |
| DEBUG_TRACE("%p: iface established\n", ii); |
| return ii; |
| } |
| |
| /* |
| * No iface - create one |
| */ |
| nii = ecm_db_iface_alloc(); |
| if (!nii) { |
| DEBUG_WARN("Failed to establish iface\n"); |
| return NULL; |
| } |
| |
| /* |
| * Add iface into the database, atomically to avoid races creating the same thing |
| */ |
| spin_lock_bh(&ecm_interface_lock); |
| ii = ecm_db_iface_find_and_ref_tunipip6(type_info->saddr, type_info->daddr); |
| if (ii) { |
| spin_unlock_bh(&ecm_interface_lock); |
| ecm_db_iface_deref(nii); |
| return ii; |
| } |
| ecm_db_iface_add_tunipip6(nii, type_info, dev_name, mtu, dev_interface_num, |
| nss_interface_num, NULL, nii); |
| spin_unlock_bh(&ecm_interface_lock); |
| |
| DEBUG_TRACE("%p: tunipip6 iface established\n", nii); |
| return nii; |
| } |
| #endif |
| #endif |
| |
| /* |
| * ecm_interface_establish_and_ref() |
| * Establish an interface instance for the given interface detail. |
| */ |
| struct ecm_db_iface_instance *ecm_interface_establish_and_ref(struct net_device *dev) |
| { |
| int32_t dev_interface_num; |
| char *dev_name; |
| int32_t dev_type; |
| int32_t dev_mtu; |
| int32_t nss_interface_num; |
| struct ecm_db_iface_instance *ii; |
| union { |
| struct ecm_db_interface_info_ethernet ethernet; /* type == ECM_DB_IFACE_TYPE_ETHERNET */ |
| #ifdef ECM_INTERFACE_VLAN_ENABLE |
| struct ecm_db_interface_info_vlan vlan; /* type == ECM_DB_IFACE_TYPE_VLAN */ |
| #endif |
| #ifdef ECM_INTERFACE_BOND_ENABLE |
| struct ecm_db_interface_info_lag lag; /* type == ECM_DB_IFACE_TYPE_LAG */ |
| #endif |
| struct ecm_db_interface_info_bridge bridge; /* type == ECM_DB_IFACE_TYPE_BRIDGE */ |
| #ifdef ECM_INTERFACE_PPP_ENABLE |
| struct ecm_db_interface_info_pppoe pppoe; /* type == ECM_DB_IFACE_TYPE_PPPOE */ |
| #endif |
| struct ecm_db_interface_info_unknown unknown; /* type == ECM_DB_IFACE_TYPE_UNKNOWN */ |
| struct ecm_db_interface_info_loopback loopback; /* type == ECM_DB_IFACE_TYPE_LOOPBACK */ |
| #ifdef ECM_INTERFACE_IPSEC_ENABLE |
| struct ecm_db_interface_info_ipsec_tunnel ipsec_tunnel; /* type == ECM_DB_IFACE_TYPE_IPSEC_TUNNEL */ |
| #endif |
| #ifdef ECM_INTERFACE_SIT_ENABLE |
| struct ecm_db_interface_info_sit sit; /* type == ECM_DB_IFACE_TYPE_SIT */ |
| #endif |
| #ifdef ECM_INTERFACE_TUNIPIP6_ENABLE |
| #ifdef ECM_IPV6_ENABLE |
| struct ecm_db_interface_info_tunipip6 tunipip6; /* type == ECM_DB_IFACE_TYPE_TUNIPIP6 */ |
| #endif |
| #endif |
| } type_info; |
| |
| #ifdef ECM_INTERFACE_PPP_ENABLE |
| int channel_count; |
| struct ppp_channel *ppp_chan[1]; |
| int channel_protocol; |
| struct pppoe_opt addressing; |
| #endif |
| |
| /* |
| * Get basic information about the given device |
| */ |
| dev_interface_num = dev->ifindex; |
| dev_name = dev->name; |
| dev_type = dev->type; |
| dev_mtu = dev->mtu; |
| |
| /* |
| * Does the NSS recognise this interface? |
| */ |
| nss_interface_num = nss_cmn_get_interface_number_by_dev(dev); |
| |
| DEBUG_TRACE("Establish interface instance for device: %p is type: %d, name: %s, ifindex: %d, nss_if: %d, mtu: %d\n", |
| dev, dev_type, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| |
| /* |
| * Extract from the device more type-specific information |
| */ |
| if (dev_type == ARPHRD_ETHER) { |
| /* |
| * Ethernet - but what sub type? |
| */ |
| |
| #ifdef ECM_INTERFACE_VLAN_ENABLE |
| /* |
| * VLAN? |
| */ |
| if (is_vlan_dev(dev)) { |
| /* |
| * VLAN master |
| * GGG No locking needed here, ASSUMPTION is that real_dev is held for as long as we have dev. |
| */ |
| memcpy(type_info.vlan.address, dev->dev_addr, 6); |
| type_info.vlan.vlan_tag = vlan_dev_vlan_id(dev); |
| type_info.vlan.vlan_tpid = VLAN_CTAG_TPID; |
| DEBUG_TRACE("Net device: %p is VLAN, mac: %pM, vlan_id: %x vlan_tpid: %x\n", |
| dev, type_info.vlan.address, type_info.vlan.vlan_tag, type_info.vlan.vlan_tpid); |
| |
| /* |
| * Establish this type of interface |
| */ |
| ii = ecm_interface_vlan_interface_establish(&type_info.vlan, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| #endif |
| |
| /* |
| * BRIDGE? |
| */ |
| if (ecm_front_end_is_bridge_device(dev)) { |
| /* |
| * Bridge |
| */ |
| memcpy(type_info.bridge.address, dev->dev_addr, 6); |
| |
| DEBUG_TRACE("Net device: %p is BRIDGE, mac: %pM\n", |
| dev, type_info.bridge.address); |
| |
| /* |
| * Establish this type of interface |
| */ |
| ii = ecm_interface_bridge_interface_establish(&type_info.bridge, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| |
| #ifdef ECM_INTERFACE_BOND_ENABLE |
| /* |
| * LAG? |
| */ |
| if (ecm_front_end_is_lag_master(dev)) { |
| /* |
| * Link aggregation |
| */ |
| memcpy(type_info.lag.address, dev->dev_addr, 6); |
| |
| DEBUG_TRACE("Net device: %p is LAG, mac: %pM\n", |
| dev, type_info.lag.address); |
| |
| /* |
| * Establish this type of interface |
| */ |
| ii = ecm_interface_lag_interface_establish(&type_info.lag, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| #endif |
| |
| /* |
| * ETHERNET! |
| * Just plain ethernet it seems |
| */ |
| memcpy(type_info.ethernet.address, dev->dev_addr, 6); |
| DEBUG_TRACE("Net device: %p is ETHERNET, mac: %pM\n", |
| dev, type_info.ethernet.address); |
| |
| /* |
| * Establish this type of interface |
| */ |
| ii = ecm_interface_ethernet_interface_establish(&type_info.ethernet, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| |
| /* |
| * LOOPBACK? |
| */ |
| if (dev_type == ARPHRD_LOOPBACK) { |
| DEBUG_TRACE("Net device: %p is LOOPBACK type: %d\n", dev, dev_type); |
| type_info.loopback.os_specific_ident = dev_interface_num; |
| ii = ecm_interface_loopback_interface_establish(&type_info.loopback, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| |
| #ifdef ECM_INTERFACE_IPSEC_ENABLE |
| /* |
| * IPSEC? |
| */ |
| if (dev_type == ECM_ARPHRD_IPSEC_TUNNEL_TYPE) { |
| DEBUG_TRACE("Net device: %p is IPSec tunnel type: %d\n", dev, dev_type); |
| type_info.ipsec_tunnel.os_specific_ident = dev_interface_num; |
| |
| /* |
| * nss_interface_num for all IPsec tunnels will always be NSS_C2C_TX_INTERFACE |
| */ |
| nss_interface_num = NSS_C2C_TX_INTERFACE; |
| |
| // GGG TODO Flesh this out with tunnel endpoint addressing detail |
| ii = ecm_interface_ipsec_tunnel_interface_establish(&type_info.ipsec_tunnel, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| #endif |
| |
| #ifdef ECM_INTERFACE_SIT_ENABLE |
| #ifdef CONFIG_IPV6_SIT_6RD |
| /* |
| * SIT (6-in-4)? |
| */ |
| if (dev_type == ARPHRD_SIT) { |
| struct ip_tunnel *tunnel; |
| struct ip_tunnel_6rd_parm *ip6rd; |
| const struct iphdr *tiph; |
| |
| DEBUG_TRACE("Net device: %p is SIT (6-in-4) type: %d\n", dev, dev_type); |
| |
| tunnel = (struct ip_tunnel*)netdev_priv(dev); |
| ip6rd = &tunnel->ip6rd; |
| |
| /* |
| * Get the Tunnel device IP header info |
| */ |
| tiph = &tunnel->parms.iph ; |
| |
| type_info.sit.prefixlen = ip6rd->prefixlen; |
| type_info.sit.relay_prefix = ip6rd->relay_prefix; |
| type_info.sit.relay_prefixlen = ip6rd->relay_prefixlen; |
| ECM_NIN4_ADDR_TO_IP_ADDR(type_info.sit.saddr, tiph->saddr); |
| ECM_NIN4_ADDR_TO_IP_ADDR(type_info.sit.daddr, tiph->daddr); |
| type_info.sit.prefix[0] = ntohl(ip6rd->prefix.s6_addr32[0]); |
| type_info.sit.prefix[1] = ntohl(ip6rd->prefix.s6_addr32[1]); |
| type_info.sit.prefix[2] = ntohl(ip6rd->prefix.s6_addr32[2]); |
| type_info.sit.prefix[3] = ntohl(ip6rd->prefix.s6_addr32[3]); |
| type_info.sit.ttl = tiph->ttl; |
| type_info.sit.tos = tiph->tos; |
| |
| ii = ecm_interface_sit_interface_establish(&type_info.sit, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| #endif |
| #endif |
| |
| #ifdef ECM_INTERFACE_TUNIPIP6_ENABLE |
| #ifdef ECM_IPV6_ENABLE |
| /* |
| * IPIP6 Tunnel? |
| */ |
| if (dev_type == ARPHRD_TUNNEL6) { |
| struct ip6_tnl *tunnel; |
| struct flowi6 *fl6; |
| |
| DEBUG_TRACE("Net device: %p is TUNIPIP6 type: %d\n", dev, dev_type); |
| |
| /* |
| * Get the tunnel device flow information (discover the output path of the tunnel) |
| */ |
| tunnel = (struct ip6_tnl *)netdev_priv(dev); |
| fl6 = &tunnel->fl.u.ip6; |
| |
| ECM_NIN6_ADDR_TO_IP_ADDR(type_info.tunipip6.saddr, fl6->saddr); |
| ECM_NIN6_ADDR_TO_IP_ADDR(type_info.tunipip6.daddr, fl6->daddr); |
| type_info.tunipip6.hop_limit = tunnel->parms.hop_limit; |
| type_info.tunipip6.flags = ntohl(tunnel->parms.flags); |
| type_info.tunipip6.flowlabel = fl6->flowlabel; /* flow Label In kernel is stored in big endian format */ |
| |
| ii = ecm_interface_tunipip6_interface_establish(&type_info.tunipip6, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| #endif |
| #endif |
| |
| /* |
| * If this is NOT PPP then it is unknown to the ecm |
| */ |
| if (dev_type != ARPHRD_PPP) { |
| DEBUG_TRACE("Net device: %p is UNKNOWN type: %d\n", dev, dev_type); |
| type_info.unknown.os_specific_ident = dev_interface_num; |
| |
| /* |
| * Establish this type of interface |
| */ |
| ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| |
| #ifndef ECM_INTERFACE_PPP_ENABLE |
| /* |
| * PPP support is NOT provided for. |
| * Interface is therefore unknown |
| */ |
| DEBUG_TRACE("Net device: %p is UNKNOWN (PPP Unsupported) type: %d\n", dev, dev_type); |
| type_info.unknown.os_specific_ident = dev_interface_num; |
| |
| /* |
| * Establish this type of interface |
| */ |
| ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| #else |
| /* |
| * PPP - but what is the channel type? |
| * First: If this is multi-link then we do not support it |
| */ |
| if (ppp_is_multilink(dev) > 0) { |
| DEBUG_TRACE("Net device: %p is MULTILINK PPP - Unknown to the ECM\n", dev); |
| type_info.unknown.os_specific_ident = dev_interface_num; |
| |
| /* |
| * Establish this type of interface |
| */ |
| ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| |
| DEBUG_TRACE("Net device: %p is PPP\n", dev); |
| |
| /* |
| * Get the PPP channel and then enquire what kind of channel it is |
| * NOTE: Not multilink so only one channel to get. |
| */ |
| channel_count = ppp_hold_channels(dev, ppp_chan, 1); |
| if (channel_count != 1) { |
| DEBUG_TRACE("Net device: %p PPP has %d channels - ECM cannot handle this (interface becomes Unknown type)\n", |
| dev, channel_count); |
| type_info.unknown.os_specific_ident = dev_interface_num; |
| |
| /* |
| * Establish this type of interface |
| */ |
| ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| |
| /* |
| * Get channel protocol type |
| * NOTE: Not all PPP channels support channel specific methods. |
| */ |
| channel_protocol = ppp_channel_get_protocol(ppp_chan[0]); |
| if (channel_protocol != PX_PROTO_OE) { |
| DEBUG_TRACE("Net device: %p PPP channel protocol: %d - Unknown to the ECM\n", dev, channel_protocol); |
| type_info.unknown.os_specific_ident = dev_interface_num; |
| |
| /* |
| * Release the channel |
| */ |
| ppp_release_channels(ppp_chan, 1); |
| |
| /* |
| * Establish this type of interface |
| */ |
| ii = ecm_interface_unknown_interface_establish(&type_info.unknown, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| } |
| |
| /* |
| * PPPoE channel |
| */ |
| DEBUG_TRACE("Net device: %p PPP channel is PPPoE\n", dev); |
| |
| /* |
| * Get PPPoE session information and the underlying device it is using. |
| */ |
| pppoe_channel_addressing_get(ppp_chan[0], &addressing); |
| type_info.pppoe.pppoe_session_id = (uint16_t)ntohs((uint16_t)addressing.pa.sid); |
| memcpy(type_info.pppoe.remote_mac, addressing.pa.remote, ETH_ALEN); |
| dev_put(addressing.dev); |
| |
| /* |
| * Release the channel. Note that next_dev is still (correctly) held. |
| */ |
| ppp_release_channels(ppp_chan, 1); |
| |
| DEBUG_TRACE("Net device: %p PPPoE session: %x, remote mac: %pM\n", |
| dev, type_info.pppoe.pppoe_session_id, type_info.pppoe.remote_mac); |
| |
| /* |
| * Establish this type of interface |
| */ |
| ii = ecm_interface_pppoe_interface_establish(&type_info.pppoe, dev_name, dev_interface_num, nss_interface_num, dev_mtu); |
| return ii; |
| #endif |
| } |
| EXPORT_SYMBOL(ecm_interface_establish_and_ref); |
| |
| /* |
| * ecm_interface_heirarchy_construct() |
| * Construct an interface heirarchy. |
| * |
| * Using the given addressing, locate the interface heirarchy used to emit packets to that destination. |
| * This is the heirarchy of interfaces a packet would transit to emit from the device. |
| * |
| * We will use the given src/dest devices when is_routed is false. |
| * When is_routed is true we will try routing tables first, failing back to any given. |
| * |
| * For example, with this network arrangement: |
| * |
| * PPPoE--VLAN--BRIDGE--BRIDGE_PORT(LAG_MASTER)--LAG_SLAVE_0--10.22.33.11 |
| * |
| * Given the packet_dest_addr IP address 10.22.33.11 this will create an interface heirarchy (in interracfes[]) of: |
| * LAG_SLAVE_0 @ [ECM_DB_IFACE_HEIRARCHY_MAX - 5] |
| * LAG_MASTER @ [ECM_DB_IFACE_HEIRARCHY_MAX - 4] |
| * BRIDGE @ [ECM_DB_IFACE_HEIRARCHY_MAX - 3] |
| * VLAN @ [ECM_DB_IFACE_HEIRARCHY_MAX - 2] |
| * PPPOE @ [ECM_DB_IFACE_HEIRARCHY_MAX - 1] |
| * The value returned is (ECM_DB_IFACE_HEIRARCHY_MAX - 5) |
| * |
| * IMPORTANT: This function will return any known interfaces in the database, when interfaces do not exist in the database |
| * they will be created and added automatically to the database. |
| * |
| * GGG TODO Make this function work for IPv6!!!!!!!!!!!!!! |
| */ |
| int32_t ecm_interface_heirarchy_construct(struct ecm_db_iface_instance *interfaces[], ip_addr_t packet_src_addr, ip_addr_t packet_dest_addr, int packet_protocol, |
| struct net_device *given_dest_dev, bool is_routed, struct net_device *given_src_dev, uint8_t *dest_node_addr, uint8_t *src_node_addr) |
| { |
| int protocol; |
| ip_addr_t src_addr; |
| ip_addr_t dest_addr; |
| struct net_device *dest_dev; |
| char *dest_dev_name; |
| int32_t dest_dev_type; |
| struct net_device *src_dev; |
| char *src_dev_name; |
| int32_t src_dev_type; |
| int32_t current_interface_index; |
| bool from_local_addr; |
| |
| /* |
| * Get a big endian of the IPv4 address we have been given as our starting point. |
| */ |
| protocol = packet_protocol; |
| ECM_IP_ADDR_COPY(src_addr, packet_src_addr); |
| ECM_IP_ADDR_COPY(dest_addr, packet_dest_addr); |
| DEBUG_TRACE("Construct interface heirarchy for from src_addr: " ECM_IP_ADDR_DOT_FMT " to dest_addr: " ECM_IP_ADDR_DOT_FMT ", protocol: %d\n", |
| ECM_IP_ADDR_TO_DOT(src_addr), ECM_IP_ADDR_TO_DOT(dest_addr), protocol); |
| |
| /* |
| * Get device to reach the given destination address. |
| * If the heirarchy is for a routed connection we must try route lookup first, falling back to any given_dest_dev. |
| * If the heirarchy is NOT for a routed connection we try the given_dest_dev first, followed by routed lookup. |
| */ |
| from_local_addr = false; |
| if (is_routed) { |
| dest_dev = ecm_interface_dev_find_by_addr(dest_addr, &from_local_addr); |
| if (!dest_dev && given_dest_dev) { |
| /* |
| * Fall back to any given |
| */ |
| dest_dev = given_dest_dev; |
| dev_hold(dest_dev); |
| } |
| } else if (given_dest_dev) { |
| dest_dev = given_dest_dev; |
| dev_hold(dest_dev); |
| } else { |
| /* |
| * Fall back to routed look up |
| */ |
| dest_dev = ecm_interface_dev_find_by_addr(dest_addr, &from_local_addr); |
| } |
| |
| /* |
| * GGG ALERT: If the address is a local address and protocol is an IP tunnel |
| * then this connection is a tunnel endpoint made to this device. |
| * In which case we circumvent all proper procedure and just hack the devices to make stuff work. |
| * GGG TODO THIS MUST BE FIXED - WE MUST USE THE INTERFACE HIERARCHY FOR ITS INTENDED PURPOSE TO |
| * PARSE THE DEVICES AND WORK OUT THE PROPER INTERFACES INVOLVED. |
| * E.G. IF WE TRIED TO RUN A TUNNEL OVER A VLAN OR QINQ THIS WILL BREAK AS WE DON'T DISCOVER THAT HIERARCHY |
| */ |
| if (dest_dev && from_local_addr && (protocol == IPPROTO_IPV6)) { |
| dev_put(dest_dev); |
| dest_dev = given_dest_dev; |
| if (dest_dev) { |
| dev_hold(dest_dev); |
| DEBUG_TRACE("HACK: IPV6 tunnel packet with dest_addr: " ECM_IP_ADDR_OCTAL_FMT " uses dev: %p(%s)\n", ECM_IP_ADDR_TO_OCTAL(dest_addr), dest_dev, dest_dev->name); |
| } |
| } |
| if (!dest_dev) { |
| DEBUG_WARN("dest_addr: " ECM_IP_ADDR_OCTAL_FMT " - cannot locate device\n", ECM_IP_ADDR_TO_OCTAL(dest_addr)); |
| return ECM_DB_IFACE_HEIRARCHY_MAX; |
| } |
| dest_dev_name = dest_dev->name; |
| dest_dev_type = dest_dev->type; |
| |
| /* |
| * Get device to reach the given source address. |
| * If the heirarchy is for a routed connection we must try route lookup first, falling back to any given_src_dev. |
| * If the heirarchy is NOT for a routed connection we try the given_src_dev first, followed by routed lookup. |
| */ |
| from_local_addr = false; |
| if (is_routed) { |
| src_dev = ecm_interface_dev_find_by_addr(src_addr, &from_local_addr); |
| if (!src_dev && given_src_dev) { |
| /* |
| * Fall back to any given |
| */ |
| src_dev = given_src_dev; |
| dev_hold(src_dev); |
| } |
| } else if (given_src_dev) { |
| src_dev = given_src_dev; |
| dev_hold(src_dev); |
| } else { |
| /* |
| * Fall back to routed look up |
| */ |
| src_dev = ecm_interface_dev_find_by_addr(src_addr, &from_local_addr); |
| } |
| |
| /* |
| * GGG ALERT: If the address is a local address and protocol is an IP tunnel |
| * then this connection is a tunnel endpoint made to this device. |
| * In which case we circumvent all proper procedure and just hack the devices to make stuff work. |
| * GGG TODO THIS MUST BE FIXED - WE MUST USE THE INTERFACE HIERARCHY FOR ITS INTENDED PURPOSE TO |
| * PARSE THE DEVICES AND WORK OUT THE PROPER INTERFACES INVOLVED. |
| * E.G. IF WE TRIED TO RUN A TUNNEL OVER A VLAN OR QINQ THIS WILL BREAK AS WE DON'T DISCOVER THAT HIERARCHY |
| */ |
| if (src_dev && from_local_addr && (protocol == IPPROTO_IPV6)) { |
| dev_put(src_dev); |
| src_dev = given_src_dev; |
| if (src_dev) { |
| dev_hold(src_dev); |
| DEBUG_TRACE("HACK: IPV6 tunnel packet with src_addr: " ECM_IP_ADDR_OCTAL_FMT " uses dev: %p(%s)\n", ECM_IP_ADDR_TO_OCTAL(src_addr), src_dev, src_dev->name); |
| } |
| } |
| if (!src_dev) { |
| DEBUG_WARN("src_addr: " ECM_IP_ADDR_OCTAL_FMT " - cannot locate device\n", ECM_IP_ADDR_TO_OCTAL(src_addr)); |
| dev_put(dest_dev); |
| return ECM_DB_IFACE_HEIRARCHY_MAX; |
| } |
| src_dev_name = src_dev->name; |
| src_dev_type = src_dev->type; |
| |
| /* |
| * Check if source and dest dev are same. |
| * For the forwarded flows which involve tunnels this will happen when called from input hook. |
| */ |
| if (src_dev == dest_dev) { |
| DEBUG_TRACE("Protocol is :%d source dev and dest dev are same\n", protocol); |
| if ((protocol == IPPROTO_IPV6) || (protocol == IPPROTO_ESP)) { |
| /* |
| * This happens from the input hook |
| * We do not want to create a connection entry for this |
| * GGG TODO YES WE DO. |
| * GGG TODO THIS CONCERNS ME AS THIS SHOULD BE CAUGHT MUCH |
| * EARLIER IN THE FRONT END IF POSSIBLE TO AVOID PERFORMANCE PENALTIES. |
| * WE HAVE DONE A TREMENDOUS AMOUT OF WORK TO GET TO THIS POINT. |
| * WE WILL ABORT HERE AND THIS WILL BE REPEATED FOR EVERY PACKET. |
| * IN KEEPING WITH THE ECM DESIGN IT IS BETTER TO CREATE A CONNECTION AND RECORD IN THE HIERARCHY |
| * ENOUGH INFORMATION TO ENSURE THAT ACCELERATION IS NOT BROKEN / DOES NOT OCCUR AT ALL. |
| * THAT WAY WE DO A HEAVYWEIGHT ESTABLISHING OF A CONNECTION ONCE AND NEVER AGAIN... |
| */ |
| dev_put(src_dev); |
| dev_put(dest_dev); |
| return ECM_DB_IFACE_HEIRARCHY_MAX; |
| } |
| } |
| |
| /* |
| * Iterate until we are done or get to the max number of interfaces we can record. |
| * NOTE: current_interface_index tracks the position of the first interface position in interfaces[] |
| * because we add from the end first_interface grows downwards. |
| */ |
| current_interface_index = ECM_DB_IFACE_HEIRARCHY_MAX; |
| while (current_interface_index > 0) { |
| struct ecm_db_iface_instance *ii; |
| struct net_device *next_dev; |
| |
| /* |
| * Get the ecm db interface instance for the device at hand |
| */ |
| ii = ecm_interface_establish_and_ref(dest_dev); |
| |
| /* |
| * If the interface could not be established then we abort |
| */ |
| if (!ii) { |
| DEBUG_WARN("Failed to establish interface: %p, name: %s\n", dest_dev, dest_dev_name); |
| dev_put(src_dev); |
| dev_put(dest_dev); |
| |
| /* |
| * Release the interfaces heirarchy we constructed to this point. |
| */ |
| ecm_db_connection_interfaces_deref(interfaces, current_interface_index); |
| return ECM_DB_IFACE_HEIRARCHY_MAX; |
| } |
| |
| /* |
| * Record the interface instance into the interfaces[] |
| */ |
| current_interface_index--; |
| interfaces[current_interface_index] = ii; |
| |
| /* |
| * Now we have to figure out what the next device will be (in the transmission path) the skb |
| * will use to emit to the destination address. |
| */ |
| do { |
| #ifdef ECM_INTERFACE_PPP_ENABLE |
| int channel_count; |
| struct ppp_channel *ppp_chan[1]; |
| int channel_protocol; |
| struct pppoe_opt addressing; |
| #endif |
| |
| DEBUG_TRACE("Net device: %p is type: %d, name: %s\n", dest_dev, dest_dev_type, dest_dev_name); |
| next_dev = NULL; |
| |
| if (dest_dev_type == ARPHRD_ETHER) { |
| /* |
| * Ethernet - but what sub type? |
| */ |
| |
| #ifdef ECM_INTERFACE_VLAN_ENABLE |
| /* |
| * VLAN? |
| */ |
| if (is_vlan_dev(dest_dev)) { |
| /* |
| * VLAN master |
| * No locking needed here, ASSUMPTION is that real_dev is held for as long as we have dev. |
| */ |
| next_dev = vlan_dev_real_dev(dest_dev); |
| dev_hold(next_dev); |
| DEBUG_TRACE("Net device: %p is VLAN, slave dev: %p (%s)\n", |
| dest_dev, next_dev, next_dev->name); |
| break; |
| } |
| #endif |
| |
| /* |
| * BRIDGE? |
| */ |
| if (ecm_front_end_is_bridge_device(dest_dev)) { |
| /* |
| * Bridge |
| * Figure out which port device the skb will go to using the dest_addr. |
| */ |
| bool on_link; |
| ip_addr_t gw_addr = ECM_IP_ADDR_NULL; |
| uint8_t mac_addr[ETH_ALEN]; |
| if (!ecm_interface_mac_addr_get(dest_addr, mac_addr, &on_link, gw_addr)) { |
| /* |
| * Possible ARP does not know the address yet |
| */ |
| DEBUG_INFO("Unable to obtain MAC address for " ECM_IP_ADDR_DOT_FMT "\n", ECM_IP_ADDR_TO_DOT(dest_addr)); |
| if (ECM_IP_ADDR_IS_V4(dest_addr)) { |
| __be32 ipv4_addr; |
| __be32 src_ip; |
| |
| /* |
| * Issue an ARP request for it, select the src_ip from which to issue the request. |
| */ |
| ECM_IP_ADDR_TO_NIN4_ADDR(ipv4_addr, dest_addr); |
| src_ip = inet_select_addr(dest_dev, ipv4_addr, RT_SCOPE_LINK); |
| if (!src_ip) { |
| DEBUG_TRACE("failed to lookup IP for %pI4\n", &ipv4_addr); |
| |
| dev_put(src_dev); |
| dev_put(dest_dev); |
| |
| /* |
| * Release the interfaces heirarchy we constructed to this point. |
| */ |
| ecm_db_connection_interfaces_deref(interfaces, current_interface_index); |
| return ECM_DB_IFACE_HEIRARCHY_MAX; |
| } |
| |
| /* |
| * If we have a GW for this address, then we have to send ARP request to the GW |
| */ |
| if (!on_link && !ECM_IP_ADDR_IS_NULL(gw_addr)) { |
| ECM_IP_ADDR_TO_NIN4_ADDR(ipv4_addr, gw_addr); |
| } |
| |
| DEBUG_TRACE("Send ARP for %pI4 using src_ip as %pI4\n", &ipv4_addr, &src_ip); |
| arp_send(ARPOP_REQUEST, ETH_P_ARP, ipv4_addr, dest_dev, src_ip, NULL, NULL, NULL); |
| } |
| |
| DEBUG_WARN("Unable to obtain MAC address for " ECM_IP_ADDR_DOT_FMT "\n", ECM_IP_ADDR_TO_DOT(dest_addr)); |
| dev_put(src_dev); |
| dev_put(dest_dev); |
| |
| /* |
| * Release the interfaces heirarchy we constructed to this point. |
| */ |
| ecm_db_connection_interfaces_deref(interfaces, current_interface_index); |
| return ECM_DB_IFACE_HEIRARCHY_MAX; |
| } |
| next_dev = br_port_dev_get(dest_dev, mac_addr); |
| if (!next_dev) { |
| DEBUG_WARN("Unable to obtain output port for: %pM\n", mac_addr); |
| dev_put(src_dev); |
| dev_put(dest_dev); |
| |
| /* |
| * Release the interfaces heirarchy we constructed to this point. |
| */ |
| ecm_db_connection_interfaces_deref(interfaces, current_interface_index); |
| return ECM_DB_IFACE_HEIRARCHY_MAX; |
| } |
| DEBUG_TRACE("Net device: %p is BRIDGE, next_dev: %p (%s)\n", dest_dev, next_dev, next_dev->name); |
| break; |
| } |
| |
| #ifdef ECM_INTERFACE_BOND_ENABLE |
| /* |
| * LAG? |
| */ |
| if (ecm_front_end_is_lag_master(dest_dev)) { |
| /* |
| * Link aggregation |
| * Figure out whiich slave device of the link aggregation will be used to reach the destination. |
| */ |
| bool dest_on_link = false; |
| ip_addr_t dest_gw_addr = ECM_IP_ADDR_NULL; |
| uint32_t src_addr_32 = 0; |
| uint32_t dest_addr_32 = 0; |
| uint8_t src_mac_addr[ETH_ALEN]; |
| uint8_t dest_mac_addr[ETH_ALEN]; |
| struct net_device *master_dev = NULL; |
| |
| memset(src_mac_addr, 0, ETH_ALEN); |
| memset(dest_mac_addr, 0, ETH_ALEN); |
| |
| ECM_IP_ADDR_TO_NIN4_ADDR(src_addr_32, src_addr); |
| ECM_IP_ADDR_TO_NIN4_ADDR(dest_addr_32, dest_addr); |
| |
| if (!is_routed) { |
| memcpy(src_mac_addr, src_node_addr, ETH_ALEN); |
| memcpy(dest_mac_addr, dest_node_addr, ETH_ALEN); |
| } else { |
| struct net_device *dest_dev_master; |
| |
| /* |
| * Use appropriate source MAC address for routed packets |
| */ |
| dest_dev_master = ecm_interface_get_and_hold_dev_master(dest_dev); |
| if (dest_dev_master) { |
| memcpy(src_mac_addr, dest_dev_master->dev_addr, ETH_ALEN); |
| } else { |
| memcpy(src_mac_addr, dest_dev->dev_addr, ETH_ALEN); |
| } |
| |
| /* |
| * Determine destination MAC address for this routed packet |
| */ |
| if (!ecm_interface_mac_addr_get(dest_addr, dest_mac_addr, |
| &dest_on_link, dest_gw_addr)) { |
| __be32 ipv4_addr = 0; |
| __be32 src_ip = 0; |
| DEBUG_WARN("Unable to obtain MAC address for " |
| ECM_IP_ADDR_DOT_FMT "\n", ECM_IP_ADDR_TO_DOT(dest_addr)); |
| |
| |
| /* |
| * Issue an ARP request, select the src_ip from which to issue the request. |
| */ |
| |
| /* |
| * find proper interfce from which to issue ARP |
| */ |
| if (dest_dev_master) { |
| master_dev = dest_dev_master; |
| } else { |
| master_dev = dest_dev; |
| } |
| |
| dev_hold(master_dev); |
| |
| if (dest_dev_master) { |
| dev_put(dest_dev_master); |
| } |
| |
| ECM_IP_ADDR_TO_NIN4_ADDR(ipv4_addr, dest_addr); |
| src_ip = inet_select_addr(master_dev, ipv4_addr, RT_SCOPE_LINK); |
| if (!src_ip) { |
| DEBUG_TRACE("failed to lookup IP for %pI4\n", &ipv4_addr); |
| |
| dev_put(src_dev); |
| dev_put(dest_dev); |
| dev_put(master_dev); |
| |
| /* |
| * Release the interfaces heirarchy we constructed to this point. |
| */ |
| ecm_db_connection_interfaces_deref(interfaces, current_interface_index); |
| return ECM_DB_IFACE_HEIRARCHY_MAX; |
| } |
| |
| /* |
| * If we have a GW for this address, then we have to send ARP request to the GW |
| */ |
| if (!dest_on_link && !ECM_IP_ADDR_IS_NULL(dest_gw_addr)) { |
| ECM_IP_ADDR_TO_NIN4_ADDR(ipv4_addr, dest_gw_addr); |
| } |
| |
| DEBUG_TRACE("Send ARP for %pI4 using src_ip as %pI4\n", &ipv4_addr, &src_ip); |
| arp_send(ARPOP_REQUEST, ETH_P_ARP, ipv4_addr, master_dev, src_ip, NULL, NULL, NULL); |
| |
| |
| dev_put(src_dev); |
| dev_put(dest_dev); |
| dev_put(master_dev); |
| ecm_db_connection_interfaces_deref(interfaces, current_interface_index); |
| return ECM_DB_IFACE_HEIRARCHY_MAX; |
| } |
| |
| if (dest_dev_master) { |
| dev_put(dest_dev_master); |
| } |
| } |
| |
| next_dev = bond_get_tx_dev(NULL, src_mac_addr, dest_mac_addr, |
| &src_addr_32, &dest_addr_32, |
| htons((uint16_t)ETH_P_IP), dest_dev); |
| if (next_dev && netif_carrier_ok(next_dev)) { |
| dev_hold(next_dev); |
| } else { |
| DEBUG_WARN("Unable to obtain LAG output slave device\n"); |
| dev_put(src_dev); |
| dev_put(dest_dev); |
| |
| /* |
| * Release the interfaces heirarchy we constructed to this point. |
| */ |
| ecm_db_connection_interfaces_deref(interfaces, current_interface_index); |
| return ECM_DB_IFACE_HEIRARCHY_MAX; |
| } |
| |
| DEBUG_TRACE("Net device: %p is LAG, slave dev: %p (%s)\n", dest_dev, next_dev, next_dev->name); |
| break; |
| } |
| #endif |
| |
| /* |
| * ETHERNET! |
| * Just plain ethernet it seems. |
| */ |
| DEBUG_TRACE("Net device: %p is ETHERNET\n", dest_dev); |
| break; |
| } |
| |
| /* |
| * LOOPBACK? |
| */ |
| if (dest_dev_type == ARPHRD_LOOPBACK) { |
| DEBUG_TRACE("Net device: %p is LOOPBACK type: %d\n", dest_dev, dest_dev_type); |
| break; |
| } |
| |
| /* |
| * IPSEC? |
| */ |
| if (dest_dev_type == ECM_ARPHRD_IPSEC_TUNNEL_TYPE) { |
| DEBUG_TRACE("Net device: %p is IPSec tunnel type: %d\n", dest_dev, dest_dev_type); |
| // GGG TODO Figure out the next device the tunnel is using... |
| break; |
| } |
| |
| /* |
| * SIT (6-in-4)? |
| */ |
| if (dest_dev_type == ARPHRD_SIT) { |
| DEBUG_TRACE("Net device: %p is SIT (6-in-4) type: %d\n", dest_dev, dest_dev_type); |
| // GGG TODO Figure out the next device the tunnel is using... |
| break; |
| } |
| |
| /* |
| * IPIP6 Tunnel? |
| */ |
| if (dest_dev_type == ARPHRD_TUNNEL6) { |
| DEBUG_TRACE("Net device: %p is TUNIPIP6 type: %d\n", dest_dev, dest_dev_type); |
| // GGG TODO Figure out the next device the tunnel is using... |
| break; |
| } |
| |
| /* |
| * If this is NOT PPP then it is unknown to the ecm and we cannot figure out it's next device. |
| */ |
| if (dest_dev_type != ARPHRD_PPP) { |
| DEBUG_TRACE("Net device: %p is UNKNOWN type: %d\n", dest_dev, dest_dev_type); |
| break; |
| } |
| |
| #ifndef ECM_INTERFACE_PPP_ENABLE |
| DEBUG_TRACE("Net device: %p is UNKNOWN (PPP Unsupported) type: %d\n", dest_dev, dest_dev_type); |
| #else |
| /* |
| * PPP - but what is the channel type? |
| * First: If this is multi-link then we do not support it |
| */ |
| if (ppp_is_multilink(dest_dev) > 0) { |
| DEBUG_TRACE("Net device: %p is MULTILINK PPP - Unknown to the ECM\n", dest_dev); |
| break; |
| } |
| |
| DEBUG_TRACE("Net device: %p is PPP\n", dest_dev); |
| |
| /* |
| * Get the PPP channel and then enquire what kind of channel it is |
| * NOTE: Not multilink so only one channel to get. |
| */ |
| channel_count = ppp_hold_channels(dest_dev, ppp_chan, 1); |
| if (channel_count != 1) { |
| DEBUG_TRACE("Net device: %p PPP has %d channels - Unknown to the ECM\n", |
| dest_dev, channel_count); |
| break; |
| } |
| |
| /* |
| * Get channel protocol type |
| * NOTE: Not all PPP channels support channel specific methods. |
| */ |
| channel_protocol = ppp_channel_get_protocol(ppp_chan[0]); |
| if (channel_protocol != PX_PROTO_OE) { |
| DEBUG_TRACE("Net device: %p PPP channel protocol: %d - Unknown to the ECM\n", |
| dest_dev, channel_protocol); |
| |
| /* |
| * Release the channel |
| */ |
| ppp_release_channels(ppp_chan, 1); |
| |
| break; |
| } |
| |
| /* |
| * PPPoE channel |
| */ |
| DEBUG_TRACE("Net device: %p PPP channel is PPPoE\n", dest_dev); |
| |
| /* |
| * Get PPPoE session information and the underlying device it is using. |
| */ |
| pppoe_channel_addressing_get(ppp_chan[0], &addressing); |
| |
| /* |
| * Copy the dev hold into this, we will release the hold later |
| */ |
| next_dev = addressing.dev; |
| |
| DEBUG_TRACE("Net device: %p, next device: %p (%s)\n", dest_dev, next_dev, next_dev->name); |
| |
| /* |
| * Release the channel. Note that next_dev is still (correctly) held. |
| */ |
| ppp_release_channels(ppp_chan, 1); |
| #endif |
| } while (false); |
| |
| /* |
| * No longer need dest_dev as it may become next_dev |
| */ |
| dev_put(dest_dev); |
| |
| /* |
| * Check out the next_dev, if any |
| */ |
| if (!next_dev) { |
| int32_t i __attribute__((unused)); |
| DEBUG_INFO("Completed interface heirarchy construct with first interface @: %d\n", current_interface_index); |
| #if DEBUG_LEVEL > 1 |
| for (i = current_interface_index; i < ECM_DB_IFACE_HEIRARCHY_MAX; ++i) { |
| DEBUG_TRACE("\tInterface @ %d: %p, type: %d, name: %s\n", |
| i, interfaces[i], ecm_db_connection_iface_type_get(interfaces[i]), ecm_db_interface_type_to_string(ecm_db_connection_iface_type_get(interfaces[i]))); |
| |
| } |
| #endif |
| |
| /* |
| * Release src_dev now |
| */ |
| dev_put(src_dev); |
| return current_interface_index; |
| } |
| |
| /* |
| * dest_dev becomes next_dev |
| */ |
| dest_dev = next_dev; |
| dest_dev_name = dest_dev->name; |
| dest_dev_type = dest_dev->type; |
| } |
| |
| DEBUG_WARN("Too many interfaces: %d\n", current_interface_index); |
| DEBUG_ASSERT(current_interface_index == 0, "Bad logic handling current_interface_index: %d\n", current_interface_index); |
| dev_put(src_dev); |
| dev_put(dest_dev); |
| |
| /* |
| * Release the interfaces heirarchy we constructed to this point. |
| */ |
| ecm_db_connection_interfaces_deref(interfaces, current_interface_index); |
| return ECM_DB_IFACE_HEIRARCHY_MAX; |
| } |
| EXPORT_SYMBOL(ecm_interface_heirarchy_construct); |
| |
| /* |
| * ecm_interface_list_stats_update() |
| * Given an interface list, walk the interfaces and update the stats for certain types. |
| */ |
| static void ecm_interface_list_stats_update(int iface_list_first, struct ecm_db_iface_instance *iface_list[], uint8_t *mac_addr, |
| uint32_t tx_packets, uint32_t tx_bytes, uint32_t rx_packets, uint32_t rx_bytes) |
| { |
| int list_index; |
| |
| for (list_index = iface_list_first; (list_index < ECM_DB_IFACE_HEIRARCHY_MAX); list_index++) { |
| struct ecm_db_iface_instance *ii; |
| ecm_db_iface_type_t ii_type; |
| char *ii_name; |
| struct net_device *dev; |
| |
| ii = iface_list[list_index]; |
| ii_type = ecm_db_connection_iface_type_get(ii); |
| ii_name = ecm_db_interface_type_to_string(ii_type); |
| DEBUG_TRACE("list_index: %d, ii: %p, type: %d (%s)\n", list_index, ii, ii_type, ii_name); |
| |
| /* |
| * Locate real device in system |
| */ |
| dev = dev_get_by_index(&init_net, ecm_db_iface_interface_identifier_get(ii)); |
| if (!dev) { |
| DEBUG_WARN("Could not locate interface\n"); |
| continue; |
| } |
| DEBUG_TRACE("found dev: %p (%s)\n", dev, dev->name); |
| |
| /* |
| * Refresh the bridge forward table entry if the port is a bridge port |
| * Note: A bridge port can be of different interface type, e.g VLAN, ethernet. |
| * This check, therefore, should be performed for all interface types. |
| */ |
| if (is_valid_ether_addr(mac_addr) && ecm_front_end_is_bridge_port(dev) && rx_packets) { |
| DEBUG_TRACE("Update bridge fdb entry for mac: %pM\n", mac_addr); |
| br_refresh_fdb_entry(dev, mac_addr); |
| } |
| |
| switch (ii_type) { |
| struct rtnl_link_stats64 stats; |
| |
| #ifdef ECM_INTERFACE_VLAN_ENABLE |
| case ECM_DB_IFACE_TYPE_VLAN: |
| DEBUG_INFO("VLAN\n"); |
| stats.rx_packets = rx_packets; |
| stats.rx_bytes = rx_bytes; |
| stats.tx_packets = tx_packets; |
| stats.tx_bytes = tx_bytes; |
| __vlan_dev_update_accel_stats(dev, &stats); |
| break; |
| #endif |
| case ECM_DB_IFACE_TYPE_BRIDGE: |
| DEBUG_INFO("BRIDGE\n"); |
| stats.rx_packets = rx_packets; |
| stats.rx_bytes = rx_bytes; |
| stats.tx_packets = tx_packets; |
| stats.tx_bytes = tx_bytes; |
| br_dev_update_stats(dev, &stats); |
| break; |
| |
| #ifdef ECM_INTERFACE_PPP_ENABLE |
| case ECM_DB_IFACE_TYPE_PPPOE: |
| DEBUG_INFO("PPPOE\n"); |
| ppp_update_stats(dev, rx_packets, rx_bytes, tx_packets, tx_bytes); |
| break; |
| #endif |
| default: |
| /* |
| * TODO: Extend it accordingly |
| */ |
| break; |
| } |
| |
| dev_put(dev); |
| } |
| } |
| |
| /* |
| * ecm_interface_stats_update() |
| * Using the interface lists for the given connection, update the interface statistics for each. |
| * |
| * 'from' here is wrt the connection 'from' side. Likewise with 'to'. |
| * TX is wrt what the interface has transmitted. RX is what the interface has received. |
| */ |
| void ecm_interface_stats_update(struct ecm_db_connection_instance *ci, |
| uint32_t from_tx_packets, uint32_t from_tx_bytes, uint32_t from_rx_packets, uint32_t from_rx_bytes, |
| uint32_t to_tx_packets, uint32_t to_tx_bytes, uint32_t to_rx_packets, uint32_t to_rx_bytes) |
| { |
| struct ecm_db_iface_instance *from_ifaces[ECM_DB_IFACE_HEIRARCHY_MAX]; |
| struct ecm_db_iface_instance *to_ifaces[ECM_DB_IFACE_HEIRARCHY_MAX]; |
| int from_ifaces_first; |
| int to_ifaces_first; |
| uint8_t mac_addr[ETH_ALEN]; |
| |
| /* |
| * Iterate the 'from' side interfaces and update statistics and state for the real HLOS interfaces |
| * from_tx_packets / bytes: the amount transmitted by the 'from' interface |
| * from_rx_packets / bytes: the amount received by the 'from' interface |
| */ |
| DEBUG_INFO("%p: Update from interface stats\n", ci); |
| from_ifaces_first = ecm_db_connection_from_interfaces_get_and_ref(ci, from_ifaces); |
| ecm_db_connection_from_node_address_get(ci, mac_addr); |
| ecm_interface_list_stats_update(from_ifaces_first, from_ifaces, mac_addr, from_tx_packets, from_tx_bytes, from_rx_packets, from_rx_bytes); |
| ecm_db_connection_interfaces_deref(from_ifaces, from_ifaces_first); |
| |
| /* |
| * Iterate the 'to' side interfaces and update statistics and state for the real HLOS interfaces |
| * to_tx_packets / bytes: the amount transmitted by the 'to' interface |
| * to_rx_packets / bytes: the amount received by the 'to' interface |
| */ |
| DEBUG_INFO("%p: Update to interface stats\n", ci); |
| to_ifaces_first = ecm_db_connection_to_interfaces_get_and_ref(ci, to_ifaces); |
| ecm_db_connection_to_node_address_get(ci, mac_addr); |
| ecm_interface_list_stats_update(to_ifaces_first, to_ifaces, mac_addr, to_tx_packets, to_tx_bytes, to_rx_packets, to_rx_bytes); |
| ecm_db_connection_interfaces_deref(to_ifaces, to_ifaces_first); |
| } |
| EXPORT_SYMBOL(ecm_interface_stats_update); |
| |
| /* |
| * ecm_interface_regenerate_connection() |
| * Re-generate a specific connection |
| */ |
| void ecm_interface_regenerate_connection(struct ecm_db_connection_instance *ci) |
| { |
| struct ecm_front_end_connection_instance *feci; |
| |
| DEBUG_TRACE("Regenerate connection: %p\n", ci); |
| |
| /* |
| * Flag the connection as needing re-generation. |
| * Re-generation occurs when we next see traffic OR an acceleration engine sync for this connection. |
| * Refer to front end protocol specific process() functions. |
| */ |
| ecm_db_connection_classifier_generation_change(ci); |
| |
| /* |
| * If the connection is accelerated then force deceleration. |
| * Under normal circumstances deceleration would occur on the next sync received, |
| * however, there is a situation where a sync may not occur if, say, a cable has been pulled. |
| * The acceleration engine would see no further traffic to trigger sending a sync and so |
| * re-generation would not occur. |
| * The connection would stall and no-regeneration would happen leaving the connection in bad state. |
| * NOTE: We can just call decelerate() upon the front end - if its not accelerated this will have no effect. |
| */ |
| feci = ecm_db_connection_front_end_get_and_ref(ci); |
| feci->decelerate(feci); |
| feci->deref(feci); |
| } |
| |
| /* |
| * ecm_interface_regenerate_connections() |
| * Cause regeneration of all connections that are using the specified interface. |
| */ |
| static void ecm_interface_regenerate_connections(struct ecm_db_iface_instance *ii) |
| { |
| #ifdef ECM_DB_XREF_ENABLE |
| struct ecm_db_connection_instance *ci; |
| #endif |
| |
| DEBUG_TRACE("Regenerate connections using interface: %p\n", ii); |
| |
| #ifndef ECM_DB_XREF_ENABLE |
| /* |
| * An interface has changed, re-generate the connections to ensure all state is updated. |
| */ |
| ecm_db_classifier_generation_change(); |
| #else |
| /* |
| * Iterate the connections of this interface and cause each one to be re-generated. |
| * GGG TODO NOTE: If this proves slow (need metrics here) we could just regenerate the "lot" with one very simple call. |
| * But this would cause re-gen of every connection which may not be appropriate, this here at least keeps things in scope of the interface |
| * but at the cost of performance. |
| */ |
| DEBUG_TRACE("%p: Regenerate 'from' connections\n", ii); |
| ci = ecm_db_iface_connections_from_get_and_ref_first(ii); |
| while (ci) { |
| struct ecm_db_connection_instance *cin; |
| cin = ecm_db_connection_iface_from_get_and_ref_next(ci); |
| |
| DEBUG_TRACE("%p: Regenerate: %p", ii, ci); |
| ecm_interface_regenerate_connection(ci); |
| ecm_db_connection_deref(ci); |
| ci = cin; |
| } |
| |
| DEBUG_TRACE("%p: Regenerate 'to' connections\n", ii); |
| ci = ecm_db_iface_connections_to_get_and_ref_first(ii); |
| while (ci) { |
| struct ecm_db_connection_instance *cin; |
| cin = ecm_db_connection_iface_to_get_and_ref_next(ci); |
| |
| DEBUG_TRACE("%p: Regenerate: %p", ii, ci); |
| ecm_interface_regenerate_connection(ci); |
| ecm_db_connection_deref(ci); |
| ci = cin; |
| } |
| |
| DEBUG_TRACE("%p: Regenerate 'from_nat' connections\n", ii); |
| ci = ecm_db_iface_connections_nat_from_get_and_ref_first(ii); |
| while (ci) { |
| struct ecm_db_connection_instance *cin; |
| cin = ecm_db_connection_iface_nat_from_get_and_ref_next(ci); |
| |
| DEBUG_TRACE("%p: Regenerate: %p", ii, ci); |
| ecm_interface_regenerate_connection(ci); |
| ecm_db_connection_deref(ci); |
| ci = cin; |
| } |
| |
| DEBUG_TRACE("%p: Regenerate 'to_nat' connections\n", ii); |
| ci = ecm_db_iface_connections_nat_to_get_and_ref_first(ii); |
| while (ci) { |
| struct ecm_db_connection_instance *cin; |
| cin = ecm_db_connection_iface_nat_to_get_and_ref_next(ci); |
| |
| DEBUG_TRACE("%p: Regenerate: %p", ii, ci); |
| ecm_interface_regenerate_connection(ci); |
| ecm_db_connection_deref(ci); |
| ci = cin; |
| } |
| #endif |
| |
| DEBUG_TRACE("%p: Regenerate COMPLETE\n", ii); |
| } |
| |
| /* |
| * ecm_interface_dev_regenerate_connections() |
| * Cause regeneration of all connections that are using the specified interface. |
| */ |
| void ecm_interface_dev_regenerate_connections(struct net_device *dev) |
| { |
| struct ecm_db_iface_instance *ii; |
| |
| DEBUG_INFO("Regenerate connections for: %p (%s)\n", dev, dev->name); |
| |
| /* |
| * Establish the interface for the given device. |
| * NOTE: The cute thing here is even if dev is previously unknown to us this will create an interface instance |
| * but it will have no connections to regen and will be destroyed at the end of the function when we deref - so no harm done. |
| * However if the interface is known to us then we will get it returned by this function and process it accordingly. |
| */ |
| ii = ecm_interface_establish_and_ref(dev); |
| if (!ii) { |
| DEBUG_WARN("%p: No interface instance could be established for this dev\n", dev); |
| return; |
| } |
| ecm_interface_regenerate_connections(ii); |
| DEBUG_TRACE("%p: Regenerate for %p: COMPLETE\n", dev, ii); |
| ecm_db_iface_deref(ii); |
| } |
| |
| /* |
| * ecm_interface_mtu_change() |
| * MTU of interface has changed |
| */ |
| static void ecm_interface_mtu_change(struct net_device *dev) |
| { |
| int mtu; |
| struct ecm_db_iface_instance *ii; |
| |
| mtu = dev->mtu; |
| DEBUG_INFO("%p (%s): MTU Change to: %d\n", dev, dev->name, mtu); |
| |
| /* |
| * Establish the interface for the given device. |
| */ |
| ii = ecm_interface_establish_and_ref(dev); |
| if (!ii) { |
| DEBUG_WARN("%p: No interface instance could be established for this dev\n", dev); |
| return; |
| } |
| |
| /* |
| * Change the mtu |
| */ |
| ecm_db_iface_mtu_reset(ii, mtu); |
| DEBUG_TRACE("%p (%s): MTU Changed to: %d\n", dev, dev->name, mtu); |
| ecm_interface_regenerate_connections(ii); |
| DEBUG_TRACE("%p: Regenerate for %p: COMPLETE\n", dev, ii); |
| ecm_db_iface_deref(ii); |
| } |
| |
| /* |
| * ecm_interface_netdev_notifier_callback() |
| * Netdevice notifier callback to inform us of change of state of a netdevice |
| */ |
| static int ecm_interface_netdev_notifier_callback(struct notifier_block *this, unsigned long event, void *ptr) |
| { |
| #if (LINUX_VERSION_CODE <= KERNEL_VERSION(3, 10, 0)) |
| struct net_device *dev __attribute__ ((unused)) = (struct net_device *)ptr; |
| #else |
| struct net_device *dev = netdev_notifier_info_to_dev(ptr); |
| #endif |
| |
| DEBUG_INFO("Net device notifier for: %p, name: %s, event: %lx\n", dev, dev->name, event); |
| |
| switch (event) { |
| case NETDEV_DOWN: |
| DEBUG_INFO("Net device: %p, DOWN\n", dev); |
| ecm_interface_dev_regenerate_connections(dev); |
| break; |
| |
| case NETDEV_CHANGE: |
| DEBUG_INFO("Net device: %p, CHANGE\n", dev); |
| if (!netif_carrier_ok(dev)) { |
| DEBUG_INFO("Net device: %p, CARRIER BAD\n", dev); |
| if (netif_is_bond_slave(dev)) { |
| struct net_device *master; |
| master = ecm_interface_get_and_hold_dev_master(dev); |
| DEBUG_ASSERT(master, "Expected a master\n"); |
| ecm_interface_dev_regenerate_connections(master); |
| dev_put(master); |
| } else { |
| ecm_interface_dev_regenerate_connections(dev); |
| } |
| } |
| break; |
| |
| case NETDEV_CHANGEMTU: |
| DEBUG_INFO("Net device: %p, MTU CHANGE\n", dev); |
| ecm_interface_mtu_change(dev); |
| break; |
| |
| default: |
| DEBUG_TRACE("Net device: %p, UNHANDLED: %lx\n", dev, event); |
| break; |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| /* |
| * struct notifier_block ecm_interface_netdev_notifier |
| * Registration for net device changes of state. |
| */ |
| static struct notifier_block ecm_interface_netdev_notifier __read_mostly = { |
| .notifier_call = ecm_interface_netdev_notifier_callback, |
| }; |
| |
| /* |
| * ecm_interfae_node_br_fdb_notify_event() |
| * This is a call back for "bridge fdb update event/ageing timer expire |
| * event". |
| */ |
| static int ecm_interface_node_br_fdb_notify_event(struct notifier_block *nb, |
| unsigned long val, |
| void *data) |
| { |
| uint8_t *mac = (uint8_t *)data; |
| struct ecm_db_node_instance *node = NULL; |
| |
| if(unlikely(!mac)) { |
| DEBUG_WARN("mac address passed to ecm_interface_node_br_fdb_notify_event is null \n"); |
| return NOTIFY_DONE; |
| } |
| |
| /* |
| * find node instance corresponding to mac address |
| */ |
| node = ecm_db_node_find_and_ref(mac); |
| |
| if(unlikely(!node)) { |
| DEBUG_WARN("node address is null \n"); |
| return NOTIFY_DONE; |
| } |
| |
| ecm_db_traverse_node_from_connection_list_and_decelerate(node); |
| ecm_db_traverse_node_to_connection_list_and_decelerate(node); |
| ecm_db_traverse_node_from_nat_connection_list_and_decelerate(node); |
| ecm_db_traverse_node_to_nat_connection_list_and_decelerate(node); |
| |
| ecm_db_node_deref(node); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block ecm_interface_node_br_fdb_update_nb = { |
| .notifier_call = ecm_interface_node_br_fdb_notify_event, |
| }; |
| |
| /* |
| * ecm_interface_init() |
| */ |
| int ecm_interface_init(void) |
| { |
| int result; |
| DEBUG_INFO("ECM Interface init\n"); |
| |
| result = register_netdevice_notifier(&ecm_interface_netdev_notifier); |
| if (result != 0) { |
| DEBUG_ERROR("Failed to register netdevice notifier %d\n", result); |
| return result; |
| } |
| |
| /* |
| * register for bridge fdb database modificationevents |
| */ |
| br_fdb_update_register_notify(&ecm_interface_node_br_fdb_update_nb); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ecm_interface_init); |
| |
| /* |
| * ecm_interface_exit() |
| */ |
| void ecm_interface_exit(void) |
| { |
| DEBUG_INFO("ECM Interface exit\n"); |
| |
| spin_lock_bh(&ecm_interface_lock); |
| ecm_interface_terminate_pending = true; |
| spin_unlock_bh(&ecm_interface_lock); |
| |
| unregister_netdevice_notifier(&ecm_interface_netdev_notifier); |
| |
| /* |
| * unregister for bridge fdb update events |
| */ |
| br_fdb_update_unregister_notify(&ecm_interface_node_br_fdb_update_nb); |
| } |
| EXPORT_SYMBOL(ecm_interface_exit); |