blob: 0c258b4259c515b65a4204e5915d5084560b9a4e [file] [log] [blame]
/*
* Copyright (c) 2016 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <svm/svm_fifo.h>
#include <vppinfra/cpu.h>
static inline u8
position_lt (svm_fifo_t * f, u32 a, u32 b)
{
return (ooo_segment_distance_from_tail (f, a)
< ooo_segment_distance_from_tail (f, b));
}
static inline u8
position_leq (svm_fifo_t * f, u32 a, u32 b)
{
return (ooo_segment_distance_from_tail (f, a)
<= ooo_segment_distance_from_tail (f, b));
}
static inline u8
position_gt (svm_fifo_t * f, u32 a, u32 b)
{
return (ooo_segment_distance_from_tail (f, a)
> ooo_segment_distance_from_tail (f, b));
}
static inline u32
position_diff (svm_fifo_t * f, u32 posa, u32 posb)
{
return ooo_segment_distance_from_tail (f, posa)
- ooo_segment_distance_from_tail (f, posb);
}
static inline u32
ooo_segment_end_pos (svm_fifo_t * f, ooo_segment_t * s)
{
return (s->start + s->length) % f->nitems;
}
u8 *
format_ooo_segment (u8 * s, va_list * args)
{
svm_fifo_t *f = va_arg (*args, svm_fifo_t *);
ooo_segment_t *seg = va_arg (*args, ooo_segment_t *);
u32 normalized_start = (seg->start + f->nitems - f->tail) % f->nitems;
s = format (s, "[%u, %u], len %u, next %d, prev %d", normalized_start,
(normalized_start + seg->length) % f->nitems, seg->length,
seg->next, seg->prev);
return s;
}
u8 *
svm_fifo_dump_trace (u8 * s, svm_fifo_t * f)
{
#if SVM_FIFO_TRACE
svm_fifo_trace_elem_t *seg = 0;
int i = 0;
if (f->trace)
{
vec_foreach (seg, f->trace)
{
s = format (s, "{%u, %u, %u}, ", seg->offset, seg->len, seg->action);
i++;
if (i % 5 == 0)
s = format (s, "\n");
}
s = format (s, "\n");
}
return s;
#else
return 0;
#endif
}
u8 *
svm_fifo_replay (u8 * s, svm_fifo_t * f, u8 no_read, u8 verbose)
{
int i, trace_len;
u8 *data = 0;
svm_fifo_trace_elem_t *trace;
u32 offset;
svm_fifo_t *dummy_fifo;
if (!f)
return s;
#if SVM_FIFO_TRACE
trace = f->trace;
trace_len = vec_len (trace);
#else
trace = 0;
trace_len = 0;
#endif
dummy_fifo = svm_fifo_create (f->nitems);
memset (f->data, 0xFF, f->nitems);
vec_validate (data, f->nitems);
for (i = 0; i < vec_len (data); i++)
data[i] = i;
for (i = 0; i < trace_len; i++)
{
offset = trace[i].offset;
if (trace[i].action == 1)
{
if (verbose)
s = format (s, "adding [%u, %u]:", trace[i].offset,
(trace[i].offset +
trace[i].len) % dummy_fifo->nitems);
svm_fifo_enqueue_with_offset (dummy_fifo, trace[i].offset,
trace[i].len, &data[offset]);
}
else if (trace[i].action == 2)
{
if (verbose)
s = format (s, "adding [%u, %u]:", 0, trace[i].len);
svm_fifo_enqueue_nowait (dummy_fifo, trace[i].len, &data[offset]);
}
else if (!no_read)
{
if (verbose)
s = format (s, "read: %u", trace[i].len);
svm_fifo_dequeue_drop (dummy_fifo, trace[i].len);
}
if (verbose)
s = format (s, "%U", format_svm_fifo, dummy_fifo, 1);
}
s = format (s, "result: %U", format_svm_fifo, dummy_fifo, 1);
return s;
}
u8 *
format_ooo_list (u8 * s, va_list * args)
{
svm_fifo_t *f = va_arg (*args, svm_fifo_t *);
u32 ooo_segment_index = f->ooos_list_head;
ooo_segment_t *seg;
while (ooo_segment_index != OOO_SEGMENT_INVALID_INDEX)
{
seg = pool_elt_at_index (f->ooo_segments, ooo_segment_index);
s = format (s, " %U\n", format_ooo_segment, f, seg);
ooo_segment_index = seg->next;
}
return s;
}
u8 *
format_svm_fifo (u8 * s, va_list * args)
{
svm_fifo_t *f = va_arg (*args, svm_fifo_t *);
int verbose = va_arg (*args, int);
if (!s)
return s;
s = format (s, "cursize %u nitems %u has_event %d\n",
f->cursize, f->nitems, f->has_event);
s = format (s, " head %d tail %d segment manager %u\n", f->head, f->tail,
f->segment_manager);
if (verbose > 1)
s = format
(s, " vpp session %d thread %d app session %d thread %d\n",
f->master_session_index, f->master_thread_index,
f->client_session_index, f->client_thread_index);
if (verbose)
{
s = format (s, " ooo pool %d active elts newest %u\n",
pool_elts (f->ooo_segments), f->ooos_newest);
if (svm_fifo_has_ooo_data (f))
s = format (s, " %U", format_ooo_list, f, verbose);
}
return s;
}
/** create an svm fifo, in the current heap. Fails vs blow up the process */
svm_fifo_t *
svm_fifo_create (u32 data_size_in_bytes)
{
svm_fifo_t *f;
u32 rounded_data_size;
/* always round fifo data size to the next highest power-of-two */
rounded_data_size = (1 << (max_log2 (data_size_in_bytes)));
f = clib_mem_alloc_aligned_or_null (sizeof (*f) + rounded_data_size,
CLIB_CACHE_LINE_BYTES);
if (f == 0)
return 0;
memset (f, 0, sizeof (*f));
f->nitems = data_size_in_bytes;
f->ooos_list_head = OOO_SEGMENT_INVALID_INDEX;
f->refcnt = 1;
return (f);
}
void
svm_fifo_free (svm_fifo_t * f)
{
ASSERT (f->refcnt > 0);
if (--f->refcnt == 0)
{
pool_free (f->ooo_segments);
clib_mem_free (f);
}
}
always_inline ooo_segment_t *
ooo_segment_new (svm_fifo_t * f, u32 start, u32 length)
{
ooo_segment_t *s;
pool_get (f->ooo_segments, s);
s->start = start;
s->length = length;
s->prev = s->next = OOO_SEGMENT_INVALID_INDEX;
return s;
}
always_inline void
ooo_segment_del (svm_fifo_t * f, u32 index)
{
ooo_segment_t *cur, *prev = 0, *next = 0;
cur = pool_elt_at_index (f->ooo_segments, index);
if (cur->next != OOO_SEGMENT_INVALID_INDEX)
{
next = pool_elt_at_index (f->ooo_segments, cur->next);
next->prev = cur->prev;
}
if (cur->prev != OOO_SEGMENT_INVALID_INDEX)
{
prev = pool_elt_at_index (f->ooo_segments, cur->prev);
prev->next = cur->next;
}
else
{
f->ooos_list_head = cur->next;
}
pool_put (f->ooo_segments, cur);
}
/**
* Add segment to fifo's out-of-order segment list. Takes care of merging
* adjacent segments and removing overlapping ones.
*/
static void
ooo_segment_add (svm_fifo_t * f, u32 offset, u32 length)
{
ooo_segment_t *s, *new_s, *prev, *next, *it;
u32 new_index, s_end_pos, s_index;
u32 normalized_position, normalized_end_position;
ASSERT (offset + length <= ooo_segment_distance_from_tail (f, f->head));
normalized_position = (f->tail + offset) % f->nitems;
normalized_end_position = (f->tail + offset + length) % f->nitems;
f->ooos_newest = OOO_SEGMENT_INVALID_INDEX;
if (f->ooos_list_head == OOO_SEGMENT_INVALID_INDEX)
{
s = ooo_segment_new (f, normalized_position, length);
f->ooos_list_head = s - f->ooo_segments;
f->ooos_newest = f->ooos_list_head;
return;
}
/* Find first segment that starts after new segment */
s = pool_elt_at_index (f->ooo_segments, f->ooos_list_head);
while (s->next != OOO_SEGMENT_INVALID_INDEX
&& position_lt (f, s->start, normalized_position))
s = pool_elt_at_index (f->ooo_segments, s->next);
/* If we have a previous and we overlap it, use it as starting point */
prev = ooo_segment_get_prev (f, s);
if (prev
&& position_leq (f, normalized_position, ooo_segment_end_pos (f, prev)))
{
s = prev;
s_end_pos = ooo_segment_end_pos (f, s);
/* Since we have previous, normalized start position cannot be smaller
* than prev->start. Check tail */
ASSERT (position_lt (f, s->start, normalized_position));
goto check_tail;
}
s_index = s - f->ooo_segments;
s_end_pos = ooo_segment_end_pos (f, s);
/* No overlap, add before current segment */
if (position_lt (f, normalized_end_position, s->start))
{
new_s = ooo_segment_new (f, normalized_position, length);
new_index = new_s - f->ooo_segments;
/* Pool might've moved, get segment again */
s = pool_elt_at_index (f->ooo_segments, s_index);
if (s->prev != OOO_SEGMENT_INVALID_INDEX)
{
new_s->prev = s->prev;
prev = pool_elt_at_index (f->ooo_segments, new_s->prev);
prev->next = new_index;
}
else
{
/* New head */
f->ooos_list_head = new_index;
}
new_s->next = s_index;
s->prev = new_index;
f->ooos_newest = new_index;
return;
}
/* No overlap, add after current segment */
else if (position_gt (f, normalized_position, s_end_pos))
{
new_s = ooo_segment_new (f, normalized_position, length);
new_index = new_s - f->ooo_segments;
/* Pool might've moved, get segment again */
s = pool_elt_at_index (f->ooo_segments, s_index);
/* Needs to be last */
ASSERT (s->next == OOO_SEGMENT_INVALID_INDEX);
new_s->prev = s_index;
s->next = new_index;
f->ooos_newest = new_index;
return;
}
/*
* Merge needed
*/
/* Merge at head */
if (position_lt (f, normalized_position, s->start))
{
s->start = normalized_position;
s->length = position_diff (f, s_end_pos, s->start);
f->ooos_newest = s - f->ooo_segments;
}
check_tail:
/* Overlapping tail */
if (position_gt (f, normalized_end_position, s_end_pos))
{
s->length = position_diff (f, normalized_end_position, s->start);
/* Remove the completely overlapped segments in the tail */
it = ooo_segment_next (f, s);
while (it && position_leq (f, ooo_segment_end_pos (f, it),
normalized_end_position))
{
next = ooo_segment_next (f, it);
ooo_segment_del (f, it - f->ooo_segments);
it = next;
}
/* If partial overlap with last, merge */
if (it && position_leq (f, it->start, normalized_end_position))
{
s->length = position_diff (f, ooo_segment_end_pos (f, it),
s->start);
ooo_segment_del (f, it - f->ooo_segments);
}
f->ooos_newest = s - f->ooo_segments;
}
}
/**
* Removes segments that can now be enqueued because the fifo's tail has
* advanced. Returns the number of bytes added to tail.
*/
static int
ooo_segment_try_collect (svm_fifo_t * f, u32 n_bytes_enqueued)
{
ooo_segment_t *s;
u32 index, bytes = 0;
i32 diff;
s = pool_elt_at_index (f->ooo_segments, f->ooos_list_head);
diff = ooo_segment_distance_to_tail (f, s->start);
ASSERT (diff != n_bytes_enqueued);
if (diff > n_bytes_enqueued)
return 0;
/* If last tail update overlaps one/multiple ooo segments, remove them */
while (0 <= diff && diff < n_bytes_enqueued)
{
index = s - f->ooo_segments;
/* Segment end is beyond the tail. Advance tail and remove segment */
if (s->length > diff)
{
bytes = s->length - diff;
f->tail += bytes;
f->tail %= f->nitems;
ooo_segment_del (f, index);
break;
}
/* If we have next go on */
if (s->next != OOO_SEGMENT_INVALID_INDEX)
{
s = pool_elt_at_index (f->ooo_segments, s->next);
diff = ooo_segment_distance_to_tail (f, s->start);
ooo_segment_del (f, index);
}
/* End of search */
else
{
ooo_segment_del (f, index);
break;
}
}
ASSERT (bytes <= f->nitems);
return bytes;
}
static int
svm_fifo_enqueue_internal (svm_fifo_t * f, u32 max_bytes,
const u8 * copy_from_here)
{
u32 total_copy_bytes, first_copy_bytes, second_copy_bytes;
u32 cursize, nitems;
/* read cursize, which can only increase while we're working */
cursize = svm_fifo_max_dequeue (f);
f->ooos_newest = OOO_SEGMENT_INVALID_INDEX;
if (PREDICT_FALSE (cursize == f->nitems))
return SVM_FIFO_FULL;
nitems = f->nitems;
/* Number of bytes we're going to copy */
total_copy_bytes = (nitems - cursize) < max_bytes ?
(nitems - cursize) : max_bytes;
if (PREDICT_TRUE (copy_from_here != 0))
{
/* Number of bytes in first copy segment */
first_copy_bytes = ((nitems - f->tail) < total_copy_bytes)
? (nitems - f->tail) : total_copy_bytes;
clib_memcpy (&f->data[f->tail], copy_from_here, first_copy_bytes);
f->tail += first_copy_bytes;
f->tail = (f->tail == nitems) ? 0 : f->tail;
/* Number of bytes in second copy segment, if any */
second_copy_bytes = total_copy_bytes - first_copy_bytes;
if (second_copy_bytes)
{
clib_memcpy (&f->data[f->tail], copy_from_here + first_copy_bytes,
second_copy_bytes);
f->tail += second_copy_bytes;
f->tail = (f->tail == nitems) ? 0 : f->tail;
}
}
else
{
ASSERT (0);
/* Account for a zero-copy enqueue done elsewhere */
ASSERT (max_bytes <= (nitems - cursize));
f->tail += max_bytes;
f->tail = f->tail % nitems;
total_copy_bytes = max_bytes;
}
svm_fifo_trace_add (f, f->head, total_copy_bytes, 2);
/* Any out-of-order segments to collect? */
if (PREDICT_FALSE (f->ooos_list_head != OOO_SEGMENT_INVALID_INDEX))
total_copy_bytes += ooo_segment_try_collect (f, total_copy_bytes);
/* Atomically increase the queue length */
ASSERT (cursize + total_copy_bytes <= nitems);
__sync_fetch_and_add (&f->cursize, total_copy_bytes);
return (total_copy_bytes);
}
#define SVM_ENQUEUE_CLONE_TEMPLATE(arch, fn, tgt) \
uword \
__attribute__ ((flatten)) \
__attribute__ ((target (tgt))) \
CLIB_CPU_OPTIMIZED \
fn ## _ ## arch ( svm_fifo_t * f, u32 max_bytes, u8 * copy_from_here) \
{ return fn (f, max_bytes, copy_from_here);}
static int
svm_fifo_enqueue_nowait_ma (svm_fifo_t * f, u32 max_bytes,
const u8 * copy_from_here)
{
return svm_fifo_enqueue_internal (f, max_bytes, copy_from_here);
}
foreach_march_variant (SVM_ENQUEUE_CLONE_TEMPLATE,
svm_fifo_enqueue_nowait_ma);
CLIB_MULTIARCH_SELECT_FN (svm_fifo_enqueue_nowait_ma);
int
svm_fifo_enqueue_nowait (svm_fifo_t * f, u32 max_bytes,
const u8 * copy_from_here)
{
#if CLIB_DEBUG > 0
return svm_fifo_enqueue_nowait_ma (f, max_bytes, copy_from_here);
#else
static int (*fp) (svm_fifo_t *, u32, const u8 *);
if (PREDICT_FALSE (fp == 0))
fp = (void *) svm_fifo_enqueue_nowait_ma_multiarch_select ();
return (*fp) (f, max_bytes, copy_from_here);
#endif
}
/**
* Enqueue a future segment.
*
* Two choices: either copies the entire segment, or copies nothing
* Returns 0 of the entire segment was copied
* Returns -1 if none of the segment was copied due to lack of space
*/
static int
svm_fifo_enqueue_with_offset_internal (svm_fifo_t * f,
u32 offset,
u32 required_bytes,
u8 * copy_from_here)
{
u32 total_copy_bytes, first_copy_bytes, second_copy_bytes;
u32 cursize, nitems, normalized_offset;
f->ooos_newest = OOO_SEGMENT_INVALID_INDEX;
/* read cursize, which can only increase while we're working */
cursize = svm_fifo_max_dequeue (f);
nitems = f->nitems;
ASSERT (required_bytes < nitems);
normalized_offset = (f->tail + offset) % nitems;
/* Will this request fit? */
if ((required_bytes + offset) > (nitems - cursize))
return -1;
svm_fifo_trace_add (f, offset, required_bytes, 1);
ooo_segment_add (f, offset, required_bytes);
/* Number of bytes we're going to copy */
total_copy_bytes = required_bytes;
/* Number of bytes in first copy segment */
first_copy_bytes = ((nitems - normalized_offset) < total_copy_bytes)
? (nitems - normalized_offset) : total_copy_bytes;
clib_memcpy (&f->data[normalized_offset], copy_from_here, first_copy_bytes);
/* Number of bytes in second copy segment, if any */
second_copy_bytes = total_copy_bytes - first_copy_bytes;
if (second_copy_bytes)
{
normalized_offset += first_copy_bytes;
normalized_offset %= nitems;
ASSERT (normalized_offset == 0);
clib_memcpy (&f->data[normalized_offset],
copy_from_here + first_copy_bytes, second_copy_bytes);
}
return (0);
}
int
svm_fifo_enqueue_with_offset (svm_fifo_t * f,
u32 offset,
u32 required_bytes, u8 * copy_from_here)
{
return svm_fifo_enqueue_with_offset_internal (f, offset, required_bytes,
copy_from_here);
}
void
svm_fifo_overwrite_head (svm_fifo_t * f, u8 * data, u32 len)
{
u32 first_chunk;
first_chunk = f->nitems - f->head;
ASSERT (len <= f->nitems);
if (len <= first_chunk)
clib_memcpy (&f->data[f->head], data, len);
else
{
clib_memcpy (&f->data[f->head], data, first_chunk);
clib_memcpy (&f->data[0], data + first_chunk, len - first_chunk);
}
}
static int
svm_fifo_dequeue_internal (svm_fifo_t * f, u32 max_bytes, u8 * copy_here)
{
u32 total_copy_bytes, first_copy_bytes, second_copy_bytes;
u32 cursize, nitems;
/* read cursize, which can only increase while we're working */
cursize = svm_fifo_max_dequeue (f);
if (PREDICT_FALSE (cursize == 0))
return -2; /* nothing in the fifo */
nitems = f->nitems;
/* Number of bytes we're going to copy */
total_copy_bytes = (cursize < max_bytes) ? cursize : max_bytes;
if (PREDICT_TRUE (copy_here != 0))
{
/* Number of bytes in first copy segment */
first_copy_bytes = ((nitems - f->head) < total_copy_bytes)
? (nitems - f->head) : total_copy_bytes;
clib_memcpy (copy_here, &f->data[f->head], first_copy_bytes);
f->head += first_copy_bytes;
f->head = (f->head == nitems) ? 0 : f->head;
/* Number of bytes in second copy segment, if any */
second_copy_bytes = total_copy_bytes - first_copy_bytes;
if (second_copy_bytes)
{
clib_memcpy (copy_here + first_copy_bytes,
&f->data[f->head], second_copy_bytes);
f->head += second_copy_bytes;
f->head = (f->head == nitems) ? 0 : f->head;
}
}
else
{
ASSERT (0);
/* Account for a zero-copy dequeue done elsewhere */
ASSERT (max_bytes <= cursize);
f->head += max_bytes;
f->head = f->head % nitems;
cursize -= max_bytes;
total_copy_bytes = max_bytes;
}
ASSERT (f->head <= nitems);
ASSERT (cursize >= total_copy_bytes);
__sync_fetch_and_sub (&f->cursize, total_copy_bytes);
return (total_copy_bytes);
}
static int
svm_fifo_dequeue_nowait_ma (svm_fifo_t * f, u32 max_bytes, u8 * copy_here)
{
return svm_fifo_dequeue_internal (f, max_bytes, copy_here);
}
#define SVM_FIFO_DEQUEUE_CLONE_TEMPLATE(arch, fn, tgt) \
uword \
__attribute__ ((flatten)) \
__attribute__ ((target (tgt))) \
CLIB_CPU_OPTIMIZED \
fn ## _ ## arch ( svm_fifo_t * f, u32 max_bytes, \
u8 * copy_here) \
{ return fn (f, max_bytes, copy_here);}
foreach_march_variant (SVM_FIFO_DEQUEUE_CLONE_TEMPLATE,
svm_fifo_dequeue_nowait_ma);
CLIB_MULTIARCH_SELECT_FN (svm_fifo_dequeue_nowait_ma);
int
svm_fifo_dequeue_nowait (svm_fifo_t * f, u32 max_bytes, u8 * copy_here)
{
#if CLIB_DEBUG > 0
return svm_fifo_dequeue_nowait_ma (f, max_bytes, copy_here);
#else
static int (*fp) (svm_fifo_t *, u32, u8 *);
if (PREDICT_FALSE (fp == 0))
fp = (void *) svm_fifo_dequeue_nowait_ma_multiarch_select ();
return (*fp) (f, max_bytes, copy_here);
#endif
}
static int
svm_fifo_peek_ma (svm_fifo_t * f, u32 relative_offset, u32 max_bytes,
u8 * copy_here)
{
u32 total_copy_bytes, first_copy_bytes, second_copy_bytes;
u32 cursize, nitems, real_head;
/* read cursize, which can only increase while we're working */
cursize = svm_fifo_max_dequeue (f);
if (PREDICT_FALSE (cursize < relative_offset))
return -2; /* nothing in the fifo */
nitems = f->nitems;
real_head = f->head + relative_offset;
real_head = real_head >= nitems ? real_head - nitems : real_head;
/* Number of bytes we're going to copy */
total_copy_bytes = (cursize - relative_offset < max_bytes) ?
cursize - relative_offset : max_bytes;
if (PREDICT_TRUE (copy_here != 0))
{
/* Number of bytes in first copy segment */
first_copy_bytes =
((nitems - real_head) < total_copy_bytes) ?
(nitems - real_head) : total_copy_bytes;
clib_memcpy (copy_here, &f->data[real_head], first_copy_bytes);
/* Number of bytes in second copy segment, if any */
second_copy_bytes = total_copy_bytes - first_copy_bytes;
if (second_copy_bytes)
{
clib_memcpy (copy_here + first_copy_bytes, &f->data[0],
second_copy_bytes);
}
}
return total_copy_bytes;
}
#define SVM_FIFO_PEEK_CLONE_TEMPLATE(arch, fn, tgt) \
uword \
__attribute__ ((flatten)) \
__attribute__ ((target (tgt))) \
CLIB_CPU_OPTIMIZED \
fn ## _ ## arch ( svm_fifo_t * f, u32 relative_offset, u32 max_bytes, \
u8 * copy_here) \
{ return fn (f, relative_offset, max_bytes, copy_here);}
foreach_march_variant (SVM_FIFO_PEEK_CLONE_TEMPLATE, svm_fifo_peek_ma);
CLIB_MULTIARCH_SELECT_FN (svm_fifo_peek_ma);
int
svm_fifo_peek (svm_fifo_t * f, u32 relative_offset, u32 max_bytes,
u8 * copy_here)
{
#if CLIB_DEBUG > 0
return svm_fifo_peek_ma (f, relative_offset, max_bytes, copy_here);
#else
static int (*fp) (svm_fifo_t *, u32, u32, u8 *);
if (PREDICT_FALSE (fp == 0))
fp = (void *) svm_fifo_peek_ma_multiarch_select ();
return (*fp) (f, relative_offset, max_bytes, copy_here);
#endif
}
int
svm_fifo_dequeue_drop (svm_fifo_t * f, u32 max_bytes)
{
u32 total_drop_bytes, first_drop_bytes, second_drop_bytes;
u32 cursize, nitems;
/* read cursize, which can only increase while we're working */
cursize = svm_fifo_max_dequeue (f);
if (PREDICT_FALSE (cursize == 0))
return -2; /* nothing in the fifo */
nitems = f->nitems;
/* Number of bytes we're going to drop */
total_drop_bytes = (cursize < max_bytes) ? cursize : max_bytes;
svm_fifo_trace_add (f, f->tail, total_drop_bytes, 3);
/* Number of bytes in first copy segment */
first_drop_bytes =
((nitems - f->head) < total_drop_bytes) ?
(nitems - f->head) : total_drop_bytes;
f->head += first_drop_bytes;
f->head = (f->head == nitems) ? 0 : f->head;
/* Number of bytes in second drop segment, if any */
second_drop_bytes = total_drop_bytes - first_drop_bytes;
if (second_drop_bytes)
{
f->head += second_drop_bytes;
f->head = (f->head == nitems) ? 0 : f->head;
}
ASSERT (f->head <= nitems);
ASSERT (cursize >= total_drop_bytes);
__sync_fetch_and_sub (&f->cursize, total_drop_bytes);
return total_drop_bytes;
}
void
svm_fifo_dequeue_drop_all (svm_fifo_t * f)
{
f->head = f->tail;
__sync_fetch_and_sub (&f->cursize, f->cursize);
}
int
svm_fifo_segments (svm_fifo_t * f, svm_fifo_segment_t * fs)
{
u32 cursize, nitems;
/* read cursize, which can only increase while we're working */
cursize = svm_fifo_max_dequeue (f);
if (PREDICT_FALSE (cursize == 0))
return -2;
nitems = f->nitems;
fs[0].len = ((nitems - f->head) < cursize) ? (nitems - f->head) : cursize;
fs[0].data = f->data + f->head;
if (fs[0].len < cursize)
{
fs[1].len = cursize - fs[0].len;
fs[1].data = f->data;
}
else
{
fs[1].len = 0;
fs[1].data = 0;
}
return cursize;
}
void
svm_fifo_segments_free (svm_fifo_t * f, svm_fifo_segment_t * fs)
{
u32 total_drop_bytes;
ASSERT (fs[0].data == f->data + f->head);
if (fs[1].len)
{
f->head = fs[1].len;
total_drop_bytes = fs[0].len + fs[1].len;
}
else
{
f->head = (f->head + fs[0].len) % f->nitems;
total_drop_bytes = fs[0].len;
}
__sync_fetch_and_sub (&f->cursize, total_drop_bytes);
}
u32
svm_fifo_number_ooo_segments (svm_fifo_t * f)
{
return pool_elts (f->ooo_segments);
}
ooo_segment_t *
svm_fifo_first_ooo_segment (svm_fifo_t * f)
{
return pool_elt_at_index (f->ooo_segments, f->ooos_list_head);
}
/**
* Set fifo pointers to requested offset
*/
void
svm_fifo_init_pointers (svm_fifo_t * f, u32 pointer)
{
f->head = f->tail = pointer % f->nitems;
}
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/