| /* |
| * Copyright (c) 2016 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| /* |
| Copyright (c) 2001, 2002, 2003 Eliot Dresselhaus |
| |
| Permission is hereby granted, free of charge, to any person obtaining |
| a copy of this software and associated documentation files (the |
| "Software"), to deal in the Software without restriction, including |
| without limitation the rights to use, copy, modify, merge, publish, |
| distribute, sublicense, and/or sell copies of the Software, and to |
| permit persons to whom the Software is furnished to do so, subject to |
| the following conditions: |
| |
| The above copyright notice and this permission notice shall be |
| included in all copies or substantial portions of the Software. |
| |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /** \file |
| |
| Optimized string handling code, including c11-compliant |
| "safe C library" variants. |
| */ |
| |
| #ifndef included_clib_string_h |
| #define included_clib_string_h |
| |
| #include <vppinfra/clib.h> /* for CLIB_LINUX_KERNEL */ |
| #include <vppinfra/vector.h> |
| #include <vppinfra/error_bootstrap.h> |
| #ifdef __SSE4_2__ |
| #include <vppinfra/memcpy_x86_64.h> |
| #endif |
| |
| #ifdef CLIB_LINUX_KERNEL |
| #include <linux/string.h> |
| #endif |
| |
| #ifdef CLIB_UNIX |
| #include <string.h> |
| #endif |
| |
| #ifdef CLIB_STANDALONE |
| #include <vppinfra/standalone_string.h> |
| #endif |
| |
| #if _x86_64_ |
| #include <x86intrin.h> |
| #endif |
| |
| /* Exchanges source and destination. */ |
| void clib_memswap (void *_a, void *_b, uword bytes); |
| |
| |
| static_always_inline void * |
| clib_memcpy_fast (void *restrict dst, const void *restrict src, size_t n) |
| { |
| ASSERT (dst && src && |
| "memcpy(src, dst, n) with src == NULL or dst == NULL is undefined " |
| "behaviour"); |
| #if defined(__COVERITY__) |
| return memcpy (dst, src, n); |
| #elif defined(__SSE4_2__) |
| clib_memcpy_x86_64 (dst, src, n); |
| return dst; |
| #else |
| return memcpy (dst, src, n); |
| #endif |
| } |
| |
| static_always_inline void * |
| clib_memmove (void *dst, const void *src, size_t n) |
| { |
| u8 *d = (u8 *) dst; |
| u8 *s = (u8 *) src; |
| |
| if (s == d) |
| return d; |
| |
| if (d > s) |
| for (uword i = n - 1; (i + 1) > 0; i--) |
| d[i] = s[i]; |
| else |
| for (uword i = 0; i < n; i++) |
| d[i] = s[i]; |
| |
| return d; |
| } |
| |
| #include <vppinfra/memcpy.h> |
| |
| /* c-11 string manipulation variants */ |
| |
| #ifndef EOK |
| #define EOK 0 |
| #endif |
| #ifndef EINVAL |
| #define EINVAL 22 |
| #endif |
| #ifndef ESRCH |
| #define ESRCH 3 |
| #endif |
| #ifndef EOVERFLOW |
| #define EOVERFLOW 75 |
| #endif |
| |
| /* |
| * In order to provide smooth mapping from unsafe string API to the clib string |
| * macro, we often have to improvise s1max and s2max due to the additional |
| * arguments are required for implementing the safe API. This macro is used |
| * to provide the s1max/s2max. It is not perfect because the actual |
| * s1max/s2max may be greater than 4k and the mapping from the unsafe API to |
| * the macro would cause a regression. However, it is not terribly likely. |
| * So I bet against the odds. |
| */ |
| #define CLIB_STRING_MACRO_MAX 4096 |
| |
| typedef int errno_t; |
| typedef uword rsize_t; |
| |
| void clib_c11_violation (const char *s); |
| errno_t memcpy_s (void *__restrict__ dest, rsize_t dmax, |
| const void *__restrict__ src, rsize_t n); |
| |
| always_inline errno_t |
| memcpy_s_inline (void *__restrict__ dest, rsize_t dmax, |
| const void *__restrict__ src, rsize_t n) |
| { |
| uword low, hi; |
| u8 bad; |
| |
| /* |
| * Optimize constant-number-of-bytes calls without asking |
| * "too many questions for someone from New Jersey" |
| */ |
| if (COMPILE_TIME_CONST (n)) |
| { |
| clib_memcpy_fast (dest, src, n); |
| return EOK; |
| } |
| |
| /* |
| * call bogus if: src or dst NULL, trying to copy |
| * more data than we have space in dst, or src == dst. |
| * n == 0 isn't really "bad", so check first in the |
| * "wall-of-shame" department... |
| */ |
| bad = (dest == 0) + (src == 0) + (n > dmax) + (dest == src) + (n == 0); |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| /* Not actually trying to copy anything is OK */ |
| if (n == 0) |
| return EOK; |
| if (dest == NULL) |
| clib_c11_violation ("dest NULL"); |
| if (src == NULL) |
| clib_c11_violation ("src NULL"); |
| if (n > dmax) |
| clib_c11_violation ("n > dmax"); |
| if (dest == src) |
| clib_c11_violation ("dest == src"); |
| return EINVAL; |
| } |
| |
| /* Check for src/dst overlap, which is not allowed */ |
| low = (uword) (src < dest ? src : dest); |
| hi = (uword) (src < dest ? dest : src); |
| |
| if (PREDICT_FALSE (low + (n - 1) >= hi)) |
| { |
| clib_c11_violation ("src/dest overlap"); |
| return EINVAL; |
| } |
| |
| clib_memcpy_fast (dest, src, n); |
| return EOK; |
| } |
| |
| /* |
| * Note: $$$ This macro is a crutch. Folks need to manually |
| * inspect every extant clib_memcpy(...) call and |
| * attempt to provide a real destination buffer size |
| * argument... |
| */ |
| #define clib_memcpy(d,s,n) memcpy_s_inline(d,n,s,n) |
| |
| errno_t memset_s (void *s, rsize_t smax, int c, rsize_t n); |
| |
| always_inline errno_t |
| memset_s_inline (void *s, rsize_t smax, int c, rsize_t n) |
| { |
| u8 bad; |
| |
| bad = (s == 0) + (n > smax); |
| |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| if (s == 0) |
| clib_c11_violation ("s NULL"); |
| if (n > smax) |
| clib_c11_violation ("n > smax"); |
| return (EINVAL); |
| } |
| memset (s, c, n); |
| return (EOK); |
| } |
| |
| /* |
| * This macro is not [so much of] a crutch. |
| * It's super-typical to write: |
| * |
| * ep = pool_get (<pool>); |
| * clib_memset(ep, 0, sizeof (*ep)); |
| * |
| * The compiler should delete the not-so useful |
| * (n > smax) test. TBH the NULL pointer check isn't |
| * so useful in this case, but so be it. |
| */ |
| #define clib_memset(s,c,n) memset_s_inline(s,n,c,n) |
| |
| static_always_inline void |
| clib_memcpy_le (u8 * dst, u8 * src, u8 len, u8 max_len) |
| { |
| #if defined (CLIB_HAVE_VEC256) |
| u8x32 s0, s1, d0, d1; |
| u8x32 mask = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, |
| 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 |
| }; |
| u8x32 lv = u8x32_splat (len); |
| u8x32 add = u8x32_splat (32); |
| |
| s0 = u8x32_load_unaligned (src); |
| s1 = u8x32_load_unaligned (src + 32); |
| d0 = u8x32_load_unaligned (dst); |
| d1 = u8x32_load_unaligned (dst + 32); |
| |
| d0 = u8x32_blend (d0, s0, lv > mask); |
| u8x32_store_unaligned (d0, dst); |
| |
| if (max_len <= 32) |
| return; |
| |
| mask += add; |
| d1 = u8x32_blend (d1, s1, lv > mask); |
| u8x32_store_unaligned (d1, dst + 32); |
| |
| #elif defined (CLIB_HAVE_VEC128) |
| u8x16 s0, s1, s2, s3, d0, d1, d2, d3; |
| u8x16 mask = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; |
| u8x16 lv = u8x16_splat (len); |
| u8x16 add = u8x16_splat (16); |
| |
| s0 = u8x16_load_unaligned (src); |
| s1 = u8x16_load_unaligned (src + 16); |
| s2 = u8x16_load_unaligned (src + 32); |
| s3 = u8x16_load_unaligned (src + 48); |
| d0 = u8x16_load_unaligned (dst); |
| d1 = u8x16_load_unaligned (dst + 16); |
| d2 = u8x16_load_unaligned (dst + 32); |
| d3 = u8x16_load_unaligned (dst + 48); |
| |
| d0 = u8x16_blend (d0, s0, lv > mask); |
| u8x16_store_unaligned (d0, dst); |
| |
| if (max_len <= 16) |
| return; |
| |
| mask += add; |
| d1 = u8x16_blend (d1, s1, lv > mask); |
| u8x16_store_unaligned (d1, dst + 16); |
| |
| if (max_len <= 32) |
| return; |
| |
| mask += add; |
| d2 = u8x16_blend (d2, s2, lv > mask); |
| u8x16_store_unaligned (d2, dst + 32); |
| |
| mask += add; |
| d3 = u8x16_blend (d3, s3, lv > mask); |
| u8x16_store_unaligned (d3, dst + 48); |
| #else |
| memmove (dst, src, len); |
| #endif |
| } |
| |
| static_always_inline void |
| clib_memcpy_le64 (u8 * dst, u8 * src, u8 len) |
| { |
| clib_memcpy_le (dst, src, len, 64); |
| } |
| |
| static_always_inline void |
| clib_memcpy_le32 (u8 * dst, u8 * src, u8 len) |
| { |
| clib_memcpy_le (dst, src, len, 32); |
| } |
| |
| static_always_inline void |
| clib_memset_u64 (void *p, u64 val, uword count) |
| { |
| u64 *ptr = p; |
| #if defined(CLIB_HAVE_VEC512) |
| u64x8 v512 = u64x8_splat (val); |
| while (count >= 8) |
| { |
| u64x8_store_unaligned (v512, ptr); |
| ptr += 8; |
| count -= 8; |
| } |
| if (count == 0) |
| return; |
| #endif |
| #if defined(CLIB_HAVE_VEC256) |
| u64x4 v256 = u64x4_splat (val); |
| while (count >= 4) |
| { |
| u64x4_store_unaligned (v256, ptr); |
| ptr += 4; |
| count -= 4; |
| } |
| if (count == 0) |
| return; |
| #else |
| #if defined(CLIB_HAVE_VEC128) |
| u64x2 v = u64x2_splat (val); |
| #endif |
| while (count >= 4) |
| { |
| #if defined(CLIB_HAVE_VEC128) |
| u64x2_store_unaligned (v, ptr); |
| u64x2_store_unaligned (v, ptr + 2); |
| #else |
| ptr[0] = ptr[1] = ptr[2] = ptr[3] = val; |
| #endif |
| ptr += 4; |
| count -= 4; |
| } |
| #endif |
| while (count--) |
| ptr++[0] = val; |
| } |
| |
| static_always_inline void |
| clib_memset_u32 (void *p, u32 val, uword count) |
| { |
| u32 *ptr = p; |
| #if defined(CLIB_HAVE_VEC512) |
| u32x16 v512 = u32x16_splat (val); |
| while (count >= 16) |
| { |
| u32x16_store_unaligned (v512, ptr); |
| ptr += 16; |
| count -= 16; |
| } |
| if (count == 0) |
| return; |
| #endif |
| #if defined(CLIB_HAVE_VEC256) |
| u32x8 v256 = u32x8_splat (val); |
| while (count >= 8) |
| { |
| u32x8_store_unaligned (v256, ptr); |
| ptr += 8; |
| count -= 8; |
| } |
| if (count == 0) |
| return; |
| #endif |
| #if defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_UNALIGNED_LOAD_STORE) |
| u32x4 v128 = u32x4_splat (val); |
| while (count >= 4) |
| { |
| u32x4_store_unaligned (v128, ptr); |
| ptr += 4; |
| count -= 4; |
| } |
| #else |
| while (count >= 4) |
| { |
| ptr[0] = ptr[1] = ptr[2] = ptr[3] = val; |
| ptr += 4; |
| count -= 4; |
| } |
| #endif |
| while (count--) |
| ptr++[0] = val; |
| } |
| |
| static_always_inline void |
| clib_memset_u16 (void *p, u16 val, uword count) |
| { |
| u16 *ptr = p; |
| #if defined(CLIB_HAVE_VEC512) |
| u16x32 v512 = u16x32_splat (val); |
| while (count >= 32) |
| { |
| u16x32_store_unaligned (v512, ptr); |
| ptr += 32; |
| count -= 32; |
| } |
| if (count == 0) |
| return; |
| #endif |
| #if defined(CLIB_HAVE_VEC256) |
| u16x16 v256 = u16x16_splat (val); |
| while (count >= 16) |
| { |
| u16x16_store_unaligned (v256, ptr); |
| ptr += 16; |
| count -= 16; |
| } |
| if (count == 0) |
| return; |
| #endif |
| #if defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_UNALIGNED_LOAD_STORE) |
| u16x8 v128 = u16x8_splat (val); |
| while (count >= 8) |
| { |
| u16x8_store_unaligned (v128, ptr); |
| ptr += 8; |
| count -= 8; |
| } |
| #else |
| while (count >= 4) |
| { |
| ptr[0] = ptr[1] = ptr[2] = ptr[3] = val; |
| ptr += 4; |
| count -= 4; |
| } |
| #endif |
| while (count--) |
| ptr++[0] = val; |
| } |
| |
| static_always_inline void |
| clib_memset_u8 (void *p, u8 val, uword count) |
| { |
| u8 *ptr = p; |
| #if defined(CLIB_HAVE_VEC512) |
| u8x64 v512 = u8x64_splat (val); |
| while (count >= 64) |
| { |
| u8x64_store_unaligned (v512, ptr); |
| ptr += 64; |
| count -= 64; |
| } |
| if (count == 0) |
| return; |
| #endif |
| #if defined(CLIB_HAVE_VEC256) |
| u8x32 v256 = u8x32_splat (val); |
| while (count >= 32) |
| { |
| u8x32_store_unaligned (v256, ptr); |
| ptr += 32; |
| count -= 32; |
| } |
| if (count == 0) |
| return; |
| #endif |
| #if defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_UNALIGNED_LOAD_STORE) |
| u8x16 v128 = u8x16_splat (val); |
| while (count >= 16) |
| { |
| u8x16_store_unaligned (v128, ptr); |
| ptr += 16; |
| count -= 16; |
| } |
| #else |
| while (count >= 4) |
| { |
| ptr[0] = ptr[1] = ptr[2] = ptr[3] = val; |
| ptr += 4; |
| count -= 4; |
| } |
| #endif |
| while (count--) |
| ptr++[0] = val; |
| } |
| |
| |
| /* |
| * This macro is to provide smooth mapping from memcmp to memcmp_s. |
| * memcmp has fewer parameters and fewer returns than memcmp_s. |
| * This macro is somewhat a crutch. When err != EOK is returned from memcmp_s, |
| * we return 0 and spit out a message in the console because there is |
| * no way to return the error code to the memcmp callers. |
| * This condition happens when s1 or s2 is null. Please note |
| * in the extant memcmp calls, if s1, s2, or both are null, memcmp returns 0 |
| * anyway. So we are consistent in this case for the comparison return |
| * although we also spit out a C11 violation message in the console to |
| * warn that they pass null pointers for both s1 and s2. |
| * Applications are encouraged to use the cool C11 memcmp_s API to get the |
| * maximum benefit out of it. |
| */ |
| #define clib_memcmp(s1,s2,m1) \ |
| ({ int __diff = 0; \ |
| memcmp_s_inline (s1, m1, s2, m1, &__diff); \ |
| __diff; \ |
| }) |
| |
| errno_t memcmp_s (const void *s1, rsize_t s1max, const void *s2, |
| rsize_t s2max, int *diff); |
| |
| always_inline errno_t |
| memcmp_s_inline (const void *s1, rsize_t s1max, const void *s2, rsize_t s2max, |
| int *diff) |
| { |
| u8 bad; |
| |
| bad = (s1 == 0) + (s2 == 0) + (diff == 0) + (s2max > s1max) + (s2max == 0) + |
| (s1max == 0); |
| |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| if (s1 == NULL) |
| clib_c11_violation ("s1 NULL"); |
| if (s2 == NULL) |
| clib_c11_violation ("s2 NULL"); |
| if (diff == NULL) |
| clib_c11_violation ("diff NULL"); |
| if (s2max > s1max) |
| clib_c11_violation ("s2max > s1max"); |
| if (s2max == 0) |
| clib_c11_violation ("s2max 0"); |
| if (s1max == 0) |
| clib_c11_violation ("s1max 0"); |
| return EINVAL; |
| } |
| |
| if (PREDICT_FALSE (s1 == s2)) |
| { |
| *diff = 0; |
| return EOK; |
| } |
| |
| *diff = memcmp (s1, s2, s2max); |
| return EOK; |
| } |
| |
| /* |
| * This macro is to provide smooth mapping from strnlen to strnlen_s |
| */ |
| #define clib_strnlen(s,m) strnlen_s_inline(s,m) |
| |
| size_t strnlen_s (const char *s, size_t maxsize); |
| |
| always_inline size_t |
| strnlen_s_inline (const char *s, size_t maxsize) |
| { |
| u8 bad; |
| |
| bad = (s == 0) + (maxsize == 0); |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| if (s == 0) |
| clib_c11_violation ("s NULL"); |
| if (maxsize == 0) |
| clib_c11_violation ("maxsize 0"); |
| return 0; |
| } |
| return strnlen (s, maxsize); |
| } |
| |
| /* |
| * This macro is to provide smooth mapping from strcmp to strcmp_s. |
| * strcmp has fewer parameters and fewer returns than strcmp_s. |
| * This macro is somewhat a crutch. When err != EOK is returned from strcmp_s, |
| * we return 0 and spit out a message in the console because |
| * there is no way to return the error to the strcmp callers. |
| * This condition happens when s1 or s2 is null. Please note in the extant |
| * strcmp call, they would end up crashing if one of them is null. |
| * So the new behavior is no crash, but an error is displayed in the |
| * console which I think is more user friendly. If both s1 and s2 are null, |
| * strcmp returns 0. Obviously, strcmp did the pointers comparison prior |
| * to actually accessing the pointer contents. We are still consistent |
| * in this case for the comparison return although we also spit out a |
| * C11 violation message in the console to warn that they pass null pointers |
| * for both s1 and s2. The other problem is strcmp does not provide s1max, |
| * we use CLIB_STRING_MACRO_MAX and hopefully, s1 is null terminated. |
| * If not, we may be accessing memory beyonf what is intended. |
| * Applications are encouraged to use the cool C11 strcmp_s API to get the |
| * maximum benefit out of it. |
| */ |
| #define clib_strcmp(s1,s2) \ |
| ({ int __indicator = 0; \ |
| strcmp_s_inline (s1, CLIB_STRING_MACRO_MAX, s2, &__indicator); \ |
| __indicator; \ |
| }) |
| |
| errno_t strcmp_s (const char *s1, rsize_t s1max, const char *s2, |
| int *indicator); |
| |
| always_inline errno_t |
| strcmp_s_inline (const char *s1, rsize_t s1max, const char *s2, |
| int *indicator) |
| { |
| u8 bad; |
| |
| bad = (indicator == 0) + (s1 == 0) + (s2 == 0) + (s1max == 0) + |
| (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0'); |
| |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| if (indicator == NULL) |
| clib_c11_violation ("indicator NULL"); |
| if (s1 == NULL) |
| clib_c11_violation ("s1 NULL"); |
| if (s2 == NULL) |
| clib_c11_violation ("s2 NULL"); |
| if (s1max == 0) |
| clib_c11_violation ("s1max 0"); |
| if (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0') |
| clib_c11_violation ("s1 unterminated"); |
| return EINVAL; |
| } |
| |
| *indicator = strcmp (s1, s2); |
| return EOK; |
| } |
| |
| /* |
| * This macro is to provide smooth mapping from strncmp to strncmp_s. |
| * strncmp has fewer parameters and fewer returns than strncmp_s. That said, |
| * this macro is somewhat a crutch. When we get err != EOK from strncmp_s, |
| * we return 0 and spit out a message in the console because there is no |
| * means to return the error to the strncmp caller. |
| * This condition happens when s1 or s2 is null. In the extant strncmp call, |
| * they would end up crashing if one of them is null. So the new behavior is |
| * no crash, but error is displayed in the console which is more |
| * user friendly. If s1 and s2 are null, strncmp returns 0. Obviously, |
| * strncmp did the pointers comparison prior to actually accessing the |
| * pointer contents. We are still consistent in this case for the comparison |
| * return although we also spit out a C11 violation message in the console to |
| * warn that they pass null pointers for both s1 and s2. |
| * Applications are encouraged to use the cool C11 strncmp_s API to get the |
| * maximum benefit out of it. |
| */ |
| #define clib_strncmp(s1,s2,n) \ |
| ({ int __indicator = 0; \ |
| strncmp_s_inline (s1, CLIB_STRING_MACRO_MAX, s2, n, &__indicator); \ |
| __indicator; \ |
| }) |
| |
| errno_t strncmp_s (const char *s1, rsize_t s1max, const char *s2, rsize_t n, |
| int *indicator); |
| |
| always_inline errno_t |
| strncmp_s_inline (const char *s1, rsize_t s1max, const char *s2, rsize_t n, |
| int *indicator) |
| { |
| u8 bad; |
| u8 s1_greater_s1max = (s1 && s1max && n > clib_strnlen (s1, s1max)); |
| |
| if (PREDICT_FALSE (s1_greater_s1max && indicator)) |
| { |
| /* |
| * strcmp allows n > s1max. If indicator is non null, we can still |
| * do the compare without any harm and return EINVAL as well as the |
| * result in indicator. |
| */ |
| clib_c11_violation ("n exceeds s1 length"); |
| *indicator = strncmp (s1, s2, n); |
| return EINVAL; |
| } |
| |
| bad = (s1 == 0) + (s2 == 0) + (indicator == 0) + (s1max == 0) + |
| (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0') + s1_greater_s1max; |
| |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| if (indicator == NULL) |
| clib_c11_violation ("indicator NULL"); |
| if (s1 == NULL) |
| clib_c11_violation ("s1 NULL"); |
| if (s2 == NULL) |
| clib_c11_violation ("s2 NULL"); |
| if (s1max == 0) |
| clib_c11_violation ("s1max 0"); |
| if (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0') |
| clib_c11_violation ("s1 unterminated"); |
| if (s1_greater_s1max) |
| clib_c11_violation ("n exceeds s1 length"); |
| return EINVAL; |
| } |
| |
| *indicator = strncmp (s1, s2, n); |
| return EOK; |
| } |
| |
| errno_t strcpy_s (char *__restrict__ dest, rsize_t dmax, |
| const char *__restrict__ src); |
| |
| always_inline errno_t |
| strcpy_s_inline (char *__restrict__ dest, rsize_t dmax, |
| const char *__restrict__ src) |
| { |
| u8 bad; |
| uword low, hi; |
| size_t n; |
| |
| bad = (dest == 0) + (dmax == 0) + (src == 0); |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| if (dest == 0) |
| clib_c11_violation ("dest NULL"); |
| if (src == 0) |
| clib_c11_violation ("src NULL"); |
| if (dmax == 0) |
| clib_c11_violation ("dmax 0"); |
| return EINVAL; |
| } |
| |
| n = clib_strnlen (src, dmax); |
| if (PREDICT_FALSE (n >= dmax)) |
| { |
| clib_c11_violation ("not enough space for dest"); |
| return (EINVAL); |
| } |
| /* Not actually trying to copy anything is OK */ |
| if (PREDICT_FALSE (n == 0)) |
| return EOK; |
| |
| /* Check for src/dst overlap, which is not allowed */ |
| low = (uword) (src < dest ? src : dest); |
| hi = (uword) (src < dest ? dest : src); |
| |
| if (PREDICT_FALSE (low + (n - 1) >= hi)) |
| { |
| clib_c11_violation ("src/dest overlap"); |
| return EINVAL; |
| } |
| |
| clib_memcpy_fast (dest, src, n); |
| dest[n] = '\0'; |
| return EOK; |
| } |
| |
| /* |
| * This macro is provided for smooth migration from strncpy. It is not perfect |
| * because we don't know the size of the destination buffer to pass to |
| * strncpy_s. We improvise dmax with CLIB_STRING_MACRO_MAX. |
| * Applications are encouraged to move to the C11 strncpy_s API and provide |
| * the correct dmax for better error checking. |
| */ |
| #define clib_strncpy(d,s,n) strncpy_s_inline(d,CLIB_STRING_MACRO_MAX,s,n) |
| |
| errno_t |
| strncpy_s (char *__restrict__ dest, rsize_t dmax, |
| const char *__restrict__ src, rsize_t n); |
| |
| always_inline errno_t |
| strncpy_s_inline (char *__restrict__ dest, rsize_t dmax, |
| const char *__restrict__ src, rsize_t n) |
| { |
| u8 bad; |
| uword low, hi; |
| rsize_t m; |
| errno_t status = EOK; |
| |
| bad = (dest == 0) + (dmax == 0) + (src == 0) + (n == 0); |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| /* Not actually trying to copy anything is OK */ |
| if (n == 0) |
| return EOK; |
| if (dest == 0) |
| clib_c11_violation ("dest NULL"); |
| if (src == 0) |
| clib_c11_violation ("src NULL"); |
| if (dmax == 0) |
| clib_c11_violation ("dmax 0"); |
| return EINVAL; |
| } |
| |
| if (PREDICT_FALSE (n >= dmax)) |
| { |
| /* Relax and use strnlen of src */ |
| clib_c11_violation ("n >= dmax"); |
| m = clib_strnlen (src, dmax); |
| if (m >= dmax) |
| { |
| /* Truncate, adjust copy length to fit dest */ |
| m = dmax - 1; |
| status = EOVERFLOW; |
| } |
| } |
| else |
| /* cap the copy to strlen(src) in case n > strlen(src) */ |
| m = clib_strnlen (src, n); |
| |
| /* Check for src/dst overlap, which is not allowed */ |
| low = (uword) (src < dest ? src : dest); |
| hi = (uword) (src < dest ? dest : src); |
| |
| /* |
| * This check may fail innocently if src + dmax >= dst, but |
| * src + strlen(src) < dst. If it fails, check more carefully before |
| * blowing the whistle. |
| */ |
| if (PREDICT_FALSE (low + (m - 1) >= hi)) |
| { |
| m = clib_strnlen (src, m); |
| |
| if (low + (m - 1) >= hi) |
| { |
| clib_c11_violation ("src/dest overlap"); |
| return EINVAL; |
| } |
| } |
| |
| clib_memcpy_fast (dest, src, m); |
| dest[m] = '\0'; |
| return status; |
| } |
| |
| errno_t strcat_s (char *__restrict__ dest, rsize_t dmax, |
| const char *__restrict__ src); |
| |
| always_inline errno_t |
| strcat_s_inline (char *__restrict__ dest, rsize_t dmax, |
| const char *__restrict__ src) |
| { |
| u8 bad; |
| uword low, hi; |
| size_t m, n, dest_size; |
| |
| bad = (dest == 0) + (dmax == 0) + (src == 0); |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| if (dest == 0) |
| clib_c11_violation ("dest NULL"); |
| if (src == 0) |
| clib_c11_violation ("src NULL"); |
| if (dmax == 0) |
| clib_c11_violation ("dmax 0"); |
| return EINVAL; |
| } |
| |
| dest_size = clib_strnlen (dest, dmax); |
| m = dmax - dest_size; |
| n = clib_strnlen (src, m); |
| if (PREDICT_FALSE (n >= m)) |
| { |
| clib_c11_violation ("not enough space for dest"); |
| return EINVAL; |
| } |
| |
| /* Not actually trying to concatenate anything is OK */ |
| if (PREDICT_FALSE (n == 0)) |
| return EOK; |
| |
| /* Check for src/dst overlap, which is not allowed */ |
| low = (uword) (src < dest ? src : dest); |
| hi = (uword) (src < dest ? dest : src); |
| |
| if (PREDICT_FALSE (low + (n - 1) >= hi)) |
| { |
| clib_c11_violation ("src/dest overlap"); |
| return EINVAL; |
| } |
| |
| clib_memcpy_fast (dest + dest_size, src, n); |
| dest[dest_size + n] = '\0'; |
| return EOK; |
| } |
| |
| errno_t strncat_s (char *__restrict__ dest, rsize_t dmax, |
| const char *__restrict__ src, rsize_t n); |
| |
| always_inline errno_t |
| strncat_s_inline (char *__restrict__ dest, rsize_t dmax, |
| const char *__restrict__ src, rsize_t n) |
| { |
| u8 bad; |
| uword low, hi; |
| size_t m, dest_size, allowed_size; |
| errno_t status = EOK; |
| |
| bad = (dest == 0) + (src == 0) + (dmax == 0) + (n == 0); |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| /* Not actually trying to concatenate anything is OK */ |
| if (n == 0) |
| return EOK; |
| if (dest == 0) |
| clib_c11_violation ("dest NULL"); |
| if (src == 0) |
| clib_c11_violation ("src NULL"); |
| if (dmax == 0) |
| clib_c11_violation ("dmax 0"); |
| return EINVAL; |
| } |
| |
| /* Check for src/dst overlap, which is not allowed */ |
| low = (uword) (src < dest ? src : dest); |
| hi = (uword) (src < dest ? dest : src); |
| |
| if (PREDICT_FALSE (low + (n - 1) >= hi)) |
| { |
| clib_c11_violation ("src/dest overlap"); |
| return EINVAL; |
| } |
| |
| dest_size = clib_strnlen (dest, dmax); |
| allowed_size = dmax - dest_size; |
| |
| if (PREDICT_FALSE (allowed_size == 0)) |
| { |
| clib_c11_violation ("no space left in dest"); |
| return (EINVAL); |
| } |
| |
| if (PREDICT_FALSE (n >= allowed_size)) |
| { |
| /* |
| * unlike strcat_s, strncat_s will do the concatenation anyway when |
| * there is not enough space in dest. But it will do the truncation and |
| * null terminate dest |
| */ |
| m = clib_strnlen (src, allowed_size); |
| if (m >= allowed_size) |
| { |
| m = allowed_size - 1; |
| status = EOVERFLOW; |
| } |
| } |
| else |
| m = clib_strnlen (src, n); |
| |
| clib_memcpy_fast (dest + dest_size, src, m); |
| dest[dest_size + m] = '\0'; |
| return status; |
| } |
| |
| /* |
| * This macro is to provide smooth mapping from strtok_r to strtok_s. |
| * To map strtok to this macro, the caller would have to supply an additional |
| * argument. strtokr_s requires s1max which the unsafe API does not have. So |
| * we have to improvise it with CLIB_STRING_MACRO_MAX. Unlike strtok_s, |
| * this macro cannot catch unterminated s1 and s2. |
| * Applications are encouraged to use the cool C11 strtok_s API to avoid |
| * these problems. |
| */ |
| #define clib_strtok(s1,s2,p) \ |
| ({ rsize_t __s1max = CLIB_STRING_MACRO_MAX; \ |
| strtok_s_inline (s1, &__s1max, s2, p); \ |
| }) |
| |
| char *strtok_s (char *__restrict__ s1, rsize_t * __restrict__ s1max, |
| const char *__restrict__ s2, char **__restrict__ ptr); |
| |
| always_inline char * |
| strtok_s_inline (char *__restrict__ s1, rsize_t * __restrict__ s1max, |
| const char *__restrict__ s2, char **__restrict__ ptr) |
| { |
| #define STRTOK_DELIM_MAX_LEN 16 |
| u8 bad; |
| const char *pt; |
| char *ptoken; |
| uword dlen, slen; |
| |
| bad = (s1max == 0) + (s2 == 0) + (ptr == 0) + |
| ((s1 == 0) && ptr && (*ptr == 0)); |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| if (s2 == NULL) |
| clib_c11_violation ("s2 NULL"); |
| if (s1max == NULL) |
| clib_c11_violation ("s1max is NULL"); |
| if (ptr == NULL) |
| clib_c11_violation ("ptr is NULL"); |
| /* s1 == 0 and *ptr == null is no good */ |
| if ((s1 == 0) && ptr && (*ptr == 0)) |
| clib_c11_violation ("s1 and ptr contents are NULL"); |
| return 0; |
| } |
| |
| if (s1 == 0) |
| s1 = *ptr; |
| |
| /* |
| * scan s1 for a delimiter |
| */ |
| dlen = *s1max; |
| ptoken = 0; |
| while (*s1 != '\0' && !ptoken) |
| { |
| if (PREDICT_FALSE (dlen == 0)) |
| { |
| *ptr = 0; |
| clib_c11_violation ("s1 unterminated"); |
| return 0; |
| } |
| |
| /* |
| * must scan the entire delimiter list |
| * ISO should have included a delimiter string limit!! |
| */ |
| slen = STRTOK_DELIM_MAX_LEN; |
| pt = s2; |
| while (*pt != '\0') |
| { |
| if (PREDICT_FALSE (slen == 0)) |
| { |
| *ptr = 0; |
| clib_c11_violation ("s2 unterminated"); |
| return 0; |
| } |
| slen--; |
| if (*s1 == *pt) |
| { |
| ptoken = 0; |
| break; |
| } |
| else |
| { |
| pt++; |
| ptoken = s1; |
| } |
| } |
| s1++; |
| dlen--; |
| } |
| |
| /* |
| * if the beginning of a token was not found, then no |
| * need to continue the scan. |
| */ |
| if (ptoken == 0) |
| { |
| *s1max = dlen; |
| return (ptoken); |
| } |
| |
| /* |
| * Now we need to locate the end of the token |
| */ |
| while (*s1 != '\0') |
| { |
| if (dlen == 0) |
| { |
| *ptr = 0; |
| clib_c11_violation ("s1 unterminated"); |
| return 0; |
| } |
| |
| slen = STRTOK_DELIM_MAX_LEN; |
| pt = s2; |
| while (*pt != '\0') |
| { |
| if (slen == 0) |
| { |
| *ptr = 0; |
| clib_c11_violation ("s2 unterminated"); |
| return 0; |
| } |
| slen--; |
| if (*s1 == *pt) |
| { |
| /* |
| * found a delimiter, set to null |
| * and return context ptr to next char |
| */ |
| *s1 = '\0'; |
| *ptr = (s1 + 1); /* return pointer for next scan */ |
| *s1max = dlen - 1; /* account for the nulled delimiter */ |
| return (ptoken); |
| } |
| else |
| { |
| /* |
| * simply scanning through the delimiter string |
| */ |
| pt++; |
| } |
| } |
| s1++; |
| dlen--; |
| } |
| |
| *ptr = s1; |
| *s1max = dlen; |
| return (ptoken); |
| } |
| |
| errno_t strstr_s (char *s1, rsize_t s1max, const char *s2, rsize_t s2max, |
| char **substring); |
| |
| always_inline errno_t |
| strstr_s_inline (char *s1, rsize_t s1max, const char *s2, rsize_t s2max, |
| char **substring) |
| { |
| u8 bad; |
| size_t s1_size, s2_size; |
| |
| bad = |
| (s1 == 0) + (s2 == 0) + (substring == 0) + (s1max == 0) + (s2max == 0) + |
| (s1 && s1max && (s1[clib_strnlen (s1, s1max)] != '\0')) + |
| (s2 && s2max && (s2[clib_strnlen (s2, s2max)] != '\0')); |
| if (PREDICT_FALSE (bad != 0)) |
| { |
| if (s1 == 0) |
| clib_c11_violation ("s1 NULL"); |
| if (s2 == 0) |
| clib_c11_violation ("s2 NULL"); |
| if (s1max == 0) |
| clib_c11_violation ("s1max 0"); |
| if (s2max == 0) |
| clib_c11_violation ("s2max 0"); |
| if (substring == 0) |
| clib_c11_violation ("substring NULL"); |
| if (s1 && s1max && (s1[clib_strnlen (s1, s1max)] != '\0')) |
| clib_c11_violation ("s1 unterminated"); |
| if (s2 && s2max && (s2[clib_strnlen (s2, s2max)] != '\0')) |
| clib_c11_violation ("s2 unterminated"); |
| return EINVAL; |
| } |
| |
| /* |
| * s2 points to a string with zero length, or s2 equals s1, return s1 |
| */ |
| if (PREDICT_FALSE (*s2 == '\0' || s1 == s2)) |
| { |
| *substring = s1; |
| return EOK; |
| } |
| |
| /* |
| * s2_size > s1_size, it won't find match. |
| */ |
| s1_size = clib_strnlen (s1, s1max); |
| s2_size = clib_strnlen (s2, s2max); |
| if (PREDICT_FALSE (s2_size > s1_size)) |
| return ESRCH; |
| |
| *substring = strstr (s1, s2); |
| if (*substring == 0) |
| return ESRCH; |
| |
| return EOK; |
| } |
| |
| static_always_inline const char * |
| clib_string_skip_prefix (const char *s, const char *prefix) |
| { |
| uword len = __builtin_strlen (prefix); |
| return s + (__builtin_strncmp (s, prefix, len) ? 0 : len); |
| } |
| |
| #endif /* included_clib_string_h */ |
| |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |