blob: 3ff2e704a6eaf6429a679a1dfdc54151abc7dc50 [file] [log] [blame]
/*
* l2_learn.c : layer 2 learning using l2fib
*
* Copyright (c) 2013 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vlib/vlib.h>
#include <vnet/vnet.h>
#include <vnet/pg/pg.h>
#include <vnet/ethernet/ethernet.h>
#include <vlib/cli.h>
#include <vnet/l2/l2_input.h>
#include <vnet/l2/feat_bitmap.h>
#include <vnet/l2/l2_fib.h>
#include <vnet/l2/l2_learn.h>
#include <vppinfra/error.h>
#include <vppinfra/hash.h>
/**
* @file
* @brief Ethernet Bridge Learning.
*
* Populate the mac table with entries mapping the packet's source mac + bridge
* domain ID to the input sw_if_index.
*
* Note that learning and forwarding are separate graph nodes. This means that
* for a set of packets, all learning is performed first, then all nodes are
* forwarded. The forwarding is done based on the end-state of the mac table,
* instead of the state after each packet. Thus the forwarding results could
* differ in certain cases (mac move tests), but this not expected to cause
* problems in real-world networks. It is much simpler to separate learning
* and forwarding into separate nodes.
*/
typedef struct
{
u8 src[6];
u8 dst[6];
u32 sw_if_index;
u16 bd_index;
} l2learn_trace_t;
/* packet trace format function */
static u8 *
format_l2learn_trace (u8 * s, va_list * args)
{
CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *);
CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *);
l2learn_trace_t *t = va_arg (*args, l2learn_trace_t *);
s = format (s, "l2-learn: sw_if_index %d dst %U src %U bd_index %d",
t->sw_if_index,
format_ethernet_address, t->dst,
format_ethernet_address, t->src, t->bd_index);
return s;
}
static vlib_node_registration_t l2learn_node;
#define foreach_l2learn_error \
_(L2LEARN, "L2 learn packets") \
_(MISS, "L2 learn misses") \
_(MAC_MOVE, "L2 mac moves") \
_(MAC_MOVE_VIOLATE, "L2 mac move violations") \
_(LIMIT, "L2 not learned due to limit") \
_(HIT, "L2 learn hits") \
_(FILTER_DROP, "L2 filter mac drops")
typedef enum
{
#define _(sym,str) L2LEARN_ERROR_##sym,
foreach_l2learn_error
#undef _
L2LEARN_N_ERROR,
} l2learn_error_t;
static char *l2learn_error_strings[] = {
#define _(sym,string) string,
foreach_l2learn_error
#undef _
};
typedef enum
{
L2LEARN_NEXT_L2FWD,
L2LEARN_NEXT_DROP,
L2LEARN_N_NEXT,
} l2learn_next_t;
/** Perform learning on one packet based on the mac table lookup result. */
static_always_inline void
l2learn_process (vlib_node_runtime_t * node,
l2learn_main_t * msm,
u64 * counter_base,
vlib_buffer_t * b0,
u32 sw_if_index0,
l2fib_entry_key_t * key0,
l2fib_entry_key_t * cached_key,
u32 * bucket0,
l2fib_entry_result_t * result0, u32 * next0, u8 timestamp)
{
u32 feature_bitmap;
/* Set up the default next node (typically L2FWD) */
/* Remove ourself from the feature bitmap */
feature_bitmap = vnet_buffer (b0)->l2.feature_bitmap & ~L2INPUT_FEAT_LEARN;
/* Save for next feature graph nodes */
vnet_buffer (b0)->l2.feature_bitmap = feature_bitmap;
/* Determine the next node */
*next0 = feat_bitmap_get_next_node_index (msm->feat_next_node_index,
feature_bitmap);
/* Check mac table lookup result */
if (PREDICT_TRUE (result0->fields.sw_if_index == sw_if_index0))
{
/*
* The entry was in the table, and the sw_if_index matched, the normal case
*/
counter_base[L2LEARN_ERROR_HIT] += 1;
if (!result0->fields.static_mac)
{
if (PREDICT_FALSE (result0->fields.timestamp != timestamp))
result0->fields.timestamp = timestamp;
if (PREDICT_FALSE
(result0->fields.sn.as_u16 != vnet_buffer (b0)->l2.l2fib_sn))
result0->fields.sn.as_u16 = vnet_buffer (b0)->l2.l2fib_sn;
}
}
else if (result0->raw == ~0)
{
/* The entry was not in table, so add it */
counter_base[L2LEARN_ERROR_MISS] += 1;
if (msm->global_learn_count == msm->global_learn_limit)
{
/*
* Global limit reached. Do not learn the mac but forward the packet.
* In the future, limits could also be per-interface or bridge-domain.
*/
counter_base[L2LEARN_ERROR_LIMIT] += 1;
goto done;
}
else
{
BVT (clib_bihash_kv) kv;
/* It is ok to learn */
result0->raw = 0; /* clear all fields */
result0->fields.sw_if_index = sw_if_index0;
result0->fields.timestamp = timestamp;
result0->fields.sn.as_u16 = vnet_buffer (b0)->l2.l2fib_sn;
kv.key = key0->raw;
kv.value = result0->raw;
BV (clib_bihash_add_del) (msm->mac_table, &kv, 1 /* is_add */ );
cached_key->raw = ~0; /* invalidate the cache */
msm->global_learn_count++;
}
}
else
{
/* The entry was in the table, but with the wrong sw_if_index mapping (mac move) */
counter_base[L2LEARN_ERROR_MAC_MOVE] += 1;
if (result0->fields.static_mac)
{
/*
* Don't overwrite a static mac
* TODO: Check violation policy. For now drop the packet
*/
b0->error = node->errors[L2LEARN_ERROR_MAC_MOVE_VIOLATE];
*next0 = L2LEARN_NEXT_DROP;
}
else
{
/*
* Update the entry
* TODO: may want to rate limit mac moves
* TODO: check global/bridge domain/interface learn limits
*/
BVT (clib_bihash_kv) kv;
result0->raw = 0; /* clear all fields */
result0->fields.sw_if_index = sw_if_index0;
result0->fields.timestamp = timestamp;
result0->fields.sn.as_u16 = vnet_buffer (b0)->l2.l2fib_sn;
kv.key = key0->raw;
kv.value = result0->raw;
cached_key->raw = ~0; /* invalidate the cache */
BV (clib_bihash_add_del) (msm->mac_table, &kv, 1 /* is_add */ );
}
}
if (result0->fields.filter)
{
/* drop packet because lookup matched a filter mac entry */
if (*next0 != L2LEARN_NEXT_DROP)
{
/* if we're not already dropping the packet, do it now */
b0->error = node->errors[L2LEARN_ERROR_FILTER_DROP];
*next0 = L2LEARN_NEXT_DROP;
}
}
done:
return;
}
static_always_inline uword
l2learn_node_inline (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * frame, int do_trace)
{
u32 n_left_from, *from, *to_next;
l2learn_next_t next_index;
l2learn_main_t *msm = &l2learn_main;
vlib_node_t *n = vlib_get_node (vm, l2learn_node.index);
u32 node_counter_base_index = n->error_heap_index;
vlib_error_main_t *em = &vm->error_main;
l2fib_entry_key_t cached_key;
l2fib_entry_result_t cached_result;
u8 timestamp = (u8) (vlib_time_now (vm) / 60);
from = vlib_frame_vector_args (frame);
n_left_from = frame->n_vectors; /* number of packets to process */
next_index = node->cached_next_index;
/* Clear the one-entry cache in case mac table was updated */
cached_key.raw = ~0;
cached_result.raw = ~0; /* warning be gone */
while (n_left_from > 0)
{
u32 n_left_to_next;
/* get space to enqueue frame to graph node "next_index" */
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
while (n_left_from >= 8 && n_left_to_next >= 4)
{
u32 bi0, bi1, bi2, bi3;
vlib_buffer_t *b0, *b1, *b2, *b3;
u32 next0, next1, next2, next3;
u32 sw_if_index0, sw_if_index1, sw_if_index2, sw_if_index3;
ethernet_header_t *h0, *h1, *h2, *h3;
l2fib_entry_key_t key0, key1, key2, key3;
l2fib_entry_result_t result0, result1, result2, result3;
u32 bucket0, bucket1, bucket2, bucket3;
/* Prefetch next iteration. */
{
vlib_buffer_t *p4, *p5, *p6, *p7;;
p4 = vlib_get_buffer (vm, from[4]);
p5 = vlib_get_buffer (vm, from[5]);
p6 = vlib_get_buffer (vm, from[6]);
p7 = vlib_get_buffer (vm, from[7]);
vlib_prefetch_buffer_header (p4, LOAD);
vlib_prefetch_buffer_header (p5, LOAD);
vlib_prefetch_buffer_header (p6, LOAD);
vlib_prefetch_buffer_header (p7, LOAD);
CLIB_PREFETCH (p4->data, CLIB_CACHE_LINE_BYTES, STORE);
CLIB_PREFETCH (p5->data, CLIB_CACHE_LINE_BYTES, STORE);
CLIB_PREFETCH (p6->data, CLIB_CACHE_LINE_BYTES, STORE);
CLIB_PREFETCH (p7->data, CLIB_CACHE_LINE_BYTES, STORE);
}
/* speculatively enqueue b0 and b1 to the current next frame */
/* bi is "buffer index", b is pointer to the buffer */
to_next[0] = bi0 = from[0];
to_next[1] = bi1 = from[1];
to_next[2] = bi2 = from[2];
to_next[3] = bi3 = from[3];
from += 4;
to_next += 4;
n_left_from -= 4;
n_left_to_next -= 4;
b0 = vlib_get_buffer (vm, bi0);
b1 = vlib_get_buffer (vm, bi1);
b2 = vlib_get_buffer (vm, bi2);
b3 = vlib_get_buffer (vm, bi3);
/* RX interface handles */
sw_if_index0 = vnet_buffer (b0)->sw_if_index[VLIB_RX];
sw_if_index1 = vnet_buffer (b1)->sw_if_index[VLIB_RX];
sw_if_index2 = vnet_buffer (b2)->sw_if_index[VLIB_RX];
sw_if_index3 = vnet_buffer (b3)->sw_if_index[VLIB_RX];
/* Process 4 x pkts */
h0 = vlib_buffer_get_current (b0);
h1 = vlib_buffer_get_current (b1);
h2 = vlib_buffer_get_current (b2);
h3 = vlib_buffer_get_current (b3);
if (do_trace)
{
if (b0->flags & VLIB_BUFFER_IS_TRACED)
{
l2learn_trace_t *t =
vlib_add_trace (vm, node, b0, sizeof (*t));
t->sw_if_index = sw_if_index0;
t->bd_index = vnet_buffer (b0)->l2.bd_index;
clib_memcpy (t->src, h0->src_address, 6);
clib_memcpy (t->dst, h0->dst_address, 6);
}
if (b1->flags & VLIB_BUFFER_IS_TRACED)
{
l2learn_trace_t *t =
vlib_add_trace (vm, node, b1, sizeof (*t));
t->sw_if_index = sw_if_index1;
t->bd_index = vnet_buffer (b1)->l2.bd_index;
clib_memcpy (t->src, h1->src_address, 6);
clib_memcpy (t->dst, h1->dst_address, 6);
}
if (b2->flags & VLIB_BUFFER_IS_TRACED)
{
l2learn_trace_t *t =
vlib_add_trace (vm, node, b2, sizeof (*t));
t->sw_if_index = sw_if_index2;
t->bd_index = vnet_buffer (b2)->l2.bd_index;
clib_memcpy (t->src, h2->src_address, 6);
clib_memcpy (t->dst, h2->dst_address, 6);
}
if (b3->flags & VLIB_BUFFER_IS_TRACED)
{
l2learn_trace_t *t =
vlib_add_trace (vm, node, b3, sizeof (*t));
t->sw_if_index = sw_if_index3;
t->bd_index = vnet_buffer (b3)->l2.bd_index;
clib_memcpy (t->src, h3->src_address, 6);
clib_memcpy (t->dst, h3->dst_address, 6);
}
}
/* process 4 pkts */
vlib_node_increment_counter (vm, l2learn_node.index,
L2LEARN_ERROR_L2LEARN, 4);
l2fib_lookup_4 (msm->mac_table, &cached_key, &cached_result,
h0->src_address,
h1->src_address,
h2->src_address,
h3->src_address,
vnet_buffer (b0)->l2.bd_index,
vnet_buffer (b1)->l2.bd_index,
vnet_buffer (b2)->l2.bd_index,
vnet_buffer (b3)->l2.bd_index,
&key0, &key1, &key2, &key3,
&bucket0, &bucket1, &bucket2, &bucket3,
&result0, &result1, &result2, &result3);
l2learn_process (node, msm, &em->counters[node_counter_base_index],
b0, sw_if_index0, &key0, &cached_key,
&bucket0, &result0, &next0, timestamp);
l2learn_process (node, msm, &em->counters[node_counter_base_index],
b1, sw_if_index1, &key1, &cached_key,
&bucket1, &result1, &next1, timestamp);
l2learn_process (node, msm, &em->counters[node_counter_base_index],
b2, sw_if_index2, &key2, &cached_key,
&bucket2, &result2, &next2, timestamp);
l2learn_process (node, msm, &em->counters[node_counter_base_index],
b3, sw_if_index3, &key3, &cached_key,
&bucket3, &result3, &next3, timestamp);
/* verify speculative enqueues, maybe switch current next frame */
/* if next0==next1==next_index then nothing special needs to be done */
vlib_validate_buffer_enqueue_x4 (vm, node, next_index,
to_next, n_left_to_next,
bi0, bi1, bi2, bi3,
next0, next1, next2, next3);
}
while (n_left_from > 0 && n_left_to_next > 0)
{
u32 bi0;
vlib_buffer_t *b0;
u32 next0;
u32 sw_if_index0;
ethernet_header_t *h0;
l2fib_entry_key_t key0;
l2fib_entry_result_t result0;
u32 bucket0;
/* speculatively enqueue b0 to the current next frame */
bi0 = from[0];
to_next[0] = bi0;
from += 1;
to_next += 1;
n_left_from -= 1;
n_left_to_next -= 1;
b0 = vlib_get_buffer (vm, bi0);
sw_if_index0 = vnet_buffer (b0)->sw_if_index[VLIB_RX];
h0 = vlib_buffer_get_current (b0);
if (do_trace && PREDICT_FALSE (b0->flags & VLIB_BUFFER_IS_TRACED))
{
l2learn_trace_t *t = vlib_add_trace (vm, node, b0, sizeof (*t));
t->sw_if_index = sw_if_index0;
t->bd_index = vnet_buffer (b0)->l2.bd_index;
clib_memcpy (t->src, h0->src_address, 6);
clib_memcpy (t->dst, h0->dst_address, 6);
}
/* process 1 pkt */
vlib_node_increment_counter (vm, l2learn_node.index,
L2LEARN_ERROR_L2LEARN, 1);
l2fib_lookup_1 (msm->mac_table, &cached_key, &cached_result,
h0->src_address, vnet_buffer (b0)->l2.bd_index,
&key0, &bucket0, &result0);
l2learn_process (node, msm, &em->counters[node_counter_base_index],
b0, sw_if_index0, &key0, &cached_key,
&bucket0, &result0, &next0, timestamp);
/* verify speculative enqueue, maybe switch current next frame */
vlib_validate_buffer_enqueue_x1 (vm, node, next_index,
to_next, n_left_to_next,
bi0, next0);
}
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
return frame->n_vectors;
}
static uword
l2learn_node_fn (vlib_main_t * vm,
vlib_node_runtime_t * node, vlib_frame_t * frame)
{
if (PREDICT_FALSE ((node->flags & VLIB_NODE_FLAG_TRACE)))
return l2learn_node_inline (vm, node, frame, 1 /* do_trace */ );
return l2learn_node_inline (vm, node, frame, 0 /* do_trace */ );
}
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (l2learn_node,static) = {
.function = l2learn_node_fn,
.name = "l2-learn",
.vector_size = sizeof (u32),
.format_trace = format_l2learn_trace,
.type = VLIB_NODE_TYPE_INTERNAL,
.n_errors = ARRAY_LEN(l2learn_error_strings),
.error_strings = l2learn_error_strings,
.n_next_nodes = L2LEARN_N_NEXT,
/* edit / add dispositions here */
.next_nodes = {
[L2LEARN_NEXT_DROP] = "error-drop",
[L2LEARN_NEXT_L2FWD] = "l2-fwd",
},
};
/* *INDENT-ON* */
VLIB_NODE_FUNCTION_MULTIARCH (l2learn_node, l2learn_node_fn)
clib_error_t *l2learn_init (vlib_main_t * vm)
{
l2learn_main_t *mp = &l2learn_main;
mp->vlib_main = vm;
mp->vnet_main = vnet_get_main ();
/* Initialize the feature next-node indexes */
feat_bitmap_init_next_nodes (vm,
l2learn_node.index,
L2INPUT_N_FEAT,
l2input_get_feat_names (),
mp->feat_next_node_index);
/* init the hash table ptr */
mp->mac_table = get_mac_table ();
/*
* Set the default number of dynamically learned macs to the number
* of buckets.
*/
mp->global_learn_limit = L2FIB_NUM_BUCKETS * 16;
return 0;
}
VLIB_INIT_FUNCTION (l2learn_init);
/**
* Set subinterface learn enable/disable.
* The CLI format is:
* set interface l2 learn <interface> [disable]
*/
static clib_error_t *
int_learn (vlib_main_t * vm,
unformat_input_t * input, vlib_cli_command_t * cmd)
{
vnet_main_t *vnm = vnet_get_main ();
clib_error_t *error = 0;
u32 sw_if_index;
u32 enable;
if (!unformat_user (input, unformat_vnet_sw_interface, vnm, &sw_if_index))
{
error = clib_error_return (0, "unknown interface `%U'",
format_unformat_error, input);
goto done;
}
enable = 1;
if (unformat (input, "disable"))
{
enable = 0;
}
/* set the interface flag */
l2input_intf_bitmap_enable (sw_if_index, L2INPUT_FEAT_LEARN, enable);
done:
return error;
}
/*?
* Layer 2 learning can be enabled and disabled on each
* interface and on each bridge-domain. Use this command to
* manage interfaces. It is enabled by default.
*
* @cliexpar
* Example of how to enable learning:
* @cliexcmd{set interface l2 learn GigabitEthernet0/8/0}
* Example of how to disable learning:
* @cliexcmd{set interface l2 learn GigabitEthernet0/8/0 disable}
?*/
/* *INDENT-OFF* */
VLIB_CLI_COMMAND (int_learn_cli, static) = {
.path = "set interface l2 learn",
.short_help = "set interface l2 learn <interface> [disable]",
.function = int_learn,
};
/* *INDENT-ON* */
static clib_error_t *
l2learn_config (vlib_main_t * vm, unformat_input_t * input)
{
l2learn_main_t *mp = &l2learn_main;
while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT)
{
if (unformat (input, "limit %d", &mp->global_learn_limit))
;
else
return clib_error_return (0, "unknown input `%U'",
format_unformat_error, input);
}
return 0;
}
VLIB_CONFIG_FUNCTION (l2learn_config, "l2learn");
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/