blob: 75313267ea18ab660300d172fb651117316c0b20 [file] [log] [blame]
/*
* Copyright (c) 2016 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vnet/adj/adj_nbr.h>
#include <vnet/adj/adj_internal.h>
#include <vnet/ethernet/arp_packet.h>
#include <vnet/fib/fib_walk.h>
#include <vppinfra/bihash_24_8.h>
/*
* Vector Hash tables of neighbour (traditional) adjacencies
* Key: interface(for the vector index), address (and its proto),
* link-type/ether-type.
*/
static BVT(clib_bihash) **adj_nbr_tables[FIB_PROTOCOL_MAX];
// FIXME SIZE APPROPRIATELY. ASK DAVEB.
#define ADJ_NBR_DEFAULT_HASH_NUM_BUCKETS (64 * 64)
#define ADJ_NBR_DEFAULT_HASH_MEMORY_SIZE (32<<20)
#define ADJ_NBR_SET_KEY(_key, _lt, _nh) \
{ \
_key.key[0] = (_nh)->as_u64[0]; \
_key.key[1] = (_nh)->as_u64[1]; \
_key.key[2] = (_lt); \
}
#define ADJ_NBR_ITF_OK(_proto, _itf) \
(((_itf) < vec_len(adj_nbr_tables[_proto])) && \
(NULL != adj_nbr_tables[_proto][sw_if_index]))
static void
adj_nbr_insert (fib_protocol_t nh_proto,
vnet_link_t link_type,
const ip46_address_t *nh_addr,
u32 sw_if_index,
adj_index_t adj_index)
{
BVT(clib_bihash_kv) kv;
if (sw_if_index >= vec_len(adj_nbr_tables[nh_proto]))
{
vec_validate(adj_nbr_tables[nh_proto], sw_if_index);
}
if (NULL == adj_nbr_tables[nh_proto][sw_if_index])
{
adj_nbr_tables[nh_proto][sw_if_index] =
clib_mem_alloc_aligned(sizeof(BVT(clib_bihash)),
CLIB_CACHE_LINE_BYTES);
clib_memset(adj_nbr_tables[nh_proto][sw_if_index],
0,
sizeof(BVT(clib_bihash)));
BV(clib_bihash_init) (adj_nbr_tables[nh_proto][sw_if_index],
"Adjacency Neighbour table",
ADJ_NBR_DEFAULT_HASH_NUM_BUCKETS,
ADJ_NBR_DEFAULT_HASH_MEMORY_SIZE);
}
ADJ_NBR_SET_KEY(kv, link_type, nh_addr);
kv.value = adj_index;
BV(clib_bihash_add_del) (adj_nbr_tables[nh_proto][sw_if_index], &kv, 1);
}
void
adj_nbr_remove (adj_index_t ai,
fib_protocol_t nh_proto,
vnet_link_t link_type,
const ip46_address_t *nh_addr,
u32 sw_if_index)
{
BVT(clib_bihash_kv) kv;
if (!ADJ_NBR_ITF_OK(nh_proto, sw_if_index))
return;
ADJ_NBR_SET_KEY(kv, link_type, nh_addr);
kv.value = ai;
BV(clib_bihash_add_del) (adj_nbr_tables[nh_proto][sw_if_index], &kv, 0);
}
adj_index_t
adj_nbr_find (fib_protocol_t nh_proto,
vnet_link_t link_type,
const ip46_address_t *nh_addr,
u32 sw_if_index)
{
BVT(clib_bihash_kv) kv;
ADJ_NBR_SET_KEY(kv, link_type, nh_addr);
if (!ADJ_NBR_ITF_OK(nh_proto, sw_if_index))
return (ADJ_INDEX_INVALID);
if (BV(clib_bihash_search)(adj_nbr_tables[nh_proto][sw_if_index],
&kv, &kv) < 0)
{
return (ADJ_INDEX_INVALID);
}
else
{
return (kv.value);
}
}
static inline u32
adj_get_nd_node (fib_protocol_t proto)
{
switch (proto) {
case FIB_PROTOCOL_IP4:
return (ip4_arp_node.index);
case FIB_PROTOCOL_IP6:
return (ip6_discover_neighbor_node.index);
case FIB_PROTOCOL_MPLS:
break;
}
ASSERT(0);
return (ip4_arp_node.index);
}
/**
* @brief Check and set feature flags if o/p interface has any o/p features.
*/
static void
adj_nbr_evaluate_feature (adj_index_t ai)
{
ip_adjacency_t *adj;
vnet_feature_main_t *fm = &feature_main;
i16 feature_count;
u8 arc_index;
u32 sw_if_index;
adj = adj_get(ai);
switch (adj->ia_link)
{
case VNET_LINK_IP4:
arc_index = ip4_main.lookup_main.output_feature_arc_index;
break;
case VNET_LINK_IP6:
arc_index = ip6_main.lookup_main.output_feature_arc_index;
break;
case VNET_LINK_MPLS:
arc_index = mpls_main.output_feature_arc_index;
break;
default:
return;
}
sw_if_index = adj->rewrite_header.sw_if_index;
if (vec_len(fm->feature_count_by_sw_if_index[arc_index]) > sw_if_index)
{
feature_count = fm->feature_count_by_sw_if_index[arc_index][sw_if_index];
if (feature_count > 0)
adj->rewrite_header.flags |= VNET_REWRITE_HAS_FEATURES;
}
return;
}
static ip_adjacency_t*
adj_nbr_alloc (fib_protocol_t nh_proto,
vnet_link_t link_type,
const ip46_address_t *nh_addr,
u32 sw_if_index)
{
ip_adjacency_t *adj;
adj = adj_alloc(nh_proto);
adj_nbr_insert(nh_proto, link_type, nh_addr,
sw_if_index,
adj_get_index(adj));
/*
* since we just added the ADJ we have no rewrite string for it,
* so its for ARP
*/
adj->lookup_next_index = IP_LOOKUP_NEXT_ARP;
adj->sub_type.nbr.next_hop = *nh_addr;
adj->ia_link = link_type;
adj->ia_nh_proto = nh_proto;
adj->rewrite_header.sw_if_index = sw_if_index;
vnet_rewrite_update_mtu(vnet_get_main(), adj->ia_link,
&adj->rewrite_header);
adj_nbr_evaluate_feature (adj_get_index(adj));
return (adj);
}
/*
* adj_nbr_add_or_lock
*
* Add an adjacency for the neighbour requested.
*
* The key for an adj is:
* - the Next-hops protocol (i.e. v4 or v6)
* - the address of the next-hop
* - the interface the next-hop is reachable through
*/
adj_index_t
adj_nbr_add_or_lock (fib_protocol_t nh_proto,
vnet_link_t link_type,
const ip46_address_t *nh_addr,
u32 sw_if_index)
{
adj_index_t adj_index;
adj_index = adj_nbr_find(nh_proto, link_type, nh_addr, sw_if_index);
if (ADJ_INDEX_INVALID == adj_index)
{
ip_adjacency_t *adj;
vnet_main_t *vnm;
vnm = vnet_get_main();
adj = adj_nbr_alloc(nh_proto, link_type, nh_addr, sw_if_index);
adj_index = adj_get_index(adj);
adj_lock(adj_index);
if (ip46_address_is_equal(&ADJ_BCAST_ADDR, nh_addr))
{
adj->lookup_next_index = IP_LOOKUP_NEXT_BCAST;
}
vnet_rewrite_init(vnm, sw_if_index, link_type,
adj_get_nd_node(nh_proto),
vnet_tx_node_index_for_sw_interface(vnm, sw_if_index),
&adj->rewrite_header);
/*
* we need a rewrite where the destination IP address is converted
* to the appropriate link-layer address. This is interface specific.
* So ask the interface to do it.
*/
vnet_update_adjacency_for_sw_interface(vnm, sw_if_index, adj_index);
}
else
{
adj_lock(adj_index);
}
adj_delegate_adj_created(adj_get(adj_index));
return (adj_index);
}
adj_index_t
adj_nbr_add_or_lock_w_rewrite (fib_protocol_t nh_proto,
vnet_link_t link_type,
const ip46_address_t *nh_addr,
u32 sw_if_index,
u8 *rewrite)
{
adj_index_t adj_index;
adj_index = adj_nbr_find(nh_proto, link_type, nh_addr, sw_if_index);
if (ADJ_INDEX_INVALID == adj_index)
{
ip_adjacency_t *adj;
adj = adj_nbr_alloc(nh_proto, link_type, nh_addr, sw_if_index);
adj->rewrite_header.sw_if_index = sw_if_index;
adj_index = adj_get_index(adj);
}
adj_lock(adj_index);
adj_nbr_update_rewrite(adj_index,
ADJ_NBR_REWRITE_FLAG_COMPLETE,
rewrite);
adj_delegate_adj_created(adj_get(adj_index));
return (adj_index);
}
/**
* adj_nbr_update_rewrite
*
* Update the adjacency's rewrite string. A NULL string implies the
* rewrite is reset (i.e. when ARP/ND entry is gone).
* NB: the adj being updated may be handling traffic in the DP.
*/
void
adj_nbr_update_rewrite (adj_index_t adj_index,
adj_nbr_rewrite_flag_t flags,
u8 *rewrite)
{
ip_adjacency_t *adj;
ASSERT(ADJ_INDEX_INVALID != adj_index);
adj = adj_get(adj_index);
if (flags & ADJ_NBR_REWRITE_FLAG_COMPLETE)
{
/*
* update the adj's rewrite string and build the arc
* from the rewrite node to the interface's TX node
*/
adj_nbr_update_rewrite_internal(adj, IP_LOOKUP_NEXT_REWRITE,
adj_get_rewrite_node(adj->ia_link),
vnet_tx_node_index_for_sw_interface(
vnet_get_main(),
adj->rewrite_header.sw_if_index),
rewrite);
}
else
{
adj_nbr_update_rewrite_internal(adj, IP_LOOKUP_NEXT_ARP,
adj_get_nd_node(adj->ia_nh_proto),
vnet_tx_node_index_for_sw_interface(
vnet_get_main(),
adj->rewrite_header.sw_if_index),
rewrite);
}
}
/**
* adj_nbr_update_rewrite_internal
*
* Update the adjacency's rewrite string. A NULL string implies the
* rewrite is reset (i.e. when ARP/ND entry is gone).
* NB: the adj being updated may be handling traffic in the DP.
*/
void
adj_nbr_update_rewrite_internal (ip_adjacency_t *adj,
ip_lookup_next_t adj_next_index,
u32 this_node,
u32 next_node,
u8 *rewrite)
{
ip_adjacency_t *walk_adj;
adj_index_t walk_ai, ai;
vlib_main_t * vm;
u32 old_next;
int do_walk;
vm = vlib_get_main();
old_next = adj->lookup_next_index;
ai = walk_ai = adj_get_index(adj);
if (VNET_LINK_MPLS == adj->ia_link)
{
/*
* The link type MPLS has no children in the control plane graph, it only
* has children in the data-plane graph. The backwalk is up the former.
* So we need to walk from its IP cousin.
*/
walk_ai = adj_nbr_find(adj->ia_nh_proto,
fib_proto_to_link(adj->ia_nh_proto),
&adj->sub_type.nbr.next_hop,
adj->rewrite_header.sw_if_index);
}
/*
* Don't call the walk re-entrantly
*/
if (ADJ_INDEX_INVALID != walk_ai)
{
walk_adj = adj_get(walk_ai);
if (ADJ_FLAG_SYNC_WALK_ACTIVE & walk_adj->ia_flags)
{
do_walk = 0;
}
else
{
/*
* Prevent re-entrant walk of the same adj
*/
walk_adj->ia_flags |= ADJ_FLAG_SYNC_WALK_ACTIVE;
do_walk = 1;
}
}
else
{
do_walk = 0;
}
/*
* lock the adjacencies that are affected by updates this walk will provoke.
* Since the aim of the walk is to update children to link to a different
* DPO, this adj will no longer be in use and its lock count will drop to 0.
* We don't want it to be deleted as part of this endeavour.
*/
adj_lock(ai);
adj_lock(walk_ai);
/*
* Updating a rewrite string is not atomic;
* - the rewrite string is too long to write in one instruction
* - when swapping from incomplete to complete, we also need to update
* the VLIB graph next-index of the adj.
* ideally we would only want to suspend forwarding via this adj whilst we
* do this, but we do not have that level of granularity - it's suspend all
* worker threads or nothing.
* The other choices are:
* - to mark the adj down and back walk so child load-balances drop this adj
* from the set.
* - update the next_node index of this adj to point to error-drop
* both of which will mean for MAC change we will drop for this adj
* which is not acceptable. However, when the adj changes type (from
* complete to incomplete and vice-versa) the child DPOs, which have the
* VLIB graph next node index, will be sending packets to the wrong graph
* node. So from the options above, updating the next_node of the adj to
* be drop will work, but it relies on each graph node v4/v6/mpls, rewrite/
* arp/midchain always be valid w.r.t. a mis-match of adj type and node type
* (i.e. a rewrite adj in the arp node). This is not enforceable. Getting it
* wrong will lead to hard to find bugs since its a race condition. So we
* choose the more reliable method of updating the children to use the drop,
* then switching adj's type, then updating the children again. Did I mention
* that this doesn't happen often...
* So we need to distinguish between the two cases:
* 1 - mac change
* 2 - adj type change
*/
if (do_walk &&
old_next != adj_next_index &&
ADJ_INDEX_INVALID != walk_ai)
{
/*
* the adj is changing type. we need to fix all children so that they
* stack momentarily on a drop, while the adj changes. If we don't do
* this the children will send packets to a VLIB graph node that does
* not correspond to the adj's type - and it goes downhill from there.
*/
fib_node_back_walk_ctx_t bw_ctx = {
.fnbw_reason = FIB_NODE_BW_REASON_FLAG_ADJ_DOWN,
/*
* force this walk to be synchronous. if we don't and a node in the graph
* (a heavily shared path-list) chooses to back-ground the walk (make it
* async) then it will pause and we will do the adj update below, before
* all the children are updated. not good.
*/
.fnbw_flags = FIB_NODE_BW_FLAG_FORCE_SYNC,
};
fib_walk_sync(FIB_NODE_TYPE_ADJ, walk_ai, &bw_ctx);
}
/*
* If we are just updating the MAC string of the adj (which we also can't
* do atomically), then we need to stop packets switching through the adj.
* We can't do that on a per-adj basis, so it's all the packets.
* If we are updating the type, and we walked back to the children above,
* then this barrier serves to flush the queues/frames.
*/
vlib_worker_thread_barrier_sync(vm);
adj->lookup_next_index = adj_next_index;
adj->ia_node_index = this_node;
if (NULL != rewrite)
{
/*
* new rewrite provided.
* fill in the adj's rewrite string, and build the VLIB graph arc.
*/
vnet_rewrite_set_data_internal(&adj->rewrite_header,
sizeof(adj->rewrite_data),
rewrite,
vec_len(rewrite));
vec_free(rewrite);
}
else
{
vnet_rewrite_clear_data_internal(&adj->rewrite_header,
sizeof(adj->rewrite_data));
}
adj->rewrite_header.next_index = vlib_node_add_next(vlib_get_main(),
this_node,
next_node);
/*
* done with the rewrite update - let the workers loose.
*/
vlib_worker_thread_barrier_release(vm);
if (do_walk &&
(old_next != adj->lookup_next_index) &&
(ADJ_INDEX_INVALID != walk_ai))
{
/*
* backwalk to the children so they can stack on the now updated
* adjacency
*/
fib_node_back_walk_ctx_t bw_ctx = {
.fnbw_reason = FIB_NODE_BW_REASON_FLAG_ADJ_UPDATE,
};
fib_walk_sync(FIB_NODE_TYPE_ADJ, walk_ai, &bw_ctx);
}
/*
* Prevent re-entrant walk of the same adj
*/
if (do_walk)
{
walk_adj = adj_get(walk_ai);
walk_adj->ia_flags &= ~ADJ_FLAG_SYNC_WALK_ACTIVE;
}
adj_unlock(ai);
adj_unlock(walk_ai);
}
typedef struct adj_db_count_ctx_t_ {
u64 count;
} adj_db_count_ctx_t;
static int
adj_db_count (BVT(clib_bihash_kv) * kvp,
void *arg)
{
adj_db_count_ctx_t * ctx = arg;
ctx->count++;
return (BIHASH_WALK_CONTINUE);
}
u32
adj_nbr_db_size (void)
{
adj_db_count_ctx_t ctx = {
.count = 0,
};
fib_protocol_t proto;
u32 sw_if_index = 0;
for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++)
{
vec_foreach_index(sw_if_index, adj_nbr_tables[proto])
{
if (NULL != adj_nbr_tables[proto][sw_if_index])
{
BV(clib_bihash_foreach_key_value_pair) (
adj_nbr_tables[proto][sw_if_index],
adj_db_count,
&ctx);
}
}
}
return (ctx.count);
}
/**
* @brief Context for a walk of the adjacency neighbour DB
*/
typedef struct adj_walk_ctx_t_
{
adj_walk_cb_t awc_cb;
void *awc_ctx;
} adj_walk_ctx_t;
static int
adj_nbr_walk_cb (BVT(clib_bihash_kv) * kvp,
void *arg)
{
adj_walk_ctx_t *ctx = arg;
// FIXME: can't stop early...
if (ADJ_WALK_RC_STOP == ctx->awc_cb(kvp->value, ctx->awc_ctx))
return (BIHASH_WALK_STOP);
return (BIHASH_WALK_CONTINUE);
}
void
adj_nbr_walk (u32 sw_if_index,
fib_protocol_t adj_nh_proto,
adj_walk_cb_t cb,
void *ctx)
{
if (!ADJ_NBR_ITF_OK(adj_nh_proto, sw_if_index))
return;
adj_walk_ctx_t awc = {
.awc_ctx = ctx,
.awc_cb = cb,
};
BV(clib_bihash_foreach_key_value_pair) (
adj_nbr_tables[adj_nh_proto][sw_if_index],
adj_nbr_walk_cb,
&awc);
}
/**
* @brief Walk adjacencies on a link with a given v4 next-hop.
* that is visit the adjacencies with different link types.
*/
void
adj_nbr_walk_nh4 (u32 sw_if_index,
const ip4_address_t *addr,
adj_walk_cb_t cb,
void *ctx)
{
if (!ADJ_NBR_ITF_OK(FIB_PROTOCOL_IP4, sw_if_index))
return;
ip46_address_t nh = {
.ip4 = *addr,
};
vnet_link_t linkt;
adj_index_t ai;
FOR_EACH_VNET_LINK(linkt)
{
ai = adj_nbr_find (FIB_PROTOCOL_IP4, linkt, &nh, sw_if_index);
if (INDEX_INVALID != ai)
cb(ai, ctx);
}
}
/**
* @brief Walk adjacencies on a link with a given v6 next-hop.
* that is visit the adjacencies with different link types.
*/
void
adj_nbr_walk_nh6 (u32 sw_if_index,
const ip6_address_t *addr,
adj_walk_cb_t cb,
void *ctx)
{
if (!ADJ_NBR_ITF_OK(FIB_PROTOCOL_IP6, sw_if_index))
return;
ip46_address_t nh = {
.ip6 = *addr,
};
vnet_link_t linkt;
adj_index_t ai;
FOR_EACH_VNET_LINK(linkt)
{
ai = adj_nbr_find (FIB_PROTOCOL_IP6, linkt, &nh, sw_if_index);
if (INDEX_INVALID != ai)
cb(ai, ctx);
}
}
/**
* @brief Walk adjacencies on a link with a given next-hop.
* that is visit the adjacencies with different link types.
*/
void
adj_nbr_walk_nh (u32 sw_if_index,
fib_protocol_t adj_nh_proto,
const ip46_address_t *nh,
adj_walk_cb_t cb,
void *ctx)
{
if (!ADJ_NBR_ITF_OK(adj_nh_proto, sw_if_index))
return;
switch (adj_nh_proto)
{
case FIB_PROTOCOL_IP4:
adj_nbr_walk_nh4(sw_if_index, &nh->ip4, cb, ctx);
break;
case FIB_PROTOCOL_IP6:
adj_nbr_walk_nh6(sw_if_index, &nh->ip6, cb, ctx);
break;
case FIB_PROTOCOL_MPLS:
ASSERT(0);
break;
}
}
/**
* Flags associated with the interface state walks
*/
typedef enum adj_nbr_interface_flags_t_
{
ADJ_NBR_INTERFACE_UP = (1 << 0),
} adj_nbr_interface_flags_t;
/**
* Context for the state change walk of the DB
*/
typedef struct adj_nbr_interface_state_change_ctx_t_
{
/**
* Flags on the interface
*/
adj_nbr_interface_flags_t flags;
} adj_nbr_interface_state_change_ctx_t;
static adj_walk_rc_t
adj_nbr_interface_state_change_one (adj_index_t ai,
void *arg)
{
/*
* Back walk the graph to inform the forwarding entries
* that this interface state has changed. Do this synchronously
* since this is the walk that provides convergence
*/
adj_nbr_interface_state_change_ctx_t *ctx = arg;
fib_node_back_walk_ctx_t bw_ctx = {
.fnbw_reason = ((ctx->flags & ADJ_NBR_INTERFACE_UP) ?
FIB_NODE_BW_REASON_FLAG_INTERFACE_UP :
FIB_NODE_BW_REASON_FLAG_INTERFACE_DOWN),
/*
* the force sync applies only as far as the first fib_entry.
* And it's the fib_entry's we need to converge away from
* the adjacencies on the now down link
*/
.fnbw_flags = (!(ctx->flags & ADJ_NBR_INTERFACE_UP) ?
FIB_NODE_BW_FLAG_FORCE_SYNC :
FIB_NODE_BW_FLAG_NONE),
};
ip_adjacency_t *adj;
adj = adj_get(ai);
adj->ia_flags |= ADJ_FLAG_SYNC_WALK_ACTIVE;
fib_walk_sync(FIB_NODE_TYPE_ADJ, ai, &bw_ctx);
adj->ia_flags &= ~ADJ_FLAG_SYNC_WALK_ACTIVE;
return (ADJ_WALK_RC_CONTINUE);
}
/**
* @brief Registered function for SW interface state changes
*/
static clib_error_t *
adj_nbr_sw_interface_state_change (vnet_main_t * vnm,
u32 sw_if_index,
u32 flags)
{
fib_protocol_t proto;
/*
* walk each adj on the interface and trigger a walk from that adj
*/
for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++)
{
adj_nbr_interface_state_change_ctx_t ctx = {
.flags = ((flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP) ?
ADJ_NBR_INTERFACE_UP :
0),
};
adj_nbr_walk(sw_if_index, proto,
adj_nbr_interface_state_change_one,
&ctx);
}
return (NULL);
}
VNET_SW_INTERFACE_ADMIN_UP_DOWN_FUNCTION_PRIO(
adj_nbr_sw_interface_state_change,
VNET_ITF_FUNC_PRIORITY_HIGH);
/**
* @brief Invoked on each SW interface of a HW interface when the
* HW interface state changes
*/
static walk_rc_t
adj_nbr_hw_sw_interface_state_change (vnet_main_t * vnm,
u32 sw_if_index,
void *arg)
{
adj_nbr_interface_state_change_ctx_t *ctx = arg;
fib_protocol_t proto;
/*
* walk each adj on the interface and trigger a walk from that adj
*/
for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++)
{
adj_nbr_walk(sw_if_index, proto,
adj_nbr_interface_state_change_one,
ctx);
}
return (WALK_CONTINUE);
}
/**
* @brief Registered callback for HW interface state changes
*/
static clib_error_t *
adj_nbr_hw_interface_state_change (vnet_main_t * vnm,
u32 hw_if_index,
u32 flags)
{
/*
* walk SW interface on the HW
*/
adj_nbr_interface_state_change_ctx_t ctx = {
.flags = ((flags & VNET_HW_INTERFACE_FLAG_LINK_UP) ?
ADJ_NBR_INTERFACE_UP :
0),
};
vnet_hw_interface_walk_sw(vnm, hw_if_index,
adj_nbr_hw_sw_interface_state_change,
&ctx);
return (NULL);
}
VNET_HW_INTERFACE_LINK_UP_DOWN_FUNCTION_PRIO(
adj_nbr_hw_interface_state_change,
VNET_ITF_FUNC_PRIORITY_HIGH);
static adj_walk_rc_t
adj_nbr_interface_delete_one (adj_index_t ai,
void *arg)
{
/*
* Back walk the graph to inform the forwarding entries
* that this interface has been deleted.
*/
fib_node_back_walk_ctx_t bw_ctx = {
.fnbw_reason = FIB_NODE_BW_REASON_FLAG_INTERFACE_DELETE,
};
ip_adjacency_t *adj;
adj_lock(ai);
adj = adj_get(ai);
adj->ia_flags |= ADJ_FLAG_SYNC_WALK_ACTIVE;
fib_walk_sync(FIB_NODE_TYPE_ADJ, ai, &bw_ctx);
adj->ia_flags &= ~ADJ_FLAG_SYNC_WALK_ACTIVE;
adj_unlock(ai);
return (ADJ_WALK_RC_CONTINUE);
}
/**
* adj_nbr_interface_add_del
*
* Registered to receive interface Add and delete notifications
*/
static clib_error_t *
adj_nbr_interface_add_del (vnet_main_t * vnm,
u32 sw_if_index,
u32 is_add)
{
fib_protocol_t proto;
if (is_add)
{
/*
* not interested in interface additions. we will not back walk
* to resolve paths through newly added interfaces. Why? The control
* plane should have the brains to add interfaces first, then routes.
* So the case where there are paths with a interface that matches
* one just created is the case where the path resolved through an
* interface that was deleted, and still has not been removed. The
* new interface added, is NO GUARANTEE that the interface being
* added now, even though it may have the same sw_if_index, is the
* same interface that the path needs. So tough!
* If the control plane wants these routes to resolve it needs to
* remove and add them again.
*/
return (NULL);
}
for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++)
{
adj_nbr_walk(sw_if_index, proto,
adj_nbr_interface_delete_one,
NULL);
}
return (NULL);
}
VNET_SW_INTERFACE_ADD_DEL_FUNCTION(adj_nbr_interface_add_del);
static adj_walk_rc_t
adj_nbr_show_one (adj_index_t ai,
void *arg)
{
vlib_cli_output (arg, "[@%d] %U",
ai,
format_ip_adjacency, ai,
FORMAT_IP_ADJACENCY_NONE);
return (ADJ_WALK_RC_CONTINUE);
}
static clib_error_t *
adj_nbr_show (vlib_main_t * vm,
unformat_input_t * input,
vlib_cli_command_t * cmd)
{
adj_index_t ai = ADJ_INDEX_INVALID;
ip46_address_t nh = ip46_address_initializer;
u32 sw_if_index = ~0;
while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT)
{
if (unformat (input, "%U",
unformat_vnet_sw_interface, vnet_get_main(),
&sw_if_index))
;
else if (unformat (input, "%U",
unformat_ip46_address, &nh, IP46_TYPE_ANY))
;
else if (unformat (input, "%d", &ai))
;
else
break;
}
if (ADJ_INDEX_INVALID != ai)
{
vlib_cli_output (vm, "[@%d] %U",
ai,
format_ip_adjacency, ai,
FORMAT_IP_ADJACENCY_DETAIL);
}
else if (~0 != sw_if_index)
{
fib_protocol_t proto;
if (ip46_address_is_zero(&nh))
{
for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++)
{
adj_nbr_walk(sw_if_index, proto,
adj_nbr_show_one,
vm);
}
}
else
{
proto = (ip46_address_is_ip4(&nh) ?
FIB_PROTOCOL_IP4 :
FIB_PROTOCOL_IP6);
adj_nbr_walk_nh(sw_if_index, proto, &nh,
adj_nbr_show_one,
vm);
}
}
else
{
fib_protocol_t proto;
for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++)
{
vec_foreach_index(sw_if_index, adj_nbr_tables[proto])
{
adj_nbr_walk(sw_if_index, proto,
adj_nbr_show_one,
vm);
}
}
}
return 0;
}
/*?
* Show all neighbour adjacencies.
* @cliexpar
* @cliexstart{sh adj nbr}
* [@2] ipv4 via 1.0.0.2 loop0: IP4: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc
* [@3] mpls via 1.0.0.2 loop0: MPLS_UNICAST: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc
* [@4] ipv4 via 1.0.0.3 loop0: IP4: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc
* [@5] mpls via 1.0.0.3 loop0: MPLS_UNICAST: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc
* @cliexend
?*/
VLIB_CLI_COMMAND (ip4_show_fib_command, static) = {
.path = "show adj nbr",
.short_help = "show adj nbr [<adj_index>] [interface]",
.function = adj_nbr_show,
};
u8*
format_adj_nbr_incomplete (u8* s, va_list *ap)
{
index_t index = va_arg(*ap, index_t);
CLIB_UNUSED(u32 indent) = va_arg(*ap, u32);
vnet_main_t * vnm = vnet_get_main();
ip_adjacency_t * adj = adj_get(index);
s = format (s, "arp-%U", format_vnet_link, adj->ia_link);
s = format (s, ": via %U",
format_ip46_address, &adj->sub_type.nbr.next_hop,
adj_proto_to_46(adj->ia_nh_proto));
s = format (s, " %U",
format_vnet_sw_if_index_name,
vnm, adj->rewrite_header.sw_if_index);
return (s);
}
u8*
format_adj_nbr (u8* s, va_list *ap)
{
index_t index = va_arg(*ap, index_t);
CLIB_UNUSED(u32 indent) = va_arg(*ap, u32);
ip_adjacency_t * adj = adj_get(index);
s = format (s, "%U", format_vnet_link, adj->ia_link);
s = format (s, " via %U ",
format_ip46_address, &adj->sub_type.nbr.next_hop,
adj_proto_to_46(adj->ia_nh_proto));
s = format (s, "%U",
format_vnet_rewrite,
&adj->rewrite_header, sizeof (adj->rewrite_data), 0);
return (s);
}
static void
adj_dpo_lock (dpo_id_t *dpo)
{
adj_lock(dpo->dpoi_index);
}
static void
adj_dpo_unlock (dpo_id_t *dpo)
{
adj_unlock(dpo->dpoi_index);
}
static void
adj_mem_show (void)
{
fib_show_memory_usage("Adjacency",
pool_elts(adj_pool),
pool_len(adj_pool),
sizeof(ip_adjacency_t));
}
const static dpo_vft_t adj_nbr_dpo_vft = {
.dv_lock = adj_dpo_lock,
.dv_unlock = adj_dpo_unlock,
.dv_format = format_adj_nbr,
.dv_mem_show = adj_mem_show,
.dv_get_urpf = adj_dpo_get_urpf,
};
const static dpo_vft_t adj_nbr_incompl_dpo_vft = {
.dv_lock = adj_dpo_lock,
.dv_unlock = adj_dpo_unlock,
.dv_format = format_adj_nbr_incomplete,
.dv_get_urpf = adj_dpo_get_urpf,
};
/**
* @brief The per-protocol VLIB graph nodes that are assigned to an adjacency
* object.
*
* this means that these graph nodes are ones from which a nbr is the
* parent object in the DPO-graph.
*/
const static char* const nbr_ip4_nodes[] =
{
"ip4-rewrite",
NULL,
};
const static char* const nbr_ip6_nodes[] =
{
"ip6-rewrite",
NULL,
};
const static char* const nbr_mpls_nodes[] =
{
"mpls-output",
NULL,
};
const static char* const nbr_ethernet_nodes[] =
{
"adj-l2-rewrite",
NULL,
};
const static char* const * const nbr_nodes[DPO_PROTO_NUM] =
{
[DPO_PROTO_IP4] = nbr_ip4_nodes,
[DPO_PROTO_IP6] = nbr_ip6_nodes,
[DPO_PROTO_MPLS] = nbr_mpls_nodes,
[DPO_PROTO_ETHERNET] = nbr_ethernet_nodes,
};
const static char* const nbr_incomplete_ip4_nodes[] =
{
"ip4-arp",
NULL,
};
const static char* const nbr_incomplete_ip6_nodes[] =
{
"ip6-discover-neighbor",
NULL,
};
const static char* const nbr_incomplete_mpls_nodes[] =
{
"mpls-adj-incomplete",
NULL,
};
const static char* const * const nbr_incomplete_nodes[DPO_PROTO_NUM] =
{
[DPO_PROTO_IP4] = nbr_incomplete_ip4_nodes,
[DPO_PROTO_IP6] = nbr_incomplete_ip6_nodes,
[DPO_PROTO_MPLS] = nbr_incomplete_mpls_nodes,
};
void
adj_nbr_module_init (void)
{
dpo_register(DPO_ADJACENCY,
&adj_nbr_dpo_vft,
nbr_nodes);
dpo_register(DPO_ADJACENCY_INCOMPLETE,
&adj_nbr_incompl_dpo_vft,
nbr_incomplete_nodes);
}