blob: 1eb5b14d024209bbe7383fdb7c599e86a0cba997 [file] [log] [blame]
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __included_vnet_classify_h__
#define __included_vnet_classify_h__
#include <stdarg.h>
#include <vlib/vlib.h>
#include <vnet/vnet.h>
#include <vnet/pg/pg.h>
#include <vnet/ethernet/ethernet.h>
#include <vnet/ethernet/packet.h>
#include <vnet/ip/ip_packet.h>
#include <vnet/ip/ip4_packet.h>
#include <vnet/ip/ip6_packet.h>
#include <vlib/cli.h>
#include <vnet/l2/l2_input.h>
#include <vnet/l2/feat_bitmap.h>
#include <vnet/api_errno.h> /* for API error numbers */
#include <vppinfra/error.h>
#include <vppinfra/hash.h>
#include <vppinfra/cache.h>
#include <vppinfra/xxhash.h>
extern vlib_node_registration_t ip4_classify_node;
extern vlib_node_registration_t ip6_classify_node;
#define CLASSIFY_TRACE 0
#if !defined( __aarch64__) && !defined(__arm__)
#define CLASSIFY_USE_SSE //Allow usage of SSE operations
#endif
#define U32X4_ALIGNED(p) PREDICT_TRUE((((intptr_t)p) & 0xf) == 0)
/*
* Classify table option to process packets
* CLASSIFY_FLAG_USE_CURR_DATA:
* - classify packets starting from VPP node’s current data pointer
*/
#define CLASSIFY_FLAG_USE_CURR_DATA 1
/*
* Classify session action
* CLASSIFY_ACTION_SET_IP4_FIB_INDEX:
* - Classified IP packets will be looked up
* from the specified ipv4 fib table
* CLASSIFY_ACTION_SET_IP6_FIB_INDEX:
* - Classified IP packets will be looked up
* from the specified ipv6 fib table
*/
typedef enum vnet_classify_action_t_
{
CLASSIFY_ACTION_SET_IP4_FIB_INDEX = 1,
CLASSIFY_ACTION_SET_IP6_FIB_INDEX = 2,
} __attribute__ ((packed)) vnet_classify_action_t;
struct _vnet_classify_main;
typedef struct _vnet_classify_main vnet_classify_main_t;
#define foreach_size_in_u32x4 \
_(1) \
_(2) \
_(3) \
_(4) \
_(5)
typedef CLIB_PACKED(struct _vnet_classify_entry {
/* Graph node next index */
u32 next_index;
/* put into vnet_buffer(b)->l2_classfy.opaque_index */
union {
struct {
u32 opaque_index;
/* advance on hit, note it's a signed quantity... */
i32 advance;
};
u64 opaque_count;
};
/* Really only need 1 bit */
u8 flags;
#define VNET_CLASSIFY_ENTRY_FREE (1<<0)
vnet_classify_action_t action;
u16 metadata;
/* Hit counter, last heard time */
union {
u64 hits;
struct _vnet_classify_entry * next_free;
};
f64 last_heard;
/* Must be aligned to a 16-octet boundary */
u32x4 key[0];
}) vnet_classify_entry_t;
static inline int vnet_classify_entry_is_free (vnet_classify_entry_t * e)
{
return e->flags & VNET_CLASSIFY_ENTRY_FREE;
}
static inline int vnet_classify_entry_is_busy (vnet_classify_entry_t * e)
{
return ((e->flags & VNET_CLASSIFY_ENTRY_FREE) == 0);
}
/* Need these to con the vector allocator */
#define _(size) \
typedef CLIB_PACKED(struct { \
u32 pad0[4]; \
u64 pad1[2]; \
u32x4 key[size]; \
}) vnet_classify_entry_##size##_t;
foreach_size_in_u32x4;
#undef _
typedef struct {
union {
struct {
u32 offset;
u8 linear_search;
u8 pad[2];
u8 log2_pages;
};
u64 as_u64;
};
} vnet_classify_bucket_t;
typedef struct {
/* Mask to apply after skipping N vectors */
u32x4 *mask;
/* Buckets and entries */
vnet_classify_bucket_t * buckets;
vnet_classify_entry_t * entries;
/* Config parameters */
u32 match_n_vectors;
u32 skip_n_vectors;
u32 nbuckets;
u32 log2_nbuckets;
u32 linear_buckets;
int entries_per_page;
u32 active_elements;
u32 current_data_flag;
int current_data_offset;
u32 data_offset;
/* Index of next table to try */
u32 next_table_index;
/* Miss next index, return if next_table_index = 0 */
u32 miss_next_index;
/* Per-bucket working copies, one per thread */
vnet_classify_entry_t ** working_copies;
int *working_copy_lengths;
vnet_classify_bucket_t saved_bucket;
/* Free entry freelists */
vnet_classify_entry_t **freelists;
u8 * name;
/* Private allocation arena, protected by the writer lock */
void * mheap;
/* Writer (only) lock for this table */
volatile u32 * writer_lock;
} vnet_classify_table_t;
struct _vnet_classify_main {
/* Table pool */
vnet_classify_table_t * tables;
/* Registered next-index, opaque unformat fcns */
unformat_function_t ** unformat_l2_next_index_fns;
unformat_function_t ** unformat_ip_next_index_fns;
unformat_function_t ** unformat_acl_next_index_fns;
unformat_function_t ** unformat_policer_next_index_fns;
unformat_function_t ** unformat_opaque_index_fns;
/* convenience variables */
vlib_main_t * vlib_main;
vnet_main_t * vnet_main;
};
extern vnet_classify_main_t vnet_classify_main;
u8 * format_classify_table (u8 * s, va_list * args);
u64 vnet_classify_hash_packet (vnet_classify_table_t * t, u8 * h);
static inline u64
vnet_classify_hash_packet_inline (vnet_classify_table_t * t,
u8 * h)
{
u32x4 *mask;
union {
u32x4 as_u32x4;
u64 as_u64[2];
} xor_sum __attribute__((aligned(sizeof(u32x4))));
ASSERT(t);
mask = t->mask;
#ifdef CLASSIFY_USE_SSE
if (U32X4_ALIGNED(h)) { //SSE can't handle unaligned data
u32x4 *data = (u32x4 *)h;
xor_sum.as_u32x4 = data[0 + t->skip_n_vectors] & mask[0];
switch (t->match_n_vectors)
{
case 5:
xor_sum.as_u32x4 ^= data[4 + t->skip_n_vectors] & mask[4];
/* FALLTHROUGH */
case 4:
xor_sum.as_u32x4 ^= data[3 + t->skip_n_vectors] & mask[3];
/* FALLTHROUGH */
case 3:
xor_sum.as_u32x4 ^= data[2 + t->skip_n_vectors] & mask[2];
/* FALLTHROUGH */
case 2:
xor_sum.as_u32x4 ^= data[1 + t->skip_n_vectors] & mask[1];
/* FALLTHROUGH */
case 1:
break;
default:
abort();
}
} else
#endif /* CLASSIFY_USE_SSE */
{
u32 skip_u64 = t->skip_n_vectors * 2;
u64 *data64 = (u64 *)h;
xor_sum.as_u64[0] = data64[0 + skip_u64] & ((u64 *)mask)[0];
xor_sum.as_u64[1] = data64[1 + skip_u64] & ((u64 *)mask)[1];
switch (t->match_n_vectors)
{
case 5:
xor_sum.as_u64[0] ^= data64[8 + skip_u64] & ((u64 *)mask)[8];
xor_sum.as_u64[1] ^= data64[9 + skip_u64] & ((u64 *)mask)[9];
/* FALLTHROUGH */
case 4:
xor_sum.as_u64[0] ^= data64[6 + skip_u64] & ((u64 *)mask)[6];
xor_sum.as_u64[1] ^= data64[7 + skip_u64] & ((u64 *)mask)[7];
/* FALLTHROUGH */
case 3:
xor_sum.as_u64[0] ^= data64[4 + skip_u64] & ((u64 *)mask)[4];
xor_sum.as_u64[1] ^= data64[5 + skip_u64] & ((u64 *)mask)[5];
/* FALLTHROUGH */
case 2:
xor_sum.as_u64[0] ^= data64[2 + skip_u64] & ((u64 *)mask)[2];
xor_sum.as_u64[1] ^= data64[3 + skip_u64] & ((u64 *)mask)[3];
/* FALLTHROUGH */
case 1:
break;
default:
abort();
}
}
return clib_xxhash (xor_sum.as_u64[0] ^ xor_sum.as_u64[1]);
}
static inline void
vnet_classify_prefetch_bucket (vnet_classify_table_t * t, u64 hash)
{
u32 bucket_index;
ASSERT (is_pow2(t->nbuckets));
bucket_index = hash & (t->nbuckets - 1);
CLIB_PREFETCH(&t->buckets[bucket_index], CLIB_CACHE_LINE_BYTES, LOAD);
}
static inline vnet_classify_entry_t *
vnet_classify_get_entry (vnet_classify_table_t * t, uword offset)
{
u8 * hp = t->mheap;
u8 * vp = hp + offset;
return (void *) vp;
}
static inline uword vnet_classify_get_offset (vnet_classify_table_t * t,
vnet_classify_entry_t * v)
{
u8 * hp, * vp;
hp = (u8 *) t->mheap;
vp = (u8 *) v;
ASSERT((vp - hp) < 0x100000000ULL);
return vp - hp;
}
static inline vnet_classify_entry_t *
vnet_classify_entry_at_index (vnet_classify_table_t * t,
vnet_classify_entry_t * e,
u32 index)
{
u8 * eu8;
eu8 = (u8 *)e;
eu8 += index * (sizeof (vnet_classify_entry_t) +
(t->match_n_vectors * sizeof (u32x4)));
return (vnet_classify_entry_t *) eu8;
}
static inline void
vnet_classify_prefetch_entry (vnet_classify_table_t * t,
u64 hash)
{
u32 bucket_index;
u32 value_index;
vnet_classify_bucket_t * b;
vnet_classify_entry_t * e;
bucket_index = hash & (t->nbuckets - 1);
b = &t->buckets[bucket_index];
if (b->offset == 0)
return;
hash >>= t->log2_nbuckets;
e = vnet_classify_get_entry (t, b->offset);
value_index = hash & ((1<<b->log2_pages)-1);
e = vnet_classify_entry_at_index (t, e, value_index);
CLIB_PREFETCH(e, CLIB_CACHE_LINE_BYTES, LOAD);
}
vnet_classify_entry_t *
vnet_classify_find_entry (vnet_classify_table_t * t,
u8 * h, u64 hash, f64 now);
static inline vnet_classify_entry_t *
vnet_classify_find_entry_inline (vnet_classify_table_t * t,
u8 * h, u64 hash, f64 now)
{
vnet_classify_entry_t * v;
u32x4 *mask, *key;
union {
u32x4 as_u32x4;
u64 as_u64[2];
} result __attribute__((aligned(sizeof(u32x4))));
vnet_classify_bucket_t * b;
u32 value_index;
u32 bucket_index;
u32 limit;
int i;
bucket_index = hash & (t->nbuckets-1);
b = &t->buckets[bucket_index];
mask = t->mask;
if (b->offset == 0)
return 0;
hash >>= t->log2_nbuckets;
v = vnet_classify_get_entry (t, b->offset);
value_index = hash & ((1<<b->log2_pages)-1);
limit = t->entries_per_page;
if (PREDICT_FALSE (b->linear_search))
{
value_index = 0;
limit *= (1<<b->log2_pages);
}
v = vnet_classify_entry_at_index (t, v, value_index);
#ifdef CLASSIFY_USE_SSE
if (U32X4_ALIGNED(h)) {
u32x4 *data = (u32x4 *) h;
for (i = 0; i < limit; i++) {
key = v->key;
result.as_u32x4 = (data[0 + t->skip_n_vectors] & mask[0]) ^ key[0];
switch (t->match_n_vectors)
{
case 5:
result.as_u32x4 |= (data[4 + t->skip_n_vectors] & mask[4]) ^ key[4];
/* FALLTHROUGH */
case 4:
result.as_u32x4 |= (data[3 + t->skip_n_vectors] & mask[3]) ^ key[3];
/* FALLTHROUGH */
case 3:
result.as_u32x4 |= (data[2 + t->skip_n_vectors] & mask[2]) ^ key[2];
/* FALLTHROUGH */
case 2:
result.as_u32x4 |= (data[1 + t->skip_n_vectors] & mask[1]) ^ key[1];
/* FALLTHROUGH */
case 1:
break;
default:
abort();
}
if (u32x4_zero_byte_mask (result.as_u32x4) == 0xffff) {
if (PREDICT_TRUE(now)) {
v->hits++;
v->last_heard = now;
}
return (v);
}
v = vnet_classify_entry_at_index (t, v, 1);
}
} else
#endif /* CLASSIFY_USE_SSE */
{
u32 skip_u64 = t->skip_n_vectors * 2;
u64 *data64 = (u64 *)h;
for (i = 0; i < limit; i++) {
key = v->key;
result.as_u64[0] = (data64[0 + skip_u64] & ((u64 *)mask)[0]) ^ ((u64 *)key)[0];
result.as_u64[1] = (data64[1 + skip_u64] & ((u64 *)mask)[1]) ^ ((u64 *)key)[1];
switch (t->match_n_vectors)
{
case 5:
result.as_u64[0] |= (data64[8 + skip_u64] & ((u64 *)mask)[8]) ^ ((u64 *)key)[8];
result.as_u64[1] |= (data64[9 + skip_u64] & ((u64 *)mask)[9]) ^ ((u64 *)key)[9];
/* FALLTHROUGH */
case 4:
result.as_u64[0] |= (data64[6 + skip_u64] & ((u64 *)mask)[6]) ^ ((u64 *)key)[6];
result.as_u64[1] |= (data64[7 + skip_u64] & ((u64 *)mask)[7]) ^ ((u64 *)key)[7];
/* FALLTHROUGH */
case 3:
result.as_u64[0] |= (data64[4 + skip_u64] & ((u64 *)mask)[4]) ^ ((u64 *)key)[4];
result.as_u64[1] |= (data64[5 + skip_u64] & ((u64 *)mask)[5]) ^ ((u64 *)key)[5];
/* FALLTHROUGH */
case 2:
result.as_u64[0] |= (data64[2 + skip_u64] & ((u64 *)mask)[2]) ^ ((u64 *)key)[2];
result.as_u64[1] |= (data64[3 + skip_u64] & ((u64 *)mask)[3]) ^ ((u64 *)key)[3];
/* FALLTHROUGH */
case 1:
break;
default:
abort();
}
if (result.as_u64[0] == 0 && result.as_u64[1] == 0) {
if (PREDICT_TRUE(now)) {
v->hits++;
v->last_heard = now;
}
return (v);
}
v = vnet_classify_entry_at_index (t, v, 1);
}
}
return 0;
}
vnet_classify_table_t *
vnet_classify_new_table (vnet_classify_main_t *cm,
u8 * mask, u32 nbuckets, u32 memory_size,
u32 skip_n_vectors,
u32 match_n_vectors);
int vnet_classify_add_del_session (vnet_classify_main_t * cm,
u32 table_index,
u8 * match,
u32 hit_next_index,
u32 opaque_index,
i32 advance,
u8 action,
u32 metadata,
int is_add);
int vnet_classify_add_del_table (vnet_classify_main_t * cm,
u8 * mask,
u32 nbuckets,
u32 memory_size,
u32 skip,
u32 match,
u32 next_table_index,
u32 miss_next_index,
u32 * table_index,
u8 current_data_flag,
i16 current_data_offset,
int is_add,
int del_chain);
unformat_function_t unformat_ip4_mask;
unformat_function_t unformat_ip6_mask;
unformat_function_t unformat_l3_mask;
unformat_function_t unformat_l2_mask;
unformat_function_t unformat_classify_mask;
unformat_function_t unformat_l2_next_index;
unformat_function_t unformat_ip_next_index;
unformat_function_t unformat_ip4_match;
unformat_function_t unformat_ip6_match;
unformat_function_t unformat_l3_match;
unformat_function_t unformat_l4_match;
unformat_function_t unformat_vlan_tag;
unformat_function_t unformat_l2_match;
unformat_function_t unformat_classify_match;
void vnet_classify_register_unformat_ip_next_index_fn
(unformat_function_t * fn);
void vnet_classify_register_unformat_l2_next_index_fn
(unformat_function_t * fn);
void vnet_classify_register_unformat_acl_next_index_fn
(unformat_function_t * fn);
void vnet_classify_register_unformat_policer_next_index_fn
(unformat_function_t * fn);
void vnet_classify_register_unformat_opaque_index_fn (unformat_function_t * fn);
#endif /* __included_vnet_classify_h__ */