| /* |
| * Copyright (c) 2016 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <vppinfra/sparse_vec.h> |
| #include <vnet/tcp/tcp_packet.h> |
| #include <vnet/tcp/tcp.h> |
| #include <vnet/session/session.h> |
| #include <math.h> |
| |
| static char *tcp_error_strings[] = { |
| #define tcp_error(n,s) s, |
| #include <vnet/tcp/tcp_error.def> |
| #undef tcp_error |
| }; |
| |
| /* All TCP nodes have the same outgoing arcs */ |
| #define foreach_tcp_state_next \ |
| _ (DROP4, "ip4-drop") \ |
| _ (DROP6, "ip6-drop") \ |
| _ (TCP4_OUTPUT, "tcp4-output") \ |
| _ (TCP6_OUTPUT, "tcp6-output") |
| |
| typedef enum _tcp_established_next |
| { |
| #define _(s,n) TCP_ESTABLISHED_NEXT_##s, |
| foreach_tcp_state_next |
| #undef _ |
| TCP_ESTABLISHED_N_NEXT, |
| } tcp_established_next_t; |
| |
| typedef enum _tcp_rcv_process_next |
| { |
| #define _(s,n) TCP_RCV_PROCESS_NEXT_##s, |
| foreach_tcp_state_next |
| #undef _ |
| TCP_RCV_PROCESS_N_NEXT, |
| } tcp_rcv_process_next_t; |
| |
| typedef enum _tcp_syn_sent_next |
| { |
| #define _(s,n) TCP_SYN_SENT_NEXT_##s, |
| foreach_tcp_state_next |
| #undef _ |
| TCP_SYN_SENT_N_NEXT, |
| } tcp_syn_sent_next_t; |
| |
| typedef enum _tcp_listen_next |
| { |
| #define _(s,n) TCP_LISTEN_NEXT_##s, |
| foreach_tcp_state_next |
| #undef _ |
| TCP_LISTEN_N_NEXT, |
| } tcp_listen_next_t; |
| |
| /* Generic, state independent indices */ |
| typedef enum _tcp_state_next |
| { |
| #define _(s,n) TCP_NEXT_##s, |
| foreach_tcp_state_next |
| #undef _ |
| TCP_STATE_N_NEXT, |
| } tcp_state_next_t; |
| |
| #define tcp_next_output(is_ip4) (is_ip4 ? TCP_NEXT_TCP4_OUTPUT \ |
| : TCP_NEXT_TCP6_OUTPUT) |
| |
| #define tcp_next_drop(is_ip4) (is_ip4 ? TCP_NEXT_DROP4 \ |
| : TCP_NEXT_DROP6) |
| |
| vlib_node_registration_t tcp4_established_node; |
| vlib_node_registration_t tcp6_established_node; |
| |
| /** |
| * Validate segment sequence number. As per RFC793: |
| * |
| * Segment Receive Test |
| * Length Window |
| * ------- ------- ------------------------------------------- |
| * 0 0 SEG.SEQ = RCV.NXT |
| * 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND |
| * >0 0 not acceptable |
| * >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND |
| * or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND |
| * |
| * This ultimately consists in checking if segment falls within the window. |
| * The one important difference compared to RFC793 is that we use rcv_las, |
| * or the rcv_nxt at last ack sent instead of rcv_nxt since that's the |
| * peer's reference when computing our receive window. |
| * |
| * This: |
| * seq_leq (end_seq, tc->rcv_las + tc->rcv_wnd) && seq_geq (seq, tc->rcv_las) |
| * however, is too strict when we have retransmits. Instead we just check that |
| * the seq is not beyond the right edge and that the end of the segment is not |
| * less than the left edge. |
| * |
| * N.B. rcv_nxt and rcv_wnd are both updated in this node if acks are sent, so |
| * use rcv_nxt in the right edge window test instead of rcv_las. |
| * |
| */ |
| always_inline u8 |
| tcp_segment_in_rcv_wnd (tcp_connection_t * tc, u32 seq, u32 end_seq) |
| { |
| return (seq_geq (end_seq, tc->rcv_las) |
| && seq_leq (seq, tc->rcv_nxt + tc->rcv_wnd)); |
| } |
| |
| /** |
| * Parse TCP header options. |
| * |
| * @param th TCP header |
| * @param to TCP options data structure to be populated |
| * @return -1 if parsing failed |
| */ |
| int |
| tcp_options_parse (tcp_header_t * th, tcp_options_t * to) |
| { |
| const u8 *data; |
| u8 opt_len, opts_len, kind; |
| int j; |
| sack_block_t b; |
| |
| opts_len = (tcp_doff (th) << 2) - sizeof (tcp_header_t); |
| data = (const u8 *) (th + 1); |
| |
| /* Zero out all flags but those set in SYN */ |
| to->flags &= (TCP_OPTS_FLAG_SACK_PERMITTED | TCP_OPTS_FLAG_WSCALE); |
| |
| for (; opts_len > 0; opts_len -= opt_len, data += opt_len) |
| { |
| kind = data[0]; |
| |
| /* Get options length */ |
| if (kind == TCP_OPTION_EOL) |
| break; |
| else if (kind == TCP_OPTION_NOOP) |
| { |
| opt_len = 1; |
| continue; |
| } |
| else |
| { |
| /* broken options */ |
| if (opts_len < 2) |
| return -1; |
| opt_len = data[1]; |
| |
| /* weird option length */ |
| if (opt_len < 2 || opt_len > opts_len) |
| return -1; |
| } |
| |
| /* Parse options */ |
| switch (kind) |
| { |
| case TCP_OPTION_MSS: |
| if ((opt_len == TCP_OPTION_LEN_MSS) && tcp_syn (th)) |
| { |
| to->flags |= TCP_OPTS_FLAG_MSS; |
| to->mss = clib_net_to_host_u16 (*(u16 *) (data + 2)); |
| } |
| break; |
| case TCP_OPTION_WINDOW_SCALE: |
| if ((opt_len == TCP_OPTION_LEN_WINDOW_SCALE) && tcp_syn (th)) |
| { |
| to->flags |= TCP_OPTS_FLAG_WSCALE; |
| to->wscale = data[2]; |
| if (to->wscale > TCP_MAX_WND_SCALE) |
| { |
| clib_warning ("Illegal window scaling value: %d", |
| to->wscale); |
| to->wscale = TCP_MAX_WND_SCALE; |
| } |
| } |
| break; |
| case TCP_OPTION_TIMESTAMP: |
| if (opt_len == TCP_OPTION_LEN_TIMESTAMP) |
| { |
| to->flags |= TCP_OPTS_FLAG_TSTAMP; |
| to->tsval = clib_net_to_host_u32 (*(u32 *) (data + 2)); |
| to->tsecr = clib_net_to_host_u32 (*(u32 *) (data + 6)); |
| } |
| break; |
| case TCP_OPTION_SACK_PERMITTED: |
| if (opt_len == TCP_OPTION_LEN_SACK_PERMITTED && tcp_syn (th)) |
| to->flags |= TCP_OPTS_FLAG_SACK_PERMITTED; |
| break; |
| case TCP_OPTION_SACK_BLOCK: |
| /* If SACK permitted was not advertised or a SYN, break */ |
| if ((to->flags & TCP_OPTS_FLAG_SACK_PERMITTED) == 0 || tcp_syn (th)) |
| break; |
| |
| /* If too short or not correctly formatted, break */ |
| if (opt_len < 10 || ((opt_len - 2) % TCP_OPTION_LEN_SACK_BLOCK)) |
| break; |
| |
| to->flags |= TCP_OPTS_FLAG_SACK; |
| to->n_sack_blocks = (opt_len - 2) / TCP_OPTION_LEN_SACK_BLOCK; |
| vec_reset_length (to->sacks); |
| for (j = 0; j < to->n_sack_blocks; j++) |
| { |
| b.start = clib_net_to_host_u32 (*(u32 *) (data + 2 + 8 * j)); |
| b.end = clib_net_to_host_u32 (*(u32 *) (data + 6 + 8 * j)); |
| vec_add1 (to->sacks, b); |
| } |
| break; |
| default: |
| /* Nothing to see here */ |
| continue; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * RFC1323: Check against wrapped sequence numbers (PAWS). If we have |
| * timestamp to echo and it's less than tsval_recent, drop segment |
| * but still send an ACK in order to retain TCP's mechanism for detecting |
| * and recovering from half-open connections |
| * |
| * Or at least that's what the theory says. It seems that this might not work |
| * very well with packet reordering and fast retransmit. XXX |
| */ |
| always_inline int |
| tcp_segment_check_paws (tcp_connection_t * tc) |
| { |
| return tcp_opts_tstamp (&tc->rcv_opts) && tc->tsval_recent |
| && timestamp_lt (tc->rcv_opts.tsval, tc->tsval_recent); |
| } |
| |
| /** |
| * Update tsval recent |
| */ |
| always_inline void |
| tcp_update_timestamp (tcp_connection_t * tc, u32 seq, u32 seq_end) |
| { |
| /* |
| * RFC1323: If Last.ACK.sent falls within the range of sequence numbers |
| * of an incoming segment: |
| * SEG.SEQ <= Last.ACK.sent < SEG.SEQ + SEG.LEN |
| * then the TSval from the segment is copied to TS.Recent; |
| * otherwise, the TSval is ignored. |
| */ |
| if (tcp_opts_tstamp (&tc->rcv_opts) && seq_leq (seq, tc->rcv_las) |
| && seq_leq (tc->rcv_las, seq_end)) |
| { |
| ASSERT (timestamp_leq (tc->tsval_recent, tc->rcv_opts.tsval)); |
| tc->tsval_recent = tc->rcv_opts.tsval; |
| tc->tsval_recent_age = tcp_time_now (); |
| } |
| } |
| |
| /** |
| * Validate incoming segment as per RFC793 p. 69 and RFC1323 p. 19 |
| * |
| * It first verifies if segment has a wrapped sequence number (PAWS) and then |
| * does the processing associated to the first four steps (ignoring security |
| * and precedence): sequence number, rst bit and syn bit checks. |
| * |
| * @return 0 if segments passes validation. |
| */ |
| static int |
| tcp_segment_validate (vlib_main_t * vm, tcp_connection_t * tc0, |
| vlib_buffer_t * b0, tcp_header_t * th0, u32 * next0) |
| { |
| if (PREDICT_FALSE (!tcp_ack (th0) && !tcp_rst (th0) && !tcp_syn (th0))) |
| return -1; |
| |
| if (PREDICT_FALSE (tcp_options_parse (th0, &tc0->rcv_opts))) |
| { |
| clib_warning ("options parse error"); |
| return -1; |
| } |
| |
| if (tcp_segment_check_paws (tc0)) |
| { |
| if (CLIB_DEBUG > 2) |
| { |
| clib_warning ("paws failed\n%U", format_tcp_connection, tc0, 2); |
| clib_warning ("seq %u seq_end %u ack %u", |
| vnet_buffer (b0)->tcp.seq_number - tc0->irs, |
| vnet_buffer (b0)->tcp.seq_end - tc0->irs, |
| vnet_buffer (b0)->tcp.ack_number - tc0->iss); |
| } |
| TCP_EVT_DBG (TCP_EVT_PAWS_FAIL, tc0, vnet_buffer (b0)->tcp.seq_number, |
| vnet_buffer (b0)->tcp.seq_end); |
| |
| /* If it just so happens that a segment updates tsval_recent for a |
| * segment over 24 days old, invalidate tsval_recent. */ |
| if (timestamp_lt (tc0->tsval_recent_age + TCP_PAWS_IDLE, |
| tcp_time_now ())) |
| { |
| /* Age isn't reset until we get a valid tsval (bsd inspired) */ |
| tc0->tsval_recent = 0; |
| clib_warning ("paws failed - really old segment. REALLY?"); |
| } |
| else |
| { |
| /* Drop after ack if not rst */ |
| if (!tcp_rst (th0)) |
| { |
| tcp_make_ack (tc0, b0); |
| *next0 = tcp_next_output (tc0->c_is_ip4); |
| TCP_EVT_DBG (TCP_EVT_DUPACK_SENT, tc0); |
| return -1; |
| } |
| } |
| } |
| |
| /* 1st: check sequence number */ |
| if (!tcp_segment_in_rcv_wnd (tc0, vnet_buffer (b0)->tcp.seq_number, |
| vnet_buffer (b0)->tcp.seq_end)) |
| { |
| /* If our window is 0 and the packet is in sequence, let it pass |
| * through for ack processing. It should be dropped later.*/ |
| if (tc0->rcv_wnd == 0 |
| && tc0->rcv_nxt == vnet_buffer (b0)->tcp.seq_number) |
| { |
| /* TODO Should segment be tagged? */ |
| } |
| else |
| { |
| /* If not RST, send dup ack */ |
| if (!tcp_rst (th0)) |
| { |
| tcp_make_ack (tc0, b0); |
| *next0 = tcp_next_output (tc0->c_is_ip4); |
| TCP_EVT_DBG (TCP_EVT_DUPACK_SENT, tc0); |
| } |
| return -1; |
| } |
| } |
| |
| /* 2nd: check the RST bit */ |
| if (tcp_rst (th0)) |
| { |
| tcp_connection_reset (tc0); |
| return -1; |
| } |
| |
| /* 3rd: check security and precedence (skip) */ |
| |
| /* 4th: check the SYN bit */ |
| if (tcp_syn (th0)) |
| { |
| /* TODO implement RFC 5961 */ |
| if (tc0->state == TCP_STATE_SYN_RCVD) |
| { |
| tcp_make_synack (tc0, b0); |
| TCP_EVT_DBG (TCP_EVT_SYN_RCVD, tc0, 0); |
| } |
| else |
| { |
| tcp_make_ack (tc0, b0); |
| TCP_EVT_DBG (TCP_EVT_SYNACK_RCVD, tc0); |
| } |
| *next0 = tcp_next_output (tc0->c_is_ip4); |
| return -1; |
| } |
| |
| /* If segment in window, save timestamp */ |
| tcp_update_timestamp (tc0, vnet_buffer (b0)->tcp.seq_number, |
| vnet_buffer (b0)->tcp.seq_end); |
| return 0; |
| } |
| |
| always_inline int |
| tcp_rcv_ack_is_acceptable (tcp_connection_t * tc0, vlib_buffer_t * tb0) |
| { |
| /* SND.UNA =< SEG.ACK =< SND.NXT */ |
| return (seq_leq (tc0->snd_una, vnet_buffer (tb0)->tcp.ack_number) |
| && seq_leq (vnet_buffer (tb0)->tcp.ack_number, tc0->snd_nxt)); |
| } |
| |
| /** |
| * Compute smoothed RTT as per VJ's '88 SIGCOMM and RFC6298 |
| * |
| * Note that although the original article, srtt and rttvar are scaled |
| * to minimize round-off errors, here we don't. Instead, we rely on |
| * better precision time measurements. |
| * |
| * TODO support us rtt resolution |
| */ |
| static void |
| tcp_estimate_rtt (tcp_connection_t * tc, u32 mrtt) |
| { |
| int err, diff; |
| |
| if (tc->srtt != 0) |
| { |
| err = mrtt - tc->srtt; |
| |
| /* XXX Drop in RTT results in RTTVAR increase and bigger RTO. |
| * The increase should be bound */ |
| tc->srtt = clib_max ((int) tc->srtt + (err >> 3), 1); |
| diff = (clib_abs (err) - (int) tc->rttvar) >> 2; |
| tc->rttvar = clib_max ((int) tc->rttvar + diff, 1); |
| } |
| else |
| { |
| /* First measurement. */ |
| tc->srtt = mrtt; |
| tc->rttvar = mrtt >> 1; |
| } |
| } |
| |
| void |
| tcp_update_rto (tcp_connection_t * tc) |
| { |
| tc->rto = clib_min (tc->srtt + (tc->rttvar << 2), TCP_RTO_MAX); |
| tc->rto = clib_max (tc->rto, TCP_RTO_MIN); |
| } |
| |
| /** |
| * Update RTT estimate and RTO timer |
| * |
| * Measure RTT: We have two sources of RTT measurements: TSOPT and ACK |
| * timing. Middle boxes are known to fiddle with TCP options so we |
| * should give higher priority to ACK timing. |
| * |
| * This should be called only if previously sent bytes have been acked. |
| * |
| * return 1 if valid rtt 0 otherwise |
| */ |
| static int |
| tcp_update_rtt (tcp_connection_t * tc, u32 ack) |
| { |
| u32 mrtt = 0; |
| |
| /* Karn's rule, part 1. Don't use retransmitted segments to estimate |
| * RTT because they're ambiguous. */ |
| if (tcp_in_cong_recovery (tc) || tc->sack_sb.sacked_bytes) |
| goto done; |
| |
| if (tc->rtt_ts && seq_geq (ack, tc->rtt_seq)) |
| { |
| mrtt = tcp_time_now () - tc->rtt_ts; |
| } |
| /* As per RFC7323 TSecr can be used for RTTM only if the segment advances |
| * snd_una, i.e., the left side of the send window: |
| * seq_lt (tc->snd_una, ack). This is a condition for calling update_rtt */ |
| else if (tcp_opts_tstamp (&tc->rcv_opts) && tc->rcv_opts.tsecr) |
| { |
| mrtt = tcp_time_now () - tc->rcv_opts.tsecr; |
| } |
| |
| /* Ignore dubious measurements */ |
| if (mrtt == 0 || mrtt > TCP_RTT_MAX) |
| goto done; |
| |
| tcp_estimate_rtt (tc, mrtt); |
| |
| done: |
| |
| /* Allow measuring of a new RTT */ |
| tc->rtt_ts = 0; |
| |
| /* If we got here something must've been ACKed so make sure boff is 0, |
| * even if mrrt is not valid since we update the rto lower */ |
| tc->rto_boff = 0; |
| tcp_update_rto (tc); |
| |
| return 0; |
| } |
| |
| /** |
| * Dequeue bytes that have been acked and while at it update RTT estimates. |
| */ |
| static void |
| tcp_dequeue_acked (tcp_connection_t * tc, u32 ack) |
| { |
| /* Dequeue the newly ACKed add SACKed bytes */ |
| stream_session_dequeue_drop (&tc->connection, |
| tc->bytes_acked + tc->sack_sb.snd_una_adv); |
| |
| tcp_validate_txf_size (tc, tc->snd_una_max - tc->snd_una); |
| |
| /* Update rtt and rto */ |
| tcp_update_rtt (tc, ack); |
| |
| /* If everything has been acked, stop retransmit timer |
| * otherwise update. */ |
| tcp_retransmit_timer_update (tc); |
| } |
| |
| /** |
| * Check if duplicate ack as per RFC5681 Sec. 2 |
| */ |
| static u8 |
| tcp_ack_is_dupack (tcp_connection_t * tc, vlib_buffer_t * b, u32 prev_snd_wnd, |
| u32 prev_snd_una) |
| { |
| return ((vnet_buffer (b)->tcp.ack_number == prev_snd_una) |
| && seq_gt (tc->snd_una_max, tc->snd_una) |
| && (vnet_buffer (b)->tcp.seq_end == vnet_buffer (b)->tcp.seq_number) |
| && (prev_snd_wnd == tc->snd_wnd)); |
| } |
| |
| /** |
| * Checks if ack is a congestion control event. |
| */ |
| static u8 |
| tcp_ack_is_cc_event (tcp_connection_t * tc, vlib_buffer_t * b, |
| u32 prev_snd_wnd, u32 prev_snd_una, u8 * is_dack) |
| { |
| /* Check if ack is duplicate. Per RFC 6675, ACKs that SACK new data are |
| * defined to be 'duplicate' */ |
| *is_dack = tc->sack_sb.last_sacked_bytes |
| || tcp_ack_is_dupack (tc, b, prev_snd_wnd, prev_snd_una); |
| |
| return ((*is_dack || tcp_in_cong_recovery (tc)) && !tcp_is_lost_fin (tc)); |
| } |
| |
| void |
| scoreboard_remove_hole (sack_scoreboard_t * sb, sack_scoreboard_hole_t * hole) |
| { |
| sack_scoreboard_hole_t *next, *prev; |
| |
| if (hole->next != TCP_INVALID_SACK_HOLE_INDEX) |
| { |
| next = pool_elt_at_index (sb->holes, hole->next); |
| next->prev = hole->prev; |
| } |
| else |
| { |
| sb->tail = hole->prev; |
| } |
| |
| if (hole->prev != TCP_INVALID_SACK_HOLE_INDEX) |
| { |
| prev = pool_elt_at_index (sb->holes, hole->prev); |
| prev->next = hole->next; |
| } |
| else |
| { |
| sb->head = hole->next; |
| } |
| |
| if (scoreboard_hole_index (sb, hole) == sb->cur_rxt_hole) |
| sb->cur_rxt_hole = TCP_INVALID_SACK_HOLE_INDEX; |
| |
| /* Poison the entry */ |
| if (CLIB_DEBUG > 0) |
| memset (hole, 0xfe, sizeof (*hole)); |
| |
| pool_put (sb->holes, hole); |
| } |
| |
| sack_scoreboard_hole_t * |
| scoreboard_insert_hole (sack_scoreboard_t * sb, u32 prev_index, |
| u32 start, u32 end) |
| { |
| sack_scoreboard_hole_t *hole, *next, *prev; |
| u32 hole_index; |
| |
| pool_get (sb->holes, hole); |
| memset (hole, 0, sizeof (*hole)); |
| |
| hole->start = start; |
| hole->end = end; |
| hole_index = scoreboard_hole_index (sb, hole); |
| |
| prev = scoreboard_get_hole (sb, prev_index); |
| if (prev) |
| { |
| hole->prev = prev_index; |
| hole->next = prev->next; |
| |
| if ((next = scoreboard_next_hole (sb, hole))) |
| next->prev = hole_index; |
| else |
| sb->tail = hole_index; |
| |
| prev->next = hole_index; |
| } |
| else |
| { |
| sb->head = hole_index; |
| hole->prev = TCP_INVALID_SACK_HOLE_INDEX; |
| hole->next = TCP_INVALID_SACK_HOLE_INDEX; |
| } |
| |
| return hole; |
| } |
| |
| void |
| scoreboard_update_bytes (tcp_connection_t * tc, sack_scoreboard_t * sb) |
| { |
| sack_scoreboard_hole_t *hole, *prev; |
| u32 bytes = 0, blks = 0; |
| |
| sb->lost_bytes = 0; |
| sb->sacked_bytes = 0; |
| hole = scoreboard_last_hole (sb); |
| if (!hole) |
| return; |
| |
| if (seq_gt (sb->high_sacked, hole->end)) |
| { |
| bytes = sb->high_sacked - hole->end; |
| blks = 1; |
| } |
| |
| while ((prev = scoreboard_prev_hole (sb, hole)) |
| && (bytes < (TCP_DUPACK_THRESHOLD - 1) * tc->snd_mss |
| && blks < TCP_DUPACK_THRESHOLD)) |
| { |
| bytes += hole->start - prev->end; |
| blks++; |
| hole = prev; |
| } |
| |
| while (hole) |
| { |
| sb->lost_bytes += scoreboard_hole_bytes (hole); |
| hole->is_lost = 1; |
| prev = hole; |
| hole = scoreboard_prev_hole (sb, hole); |
| if (hole) |
| bytes += prev->start - hole->end; |
| } |
| sb->sacked_bytes = bytes; |
| } |
| |
| /** |
| * Figure out the next hole to retransmit |
| * |
| * Follows logic proposed in RFC6675 Sec. 4, NextSeg() |
| */ |
| sack_scoreboard_hole_t * |
| scoreboard_next_rxt_hole (sack_scoreboard_t * sb, |
| sack_scoreboard_hole_t * start, |
| u8 have_sent_1_smss, |
| u8 * can_rescue, u8 * snd_limited) |
| { |
| sack_scoreboard_hole_t *hole = 0; |
| |
| hole = start ? start : scoreboard_first_hole (sb); |
| while (hole && seq_leq (hole->end, sb->high_rxt) && hole->is_lost) |
| hole = scoreboard_next_hole (sb, hole); |
| |
| /* Nothing, return */ |
| if (!hole) |
| { |
| sb->cur_rxt_hole = TCP_INVALID_SACK_HOLE_INDEX; |
| return 0; |
| } |
| |
| /* Rule (1): if higher than rxt, less than high_sacked and lost */ |
| if (hole->is_lost && seq_lt (hole->start, sb->high_sacked)) |
| { |
| sb->cur_rxt_hole = scoreboard_hole_index (sb, hole); |
| } |
| else |
| { |
| /* Rule (2): output takes care of transmitting new data */ |
| if (!have_sent_1_smss) |
| { |
| hole = 0; |
| sb->cur_rxt_hole = TCP_INVALID_SACK_HOLE_INDEX; |
| } |
| /* Rule (3): if hole not lost */ |
| else if (seq_lt (hole->start, sb->high_sacked)) |
| { |
| *snd_limited = 1; |
| sb->cur_rxt_hole = scoreboard_hole_index (sb, hole); |
| } |
| /* Rule (4): if hole beyond high_sacked */ |
| else |
| { |
| ASSERT (seq_geq (hole->start, sb->high_sacked)); |
| *snd_limited = 1; |
| *can_rescue = 1; |
| /* HighRxt MUST NOT be updated */ |
| return 0; |
| } |
| } |
| |
| if (hole && seq_lt (sb->high_rxt, hole->start)) |
| sb->high_rxt = hole->start; |
| |
| return hole; |
| } |
| |
| void |
| scoreboard_init_high_rxt (sack_scoreboard_t * sb, u32 seq) |
| { |
| sack_scoreboard_hole_t *hole; |
| hole = scoreboard_first_hole (sb); |
| if (hole) |
| { |
| seq = seq_gt (seq, hole->start) ? seq : hole->start; |
| sb->cur_rxt_hole = sb->head; |
| } |
| sb->high_rxt = seq; |
| } |
| |
| /** |
| * Test that scoreboard is sane after recovery |
| * |
| * Returns 1 if scoreboard is empty or if first hole beyond |
| * snd_una. |
| */ |
| u8 |
| tcp_scoreboard_is_sane_post_recovery (tcp_connection_t * tc) |
| { |
| sack_scoreboard_hole_t *hole; |
| hole = scoreboard_first_hole (&tc->sack_sb); |
| return (!hole || seq_geq (hole->start, tc->snd_una)); |
| } |
| |
| void |
| tcp_rcv_sacks (tcp_connection_t * tc, u32 ack) |
| { |
| sack_scoreboard_t *sb = &tc->sack_sb; |
| sack_block_t *blk, tmp; |
| sack_scoreboard_hole_t *hole, *next_hole, *last_hole; |
| u32 blk_index = 0, old_sacked_bytes, hole_index; |
| int i, j; |
| |
| sb->last_sacked_bytes = 0; |
| sb->snd_una_adv = 0; |
| old_sacked_bytes = sb->sacked_bytes; |
| sb->last_bytes_delivered = 0; |
| |
| if (!tcp_opts_sack (&tc->rcv_opts) |
| && sb->head == TCP_INVALID_SACK_HOLE_INDEX) |
| return; |
| |
| /* Remove invalid blocks */ |
| blk = tc->rcv_opts.sacks; |
| while (blk < vec_end (tc->rcv_opts.sacks)) |
| { |
| if (seq_lt (blk->start, blk->end) |
| && seq_gt (blk->start, tc->snd_una) |
| && seq_gt (blk->start, ack) && seq_leq (blk->end, tc->snd_una_max)) |
| { |
| blk++; |
| continue; |
| } |
| vec_del1 (tc->rcv_opts.sacks, blk - tc->rcv_opts.sacks); |
| } |
| |
| /* Add block for cumulative ack */ |
| if (seq_gt (ack, tc->snd_una)) |
| { |
| tmp.start = tc->snd_una; |
| tmp.end = ack; |
| vec_add1 (tc->rcv_opts.sacks, tmp); |
| } |
| |
| if (vec_len (tc->rcv_opts.sacks) == 0) |
| return; |
| |
| tcp_scoreboard_trace_add (tc, ack); |
| |
| /* Make sure blocks are ordered */ |
| for (i = 0; i < vec_len (tc->rcv_opts.sacks); i++) |
| for (j = i + 1; j < vec_len (tc->rcv_opts.sacks); j++) |
| if (seq_lt (tc->rcv_opts.sacks[j].start, tc->rcv_opts.sacks[i].start)) |
| { |
| tmp = tc->rcv_opts.sacks[i]; |
| tc->rcv_opts.sacks[i] = tc->rcv_opts.sacks[j]; |
| tc->rcv_opts.sacks[j] = tmp; |
| } |
| |
| if (sb->head == TCP_INVALID_SACK_HOLE_INDEX) |
| { |
| /* If no holes, insert the first that covers all outstanding bytes */ |
| last_hole = scoreboard_insert_hole (sb, TCP_INVALID_SACK_HOLE_INDEX, |
| tc->snd_una, tc->snd_una_max); |
| sb->tail = scoreboard_hole_index (sb, last_hole); |
| tmp = tc->rcv_opts.sacks[vec_len (tc->rcv_opts.sacks) - 1]; |
| sb->high_sacked = tmp.end; |
| } |
| else |
| { |
| /* If we have holes but snd_una_max is beyond the last hole, update |
| * last hole end */ |
| tmp = tc->rcv_opts.sacks[vec_len (tc->rcv_opts.sacks) - 1]; |
| last_hole = scoreboard_last_hole (sb); |
| if (seq_gt (tc->snd_una_max, last_hole->end)) |
| { |
| if (seq_geq (last_hole->start, sb->high_sacked)) |
| { |
| last_hole->end = tc->snd_una_max; |
| } |
| /* New hole after high sacked block */ |
| else if (seq_lt (sb->high_sacked, tc->snd_una_max)) |
| { |
| scoreboard_insert_hole (sb, sb->tail, sb->high_sacked, |
| tc->snd_una_max); |
| } |
| } |
| /* Keep track of max byte sacked for when the last hole |
| * is acked */ |
| if (seq_gt (tmp.end, sb->high_sacked)) |
| sb->high_sacked = tmp.end; |
| } |
| |
| /* Walk the holes with the SACK blocks */ |
| hole = pool_elt_at_index (sb->holes, sb->head); |
| while (hole && blk_index < vec_len (tc->rcv_opts.sacks)) |
| { |
| blk = &tc->rcv_opts.sacks[blk_index]; |
| if (seq_leq (blk->start, hole->start)) |
| { |
| /* Block covers hole. Remove hole */ |
| if (seq_geq (blk->end, hole->end)) |
| { |
| next_hole = scoreboard_next_hole (sb, hole); |
| |
| /* Byte accounting: snd_una needs to be advanced */ |
| if (blk->end == ack) |
| { |
| if (next_hole) |
| { |
| if (seq_lt (ack, next_hole->start)) |
| sb->snd_una_adv = next_hole->start - ack; |
| sb->last_bytes_delivered += |
| next_hole->start - hole->end; |
| } |
| else |
| { |
| ASSERT (seq_geq (sb->high_sacked, ack)); |
| sb->snd_una_adv = sb->high_sacked - ack; |
| sb->last_bytes_delivered += sb->high_sacked - hole->end; |
| } |
| } |
| |
| scoreboard_remove_hole (sb, hole); |
| hole = next_hole; |
| } |
| /* Partial 'head' overlap */ |
| else |
| { |
| if (seq_gt (blk->end, hole->start)) |
| { |
| hole->start = blk->end; |
| } |
| blk_index++; |
| } |
| } |
| else |
| { |
| /* Hole must be split */ |
| if (seq_lt (blk->end, hole->end)) |
| { |
| hole_index = scoreboard_hole_index (sb, hole); |
| next_hole = scoreboard_insert_hole (sb, hole_index, blk->end, |
| hole->end); |
| |
| /* Pool might've moved */ |
| hole = scoreboard_get_hole (sb, hole_index); |
| hole->end = blk->start; |
| blk_index++; |
| ASSERT (hole->next == scoreboard_hole_index (sb, next_hole)); |
| } |
| else if (seq_lt (blk->start, hole->end)) |
| { |
| hole->end = blk->start; |
| } |
| hole = scoreboard_next_hole (sb, hole); |
| } |
| } |
| |
| scoreboard_update_bytes (tc, sb); |
| sb->last_sacked_bytes = sb->sacked_bytes |
| - (old_sacked_bytes - sb->last_bytes_delivered); |
| ASSERT (sb->last_sacked_bytes <= sb->sacked_bytes); |
| ASSERT (sb->sacked_bytes == 0 |
| || sb->sacked_bytes < tc->snd_una_max - seq_max (tc->snd_una, ack)); |
| ASSERT (sb->last_sacked_bytes + sb->lost_bytes <= tc->snd_una_max |
| - seq_max (tc->snd_una, ack)); |
| ASSERT (sb->head == TCP_INVALID_SACK_HOLE_INDEX || tcp_in_recovery (tc) |
| || sb->holes[sb->head].start == ack + sb->snd_una_adv); |
| } |
| |
| /** |
| * Try to update snd_wnd based on feedback received from peer. |
| * |
| * If successful, and new window is 'effectively' 0, activate persist |
| * timer. |
| */ |
| static void |
| tcp_update_snd_wnd (tcp_connection_t * tc, u32 seq, u32 ack, u32 snd_wnd) |
| { |
| /* If (SND.WL1 < SEG.SEQ or (SND.WL1 = SEG.SEQ and SND.WL2 =< SEG.ACK)), set |
| * SND.WND <- SEG.WND, set SND.WL1 <- SEG.SEQ, and set SND.WL2 <- SEG.ACK */ |
| if (seq_lt (tc->snd_wl1, seq) |
| || (tc->snd_wl1 == seq && seq_leq (tc->snd_wl2, ack))) |
| { |
| tc->snd_wnd = snd_wnd; |
| tc->snd_wl1 = seq; |
| tc->snd_wl2 = ack; |
| TCP_EVT_DBG (TCP_EVT_SND_WND, tc); |
| |
| if (tc->snd_wnd < tc->snd_mss) |
| { |
| /* Set persist timer if not set and we just got 0 wnd */ |
| if (!tcp_timer_is_active (tc, TCP_TIMER_PERSIST) |
| && !tcp_timer_is_active (tc, TCP_TIMER_RETRANSMIT)) |
| tcp_persist_timer_set (tc); |
| } |
| else |
| { |
| tcp_persist_timer_reset (tc); |
| if (!tcp_in_recovery (tc) && tc->rto_boff > 0) |
| { |
| tc->rto_boff = 0; |
| tcp_update_rto (tc); |
| } |
| } |
| } |
| } |
| |
| void |
| tcp_cc_init_congestion (tcp_connection_t * tc) |
| { |
| tcp_fastrecovery_on (tc); |
| tc->snd_congestion = tc->snd_una_max; |
| tc->cc_algo->congestion (tc); |
| TCP_EVT_DBG (TCP_EVT_CC_EVT, tc, 4); |
| } |
| |
| static void |
| tcp_cc_recovery_exit (tcp_connection_t * tc) |
| { |
| /* Deflate rto */ |
| tc->rto_boff = 0; |
| tcp_update_rto (tc); |
| tc->snd_rxt_ts = 0; |
| tc->snd_nxt = tc->snd_una_max; |
| tcp_recovery_off (tc); |
| TCP_EVT_DBG (TCP_EVT_CC_EVT, tc, 3); |
| } |
| |
| void |
| tcp_cc_fastrecovery_exit (tcp_connection_t * tc) |
| { |
| tc->cc_algo->recovered (tc); |
| tc->snd_rxt_bytes = 0; |
| tc->rcv_dupacks = 0; |
| tc->snd_nxt = tc->snd_una_max; |
| tcp_fastrecovery_off (tc); |
| tcp_fastrecovery_1_smss_off (tc); |
| TCP_EVT_DBG (TCP_EVT_CC_EVT, tc, 3); |
| } |
| |
| static void |
| tcp_cc_congestion_undo (tcp_connection_t * tc) |
| { |
| tc->cwnd = tc->prev_cwnd; |
| tc->ssthresh = tc->prev_ssthresh; |
| tc->snd_nxt = tc->snd_una_max; |
| tc->rcv_dupacks = 0; |
| if (tcp_in_recovery (tc)) |
| tcp_cc_recovery_exit (tc); |
| ASSERT (tc->rto_boff == 0); |
| TCP_EVT_DBG (TCP_EVT_CC_EVT, tc, 5); |
| /* TODO extend for fastrecovery */ |
| } |
| |
| static u8 |
| tcp_cc_is_spurious_retransmit (tcp_connection_t * tc) |
| { |
| return (tcp_in_recovery (tc) && tc->rto_boff == 1 |
| && tc->snd_rxt_ts |
| && tcp_opts_tstamp (&tc->rcv_opts) |
| && timestamp_lt (tc->rcv_opts.tsecr, tc->snd_rxt_ts)); |
| } |
| |
| int |
| tcp_cc_recover (tcp_connection_t * tc) |
| { |
| ASSERT (tcp_in_cong_recovery (tc)); |
| if (tcp_cc_is_spurious_retransmit (tc)) |
| { |
| tcp_cc_congestion_undo (tc); |
| return 1; |
| } |
| |
| if (tcp_in_recovery (tc)) |
| tcp_cc_recovery_exit (tc); |
| else if (tcp_in_fastrecovery (tc)) |
| tcp_cc_fastrecovery_exit (tc); |
| |
| ASSERT (tc->rto_boff == 0); |
| ASSERT (!tcp_in_cong_recovery (tc)); |
| ASSERT (tcp_scoreboard_is_sane_post_recovery (tc)); |
| return 0; |
| } |
| |
| static void |
| tcp_cc_update (tcp_connection_t * tc, vlib_buffer_t * b) |
| { |
| ASSERT (!tcp_in_cong_recovery (tc) || tcp_is_lost_fin (tc)); |
| |
| /* Congestion avoidance */ |
| tc->cc_algo->rcv_ack (tc); |
| tc->tsecr_last_ack = tc->rcv_opts.tsecr; |
| |
| /* If a cumulative ack, make sure dupacks is 0 */ |
| tc->rcv_dupacks = 0; |
| |
| /* When dupacks hits the threshold we only enter fast retransmit if |
| * cumulative ack covers more than snd_congestion. Should snd_una |
| * wrap this test may fail under otherwise valid circumstances. |
| * Therefore, proactively update snd_congestion when wrap detected. */ |
| if (PREDICT_FALSE |
| (seq_leq (tc->snd_congestion, tc->snd_una - tc->bytes_acked) |
| && seq_gt (tc->snd_congestion, tc->snd_una))) |
| tc->snd_congestion = tc->snd_una - 1; |
| } |
| |
| static u8 |
| tcp_should_fastrecover_sack (tcp_connection_t * tc) |
| { |
| return (TCP_DUPACK_THRESHOLD - 1) * tc->snd_mss < tc->sack_sb.sacked_bytes; |
| } |
| |
| static u8 |
| tcp_should_fastrecover (tcp_connection_t * tc) |
| { |
| return (tc->rcv_dupacks == TCP_DUPACK_THRESHOLD |
| || tcp_should_fastrecover_sack (tc)); |
| } |
| |
| /** |
| * One function to rule them all ... and in the darkness bind them |
| */ |
| static void |
| tcp_cc_handle_event (tcp_connection_t * tc, u32 is_dack) |
| { |
| u32 rxt_delivered; |
| |
| /* |
| * Duplicate ACK. Check if we should enter fast recovery, or if already in |
| * it account for the bytes that left the network. |
| */ |
| if (is_dack) |
| { |
| ASSERT (tc->snd_una != tc->snd_una_max |
| || tc->sack_sb.last_sacked_bytes); |
| |
| tc->rcv_dupacks++; |
| |
| if (tc->rcv_dupacks > TCP_DUPACK_THRESHOLD && !tc->bytes_acked) |
| { |
| ASSERT (tcp_in_fastrecovery (tc)); |
| /* Pure duplicate ack. If some data got acked, it's handled lower */ |
| tc->cc_algo->rcv_cong_ack (tc, TCP_CC_DUPACK); |
| return; |
| } |
| else if (tcp_should_fastrecover (tc)) |
| { |
| /* Things are already bad */ |
| if (tcp_in_cong_recovery (tc)) |
| { |
| tc->rcv_dupacks = 0; |
| goto partial_ack_test; |
| } |
| |
| /* If of of the two conditions lower hold, reset dupacks because |
| * we're probably after timeout (RFC6582 heuristics). |
| * If Cumulative ack does not cover more than congestion threshold, |
| * and: |
| * 1) The following doesn't hold: The congestion window is greater |
| * than SMSS bytes and the difference between highest_ack |
| * and prev_highest_ack is at most 4*SMSS bytes |
| * 2) Echoed timestamp in the last non-dup ack does not equal the |
| * stored timestamp |
| */ |
| if (seq_leq (tc->snd_una, tc->snd_congestion) |
| && ((!(tc->cwnd > tc->snd_mss |
| && tc->bytes_acked <= 4 * tc->snd_mss)) |
| || (tc->rcv_opts.tsecr != tc->tsecr_last_ack))) |
| { |
| tc->rcv_dupacks = 0; |
| return; |
| } |
| |
| tcp_cc_init_congestion (tc); |
| tc->cc_algo->rcv_cong_ack (tc, TCP_CC_DUPACK); |
| |
| /* The first segment MUST be retransmitted */ |
| tcp_retransmit_first_unacked (tc); |
| |
| /* Post retransmit update cwnd to ssthresh and account for the |
| * three segments that have left the network and should've been |
| * buffered at the receiver XXX */ |
| tc->cwnd = tc->ssthresh + tc->rcv_dupacks * tc->snd_mss; |
| ASSERT (tc->cwnd >= tc->snd_mss); |
| |
| /* If cwnd allows, send more data */ |
| if (tcp_opts_sack_permitted (&tc->rcv_opts)) |
| { |
| scoreboard_init_high_rxt (&tc->sack_sb, |
| tc->snd_una + tc->snd_mss); |
| tcp_fast_retransmit_sack (tc); |
| } |
| else |
| { |
| tcp_fast_retransmit_no_sack (tc); |
| } |
| |
| return; |
| } |
| else if (!tc->bytes_acked |
| || (tc->bytes_acked && !tcp_in_cong_recovery (tc))) |
| { |
| tc->cc_algo->rcv_cong_ack (tc, TCP_CC_DUPACK); |
| return; |
| } |
| else |
| goto partial_ack; |
| } |
| |
| partial_ack_test: |
| |
| if (!tc->bytes_acked) |
| return; |
| |
| partial_ack: |
| /* |
| * Legitimate ACK. 1) See if we can exit recovery |
| */ |
| /* XXX limit this only to first partial ack? */ |
| tcp_retransmit_timer_update (tc); |
| |
| if (seq_geq (tc->snd_una, tc->snd_congestion)) |
| { |
| /* If spurious return, we've already updated everything */ |
| if (tcp_cc_recover (tc)) |
| { |
| tc->tsecr_last_ack = tc->rcv_opts.tsecr; |
| return; |
| } |
| |
| tc->snd_nxt = tc->snd_una_max; |
| |
| /* Treat as congestion avoidance ack */ |
| tc->cc_algo->rcv_ack (tc); |
| tc->tsecr_last_ack = tc->rcv_opts.tsecr; |
| return; |
| } |
| |
| /* |
| * Legitimate ACK. 2) If PARTIAL ACK try to retransmit |
| */ |
| TCP_EVT_DBG (TCP_EVT_CC_PACK, tc); |
| |
| /* RFC6675: If the incoming ACK is a cumulative acknowledgment, |
| * reset dupacks to 0 */ |
| tc->rcv_dupacks = 0; |
| |
| tcp_retransmit_first_unacked (tc); |
| |
| /* Post RTO timeout don't try anything fancy */ |
| if (tcp_in_recovery (tc)) |
| return; |
| |
| /* Remove retransmitted bytes that have been delivered */ |
| ASSERT (tc->bytes_acked + tc->sack_sb.snd_una_adv |
| >= tc->sack_sb.last_bytes_delivered |
| || (tc->flags & TCP_CONN_FINSNT)); |
| |
| if (seq_lt (tc->snd_una, tc->sack_sb.high_rxt)) |
| { |
| /* If we have sacks and we haven't gotten an ack beyond high_rxt, |
| * remove sacked bytes delivered */ |
| rxt_delivered = tc->bytes_acked + tc->sack_sb.snd_una_adv |
| - tc->sack_sb.last_bytes_delivered; |
| ASSERT (tc->snd_rxt_bytes >= rxt_delivered); |
| tc->snd_rxt_bytes -= rxt_delivered; |
| } |
| else |
| { |
| /* Either all retransmitted holes have been acked, or we're |
| * "in the blind" and retransmitting segment by segment */ |
| tc->snd_rxt_bytes = 0; |
| } |
| |
| tc->cc_algo->rcv_cong_ack (tc, TCP_CC_PARTIALACK); |
| |
| /* |
| * Since this was a partial ack, try to retransmit some more data |
| */ |
| tcp_fast_retransmit (tc); |
| } |
| |
| void |
| tcp_cc_init (tcp_connection_t * tc) |
| { |
| tc->cc_algo = tcp_cc_algo_get (TCP_CC_NEWRENO); |
| tc->cc_algo->init (tc); |
| } |
| |
| /** |
| * Process incoming ACK |
| */ |
| static int |
| tcp_rcv_ack (tcp_connection_t * tc, vlib_buffer_t * b, |
| tcp_header_t * th, u32 * next, u32 * error) |
| { |
| u32 prev_snd_wnd, prev_snd_una; |
| u8 is_dack; |
| |
| TCP_EVT_DBG (TCP_EVT_CC_STAT, tc); |
| |
| /* If the ACK acks something not yet sent (SEG.ACK > SND.NXT) */ |
| if (PREDICT_FALSE (seq_gt (vnet_buffer (b)->tcp.ack_number, tc->snd_nxt))) |
| { |
| /* If we have outstanding data and this is within the window, accept it, |
| * probably retransmit has timed out. Otherwise ACK segment and then |
| * drop it */ |
| if (seq_gt (vnet_buffer (b)->tcp.ack_number, tc->snd_una_max)) |
| { |
| tcp_make_ack (tc, b); |
| *next = tcp_next_output (tc->c_is_ip4); |
| *error = TCP_ERROR_ACK_INVALID; |
| TCP_EVT_DBG (TCP_EVT_ACK_RCV_ERR, tc, 0, |
| vnet_buffer (b)->tcp.ack_number); |
| return -1; |
| } |
| |
| TCP_EVT_DBG (TCP_EVT_ACK_RCV_ERR, tc, 2, |
| vnet_buffer (b)->tcp.ack_number); |
| |
| tc->snd_nxt = vnet_buffer (b)->tcp.ack_number; |
| *error = TCP_ERROR_ACK_FUTURE; |
| } |
| |
| /* If old ACK, probably it's an old dupack */ |
| if (PREDICT_FALSE (seq_lt (vnet_buffer (b)->tcp.ack_number, tc->snd_una))) |
| { |
| *error = TCP_ERROR_ACK_OLD; |
| TCP_EVT_DBG (TCP_EVT_ACK_RCV_ERR, tc, 1, |
| vnet_buffer (b)->tcp.ack_number); |
| if (tcp_in_fastrecovery (tc) && tc->rcv_dupacks == TCP_DUPACK_THRESHOLD) |
| { |
| TCP_EVT_DBG (TCP_EVT_DUPACK_RCVD, tc); |
| tcp_cc_handle_event (tc, 1); |
| } |
| /* Don't drop yet */ |
| return 0; |
| } |
| |
| /* |
| * Looks okay, process feedback |
| */ |
| |
| if (tcp_opts_sack_permitted (&tc->rcv_opts)) |
| tcp_rcv_sacks (tc, vnet_buffer (b)->tcp.ack_number); |
| |
| prev_snd_wnd = tc->snd_wnd; |
| prev_snd_una = tc->snd_una; |
| tcp_update_snd_wnd (tc, vnet_buffer (b)->tcp.seq_number, |
| vnet_buffer (b)->tcp.ack_number, |
| clib_net_to_host_u16 (th->window) << tc->snd_wscale); |
| tc->bytes_acked = vnet_buffer (b)->tcp.ack_number - tc->snd_una; |
| tc->snd_una = vnet_buffer (b)->tcp.ack_number + tc->sack_sb.snd_una_adv; |
| tcp_validate_txf_size (tc, tc->bytes_acked); |
| |
| if (tc->bytes_acked) |
| tcp_dequeue_acked (tc, vnet_buffer (b)->tcp.ack_number); |
| |
| TCP_EVT_DBG (TCP_EVT_ACK_RCVD, tc); |
| |
| /* |
| * Check if we have congestion event |
| */ |
| |
| if (tcp_ack_is_cc_event (tc, b, prev_snd_wnd, prev_snd_una, &is_dack)) |
| { |
| tcp_cc_handle_event (tc, is_dack); |
| if (!tcp_in_cong_recovery (tc)) |
| return 0; |
| *error = TCP_ERROR_ACK_DUP; |
| TCP_EVT_DBG (TCP_EVT_DUPACK_RCVD, tc, 1); |
| return vnet_buffer (b)->tcp.data_len ? 0 : -1; |
| } |
| |
| /* |
| * Update congestion control (slow start/congestion avoidance) |
| */ |
| tcp_cc_update (tc, b); |
| |
| return 0; |
| } |
| |
| static u8 |
| tcp_sack_vector_is_sane (sack_block_t * sacks) |
| { |
| int i; |
| for (i = 1; i < vec_len (sacks); i++) |
| { |
| if (sacks[i - 1].end == sacks[i].start) |
| return 0; |
| } |
| return 1; |
| } |
| |
| /** |
| * Build SACK list as per RFC2018. |
| * |
| * Makes sure the first block contains the segment that generated the current |
| * ACK and the following ones are the ones most recently reported in SACK |
| * blocks. |
| * |
| * @param tc TCP connection for which the SACK list is updated |
| * @param start Start sequence number of the newest SACK block |
| * @param end End sequence of the newest SACK block |
| */ |
| void |
| tcp_update_sack_list (tcp_connection_t * tc, u32 start, u32 end) |
| { |
| sack_block_t *new_list = 0, *block = 0; |
| int i; |
| |
| /* If the first segment is ooo add it to the list. Last write might've moved |
| * rcv_nxt over the first segment. */ |
| if (seq_lt (tc->rcv_nxt, start)) |
| { |
| vec_add2 (new_list, block, 1); |
| block->start = start; |
| block->end = end; |
| } |
| |
| /* Find the blocks still worth keeping. */ |
| for (i = 0; i < vec_len (tc->snd_sacks); i++) |
| { |
| /* Discard if rcv_nxt advanced beyond current block */ |
| if (seq_leq (tc->snd_sacks[i].start, tc->rcv_nxt)) |
| continue; |
| |
| /* Merge or drop if segment overlapped by the new segment */ |
| if (block && (seq_geq (tc->snd_sacks[i].end, new_list[0].start) |
| && seq_leq (tc->snd_sacks[i].start, new_list[0].end))) |
| { |
| if (seq_lt (tc->snd_sacks[i].start, new_list[0].start)) |
| new_list[0].start = tc->snd_sacks[i].start; |
| if (seq_lt (new_list[0].end, tc->snd_sacks[i].end)) |
| new_list[0].end = tc->snd_sacks[i].end; |
| continue; |
| } |
| |
| /* Save to new SACK list if we have space. */ |
| if (vec_len (new_list) < TCP_MAX_SACK_BLOCKS) |
| { |
| vec_add1 (new_list, tc->snd_sacks[i]); |
| } |
| else |
| { |
| clib_warning ("sack discarded"); |
| } |
| } |
| |
| ASSERT (vec_len (new_list) <= TCP_MAX_SACK_BLOCKS); |
| |
| /* Replace old vector with new one */ |
| vec_free (tc->snd_sacks); |
| tc->snd_sacks = new_list; |
| |
| /* Segments should not 'touch' */ |
| ASSERT (tcp_sack_vector_is_sane (tc->snd_sacks)); |
| } |
| |
| /** Enqueue data for delivery to application */ |
| always_inline int |
| tcp_session_enqueue_data (tcp_connection_t * tc, vlib_buffer_t * b, |
| u16 data_len) |
| { |
| int written, error = TCP_ERROR_ENQUEUED; |
| |
| ASSERT (seq_geq (vnet_buffer (b)->tcp.seq_number, tc->rcv_nxt)); |
| |
| /* Pure ACK. Update rcv_nxt and be done. */ |
| if (PREDICT_FALSE (data_len == 0)) |
| { |
| return TCP_ERROR_PURE_ACK; |
| } |
| |
| written = session_enqueue_stream_connection (&tc->connection, b, 0, |
| 1 /* queue event */ , 1); |
| |
| TCP_EVT_DBG (TCP_EVT_INPUT, tc, 0, data_len, written); |
| |
| /* Update rcv_nxt */ |
| if (PREDICT_TRUE (written == data_len)) |
| { |
| tc->rcv_nxt += written; |
| } |
| /* If more data written than expected, account for out-of-order bytes. */ |
| else if (written > data_len) |
| { |
| tc->rcv_nxt += written; |
| |
| /* Send ACK confirming the update */ |
| tc->flags |= TCP_CONN_SNDACK; |
| } |
| else if (written > 0) |
| { |
| /* We've written something but FIFO is probably full now */ |
| tc->rcv_nxt += written; |
| |
| /* Depending on how fast the app is, all remaining buffers in burst will |
| * not be enqueued. Inform peer */ |
| tc->flags |= TCP_CONN_SNDACK; |
| |
| error = TCP_ERROR_PARTIALLY_ENQUEUED; |
| } |
| else |
| { |
| tc->flags |= TCP_CONN_SNDACK; |
| return TCP_ERROR_FIFO_FULL; |
| } |
| |
| /* Update SACK list if need be */ |
| if (tcp_opts_sack_permitted (&tc->rcv_opts)) |
| { |
| /* Remove SACK blocks that have been delivered */ |
| tcp_update_sack_list (tc, tc->rcv_nxt, tc->rcv_nxt); |
| } |
| |
| return error; |
| } |
| |
| /** Enqueue out-of-order data */ |
| always_inline int |
| tcp_session_enqueue_ooo (tcp_connection_t * tc, vlib_buffer_t * b, |
| u16 data_len) |
| { |
| stream_session_t *s0; |
| int rv, offset; |
| |
| ASSERT (seq_gt (vnet_buffer (b)->tcp.seq_number, tc->rcv_nxt)); |
| |
| /* Pure ACK. Do nothing */ |
| if (PREDICT_FALSE (data_len == 0)) |
| { |
| return TCP_ERROR_PURE_ACK; |
| } |
| |
| /* Enqueue out-of-order data with relative offset */ |
| rv = session_enqueue_stream_connection (&tc->connection, b, |
| vnet_buffer (b)->tcp.seq_number - |
| tc->rcv_nxt, 0 /* queue event */ , |
| 0); |
| |
| /* Nothing written */ |
| if (rv) |
| { |
| TCP_EVT_DBG (TCP_EVT_INPUT, tc, 1, data_len, 0); |
| return TCP_ERROR_FIFO_FULL; |
| } |
| |
| TCP_EVT_DBG (TCP_EVT_INPUT, tc, 1, data_len, data_len); |
| |
| /* Update SACK list if in use */ |
| if (tcp_opts_sack_permitted (&tc->rcv_opts)) |
| { |
| ooo_segment_t *newest; |
| u32 start, end; |
| |
| s0 = session_get (tc->c_s_index, tc->c_thread_index); |
| |
| /* Get the newest segment from the fifo */ |
| newest = svm_fifo_newest_ooo_segment (s0->server_rx_fifo); |
| if (newest) |
| { |
| offset = ooo_segment_offset (s0->server_rx_fifo, newest); |
| ASSERT (offset <= vnet_buffer (b)->tcp.seq_number - tc->rcv_nxt); |
| start = tc->rcv_nxt + offset; |
| end = start + ooo_segment_length (s0->server_rx_fifo, newest); |
| tcp_update_sack_list (tc, start, end); |
| svm_fifo_newest_ooo_segment_reset (s0->server_rx_fifo); |
| } |
| } |
| |
| return TCP_ERROR_ENQUEUED; |
| } |
| |
| /** |
| * Check if ACK could be delayed. If ack can be delayed, it should return |
| * true for a full frame. If we're always acking return 0. |
| */ |
| always_inline int |
| tcp_can_delack (tcp_connection_t * tc) |
| { |
| /* Send ack if ... */ |
| if (TCP_ALWAYS_ACK |
| /* just sent a rcv wnd 0 */ |
| || (tc->flags & TCP_CONN_SENT_RCV_WND0) != 0 |
| /* constrained to send ack */ |
| || (tc->flags & TCP_CONN_SNDACK) != 0 |
| /* we're almost out of tx wnd */ |
| || tcp_available_snd_space (tc) < 4 * tc->snd_mss) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int |
| tcp_buffer_discard_bytes (vlib_buffer_t * b, u32 n_bytes_to_drop) |
| { |
| u32 discard, first = b->current_length; |
| vlib_main_t *vm = vlib_get_main (); |
| |
| /* Handle multi-buffer segments */ |
| if (n_bytes_to_drop > b->current_length) |
| { |
| if (!(b->flags & VLIB_BUFFER_NEXT_PRESENT)) |
| return -1; |
| do |
| { |
| discard = clib_min (n_bytes_to_drop, b->current_length); |
| vlib_buffer_advance (b, discard); |
| b = vlib_get_buffer (vm, b->next_buffer); |
| n_bytes_to_drop -= discard; |
| } |
| while (n_bytes_to_drop); |
| if (n_bytes_to_drop > first) |
| b->total_length_not_including_first_buffer -= n_bytes_to_drop - first; |
| } |
| else |
| vlib_buffer_advance (b, n_bytes_to_drop); |
| vnet_buffer (b)->tcp.data_len -= n_bytes_to_drop; |
| return 0; |
| } |
| |
| static int |
| tcp_segment_rcv (tcp_main_t * tm, tcp_connection_t * tc, vlib_buffer_t * b, |
| u32 * next0) |
| { |
| u32 error = 0, n_bytes_to_drop, n_data_bytes; |
| |
| vlib_buffer_advance (b, vnet_buffer (b)->tcp.data_offset); |
| n_data_bytes = vnet_buffer (b)->tcp.data_len; |
| ASSERT (n_data_bytes); |
| |
| /* Handle out-of-order data */ |
| if (PREDICT_FALSE (vnet_buffer (b)->tcp.seq_number != tc->rcv_nxt)) |
| { |
| /* Old sequence numbers allowed through because they overlapped |
| * the rx window */ |
| if (seq_lt (vnet_buffer (b)->tcp.seq_number, tc->rcv_nxt)) |
| { |
| error = TCP_ERROR_SEGMENT_OLD; |
| *next0 = tcp_next_drop (tc->c_is_ip4); |
| |
| /* Completely in the past (possible retransmit) */ |
| if (seq_leq (vnet_buffer (b)->tcp.seq_end, tc->rcv_nxt)) |
| { |
| /* Ack retransmissions since we may not have any data to send */ |
| tcp_make_ack (tc, b); |
| *next0 = tcp_next_output (tc->c_is_ip4); |
| goto done; |
| } |
| |
| /* Chop off the bytes in the past */ |
| n_bytes_to_drop = tc->rcv_nxt - vnet_buffer (b)->tcp.seq_number; |
| n_data_bytes -= n_bytes_to_drop; |
| vnet_buffer (b)->tcp.seq_number = tc->rcv_nxt; |
| if (tcp_buffer_discard_bytes (b, n_bytes_to_drop)) |
| goto done; |
| |
| goto in_order; |
| } |
| |
| error = tcp_session_enqueue_ooo (tc, b, n_data_bytes); |
| |
| /* N.B. Should not filter burst of dupacks. Two issues 1) dupacks open |
| * cwnd on remote peer when congested 2) acks leaving should have the |
| * latest rcv_wnd since the burst may eaten up all of it, so only the |
| * old ones could be filtered. |
| */ |
| |
| /* RFC2581: Send DUPACK for fast retransmit */ |
| tcp_make_ack (tc, b); |
| *next0 = tcp_next_output (tc->c_is_ip4); |
| |
| /* Mark as DUPACK. We may filter these in output if |
| * the burst fills the holes. */ |
| if (n_data_bytes) |
| vnet_buffer (b)->tcp.flags = TCP_BUF_FLAG_DUPACK; |
| |
| TCP_EVT_DBG (TCP_EVT_DUPACK_SENT, tc); |
| goto done; |
| } |
| |
| in_order: |
| |
| /* In order data, enqueue. Fifo figures out by itself if any out-of-order |
| * segments can be enqueued after fifo tail offset changes. */ |
| error = tcp_session_enqueue_data (tc, b, n_data_bytes); |
| |
| /* Check if ACK can be delayed */ |
| if (tcp_can_delack (tc)) |
| { |
| if (!tcp_timer_is_active (tc, TCP_TIMER_DELACK)) |
| tcp_timer_set (tc, TCP_TIMER_DELACK, TCP_DELACK_TIME); |
| goto done; |
| } |
| |
| *next0 = tcp_next_output (tc->c_is_ip4); |
| tcp_make_ack (tc, b); |
| |
| done: |
| return error; |
| } |
| |
| typedef struct |
| { |
| tcp_header_t tcp_header; |
| tcp_connection_t tcp_connection; |
| } tcp_rx_trace_t; |
| |
| u8 * |
| format_tcp_rx_trace (u8 * s, va_list * args) |
| { |
| CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *); |
| CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *); |
| tcp_rx_trace_t *t = va_arg (*args, tcp_rx_trace_t *); |
| u32 indent = format_get_indent (s); |
| |
| s = format (s, "%U\n%U%U", |
| format_tcp_header, &t->tcp_header, 128, |
| format_white_space, indent, |
| format_tcp_connection, &t->tcp_connection, 1); |
| |
| return s; |
| } |
| |
| u8 * |
| format_tcp_rx_trace_short (u8 * s, va_list * args) |
| { |
| CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *); |
| CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *); |
| tcp_rx_trace_t *t = va_arg (*args, tcp_rx_trace_t *); |
| |
| s = format (s, "%d -> %d (%U)", |
| clib_net_to_host_u16 (t->tcp_header.src_port), |
| clib_net_to_host_u16 (t->tcp_header.dst_port), format_tcp_state, |
| t->tcp_connection.state); |
| |
| return s; |
| } |
| |
| void |
| tcp_set_rx_trace_data (tcp_rx_trace_t * t0, tcp_connection_t * tc0, |
| tcp_header_t * th0, vlib_buffer_t * b0, u8 is_ip4) |
| { |
| if (tc0) |
| { |
| clib_memcpy (&t0->tcp_connection, tc0, sizeof (t0->tcp_connection)); |
| } |
| else |
| { |
| th0 = tcp_buffer_hdr (b0); |
| } |
| clib_memcpy (&t0->tcp_header, th0, sizeof (t0->tcp_header)); |
| } |
| |
| always_inline void |
| tcp_node_inc_counter (vlib_main_t * vm, u32 tcp4_node, u32 tcp6_node, |
| u8 is_ip4, u8 evt, u8 val) |
| { |
| if (PREDICT_TRUE (!val)) |
| return; |
| |
| if (is_ip4) |
| vlib_node_increment_counter (vm, tcp4_node, evt, val); |
| else |
| vlib_node_increment_counter (vm, tcp6_node, evt, val); |
| } |
| |
| always_inline uword |
| tcp46_established_inline (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame, int is_ip4) |
| { |
| u32 n_left_from, next_index, *from, *to_next; |
| u32 my_thread_index = vm->thread_index, errors = 0; |
| tcp_main_t *tm = vnet_get_tcp_main (); |
| u8 is_fin = 0; |
| |
| from = vlib_frame_vector_args (from_frame); |
| n_left_from = from_frame->n_vectors; |
| |
| next_index = node->cached_next_index; |
| |
| while (n_left_from > 0) |
| { |
| u32 n_left_to_next; |
| |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| while (n_left_from > 0 && n_left_to_next > 0) |
| { |
| u32 bi0; |
| vlib_buffer_t *b0; |
| tcp_header_t *th0 = 0; |
| tcp_connection_t *tc0; |
| u32 next0 = tcp_next_drop (is_ip4), error0 = TCP_ERROR_ENQUEUED; |
| |
| if (n_left_from > 1) |
| { |
| vlib_buffer_t *pb; |
| pb = vlib_get_buffer (vm, from[1]); |
| vlib_prefetch_buffer_header (pb, LOAD); |
| CLIB_PREFETCH (pb->data, 2 * CLIB_CACHE_LINE_BYTES, LOAD); |
| } |
| |
| bi0 = from[0]; |
| to_next[0] = bi0; |
| from += 1; |
| to_next += 1; |
| n_left_from -= 1; |
| n_left_to_next -= 1; |
| |
| b0 = vlib_get_buffer (vm, bi0); |
| tc0 = tcp_connection_get (vnet_buffer (b0)->tcp.connection_index, |
| my_thread_index); |
| |
| if (PREDICT_FALSE (tc0 == 0)) |
| { |
| error0 = TCP_ERROR_INVALID_CONNECTION; |
| goto done; |
| } |
| |
| th0 = tcp_buffer_hdr (b0); |
| /* N.B. buffer is rewritten if segment is ooo. Thus, th0 becomes a |
| * dangling reference. */ |
| is_fin = tcp_is_fin (th0); |
| |
| /* SYNs, FINs and data consume sequence numbers */ |
| vnet_buffer (b0)->tcp.seq_end = vnet_buffer (b0)->tcp.seq_number |
| + tcp_is_syn (th0) + is_fin + vnet_buffer (b0)->tcp.data_len; |
| |
| /* TODO header prediction fast path */ |
| |
| /* 1-4: check SEQ, RST, SYN */ |
| if (PREDICT_FALSE (tcp_segment_validate (vm, tc0, b0, th0, &next0))) |
| { |
| error0 = TCP_ERROR_SEGMENT_INVALID; |
| TCP_EVT_DBG (TCP_EVT_SEG_INVALID, tc0, |
| vnet_buffer (b0)->tcp.seq_number, |
| vnet_buffer (b0)->tcp.seq_end); |
| goto done; |
| } |
| |
| /* 5: check the ACK field */ |
| if (tcp_rcv_ack (tc0, b0, th0, &next0, &error0)) |
| goto done; |
| |
| /* 6: check the URG bit TODO */ |
| |
| /* 7: process the segment text */ |
| if (vnet_buffer (b0)->tcp.data_len) |
| error0 = tcp_segment_rcv (tm, tc0, b0, &next0); |
| |
| /* 8: check the FIN bit */ |
| if (PREDICT_FALSE (is_fin)) |
| { |
| /* Enter CLOSE-WAIT and notify session. To avoid lingering |
| * in CLOSE-WAIT, set timer (reuse WAITCLOSE). */ |
| /* Account for the FIN if nothing else was received */ |
| if (vnet_buffer (b0)->tcp.data_len == 0) |
| tc0->rcv_nxt += 1; |
| tcp_make_ack (tc0, b0); |
| next0 = tcp_next_output (tc0->c_is_ip4); |
| tc0->state = TCP_STATE_CLOSE_WAIT; |
| stream_session_disconnect_notify (&tc0->connection); |
| tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_CLOSEWAIT_TIME); |
| TCP_EVT_DBG (TCP_EVT_FIN_RCVD, tc0); |
| } |
| |
| done: |
| b0->error = node->errors[error0]; |
| if (PREDICT_FALSE (b0->flags & VLIB_BUFFER_IS_TRACED)) |
| { |
| tcp_rx_trace_t *t0 = |
| vlib_add_trace (vm, node, b0, sizeof (*t0)); |
| tcp_set_rx_trace_data (t0, tc0, th0, b0, is_ip4); |
| } |
| |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next, |
| n_left_to_next, bi0, next0); |
| } |
| |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| |
| errors = session_manager_flush_enqueue_events (TRANSPORT_PROTO_TCP, |
| my_thread_index); |
| tcp_node_inc_counter (vm, is_ip4, tcp4_established_node.index, |
| tcp6_established_node.index, |
| TCP_ERROR_EVENT_FIFO_FULL, errors); |
| tcp_flush_frame_to_output (vm, my_thread_index, is_ip4); |
| |
| return from_frame->n_vectors; |
| } |
| |
| static uword |
| tcp4_established (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_established_inline (vm, node, from_frame, 1 /* is_ip4 */ ); |
| } |
| |
| static uword |
| tcp6_established (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_established_inline (vm, node, from_frame, 0 /* is_ip4 */ ); |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp4_established_node) = |
| { |
| .function = tcp4_established, |
| .name = "tcp4-established", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_strings = tcp_error_strings, |
| .n_next_nodes = TCP_ESTABLISHED_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_ESTABLISHED_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| VLIB_NODE_FUNCTION_MULTIARCH (tcp4_established_node, tcp4_established); |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp6_established_node) = |
| { |
| .function = tcp6_established, |
| .name = "tcp6-established", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_strings = tcp_error_strings, |
| .n_next_nodes = TCP_ESTABLISHED_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_ESTABLISHED_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| |
| VLIB_NODE_FUNCTION_MULTIARCH (tcp6_established_node, tcp6_established); |
| |
| vlib_node_registration_t tcp4_syn_sent_node; |
| vlib_node_registration_t tcp6_syn_sent_node; |
| |
| static u8 |
| tcp_lookup_is_valid (tcp_connection_t * tc, tcp_header_t * hdr) |
| { |
| transport_connection_t *tmp = 0; |
| u64 handle; |
| |
| if (!tc) |
| return 1; |
| |
| /* Proxy case */ |
| if (tc->c_lcl_port == 0 && tc->state == TCP_STATE_LISTEN) |
| return 1; |
| |
| u8 is_valid = (tc->c_lcl_port == hdr->dst_port |
| && (tc->state == TCP_STATE_LISTEN |
| || tc->c_rmt_port == hdr->src_port)); |
| |
| if (!is_valid) |
| { |
| handle = session_lookup_half_open_handle (&tc->connection); |
| tmp = session_lookup_half_open_connection (handle & 0xFFFFFFFF, |
| tc->c_proto, tc->c_is_ip4); |
| |
| if (tmp) |
| { |
| if (tmp->lcl_port == hdr->dst_port |
| && tmp->rmt_port == hdr->src_port) |
| { |
| TCP_DBG ("half-open is valid!"); |
| } |
| } |
| } |
| return is_valid; |
| } |
| |
| /** |
| * Lookup transport connection |
| */ |
| static tcp_connection_t * |
| tcp_lookup_connection (u32 fib_index, vlib_buffer_t * b, u8 thread_index, |
| u8 is_ip4) |
| { |
| tcp_header_t *tcp; |
| transport_connection_t *tconn; |
| tcp_connection_t *tc; |
| u8 is_filtered = 0; |
| if (is_ip4) |
| { |
| ip4_header_t *ip4; |
| ip4 = vlib_buffer_get_current (b); |
| tcp = ip4_next_header (ip4); |
| tconn = session_lookup_connection_wt4 (fib_index, |
| &ip4->dst_address, |
| &ip4->src_address, |
| tcp->dst_port, |
| tcp->src_port, |
| TRANSPORT_PROTO_TCP, |
| thread_index, &is_filtered); |
| tc = tcp_get_connection_from_transport (tconn); |
| ASSERT (tcp_lookup_is_valid (tc, tcp)); |
| } |
| else |
| { |
| ip6_header_t *ip6; |
| ip6 = vlib_buffer_get_current (b); |
| tcp = ip6_next_header (ip6); |
| tconn = session_lookup_connection_wt6 (fib_index, |
| &ip6->dst_address, |
| &ip6->src_address, |
| tcp->dst_port, |
| tcp->src_port, |
| TRANSPORT_PROTO_TCP, |
| thread_index, &is_filtered); |
| tc = tcp_get_connection_from_transport (tconn); |
| ASSERT (tcp_lookup_is_valid (tc, tcp)); |
| } |
| return tc; |
| } |
| |
| always_inline uword |
| tcp46_syn_sent_inline (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame, int is_ip4) |
| { |
| tcp_main_t *tm = vnet_get_tcp_main (); |
| u32 n_left_from, next_index, *from, *to_next; |
| u32 my_thread_index = vm->thread_index, errors = 0; |
| |
| from = vlib_frame_vector_args (from_frame); |
| n_left_from = from_frame->n_vectors; |
| |
| next_index = node->cached_next_index; |
| |
| while (n_left_from > 0) |
| { |
| u32 n_left_to_next; |
| |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| |
| while (n_left_from > 0 && n_left_to_next > 0) |
| { |
| u32 bi0, ack0, seq0; |
| vlib_buffer_t *b0; |
| tcp_rx_trace_t *t0; |
| tcp_header_t *tcp0 = 0; |
| tcp_connection_t *tc0; |
| tcp_connection_t *new_tc0; |
| u32 next0 = tcp_next_drop (is_ip4), error0 = TCP_ERROR_ENQUEUED; |
| |
| bi0 = from[0]; |
| to_next[0] = bi0; |
| from += 1; |
| to_next += 1; |
| n_left_from -= 1; |
| n_left_to_next -= 1; |
| |
| b0 = vlib_get_buffer (vm, bi0); |
| tc0 = |
| tcp_half_open_connection_get (vnet_buffer (b0)-> |
| tcp.connection_index); |
| if (PREDICT_FALSE (tc0 == 0)) |
| { |
| error0 = TCP_ERROR_INVALID_CONNECTION; |
| goto drop; |
| } |
| |
| /* Half-open completed recently but the connection was't removed |
| * yet by the owning thread */ |
| if (PREDICT_FALSE (tc0->flags & TCP_CONN_HALF_OPEN_DONE)) |
| { |
| /* Make sure the connection actually exists */ |
| ASSERT (tcp_lookup_connection (tc0->c_fib_index, b0, |
| my_thread_index, is_ip4)); |
| goto drop; |
| } |
| |
| ack0 = vnet_buffer (b0)->tcp.ack_number; |
| seq0 = vnet_buffer (b0)->tcp.seq_number; |
| tcp0 = tcp_buffer_hdr (b0); |
| |
| /* Crude check to see if the connection handle does not match |
| * the packet. Probably connection just switched to established */ |
| if (PREDICT_FALSE (tcp0->dst_port != tc0->c_lcl_port |
| || tcp0->src_port != tc0->c_rmt_port)) |
| goto drop; |
| |
| if (PREDICT_FALSE |
| (!tcp_ack (tcp0) && !tcp_rst (tcp0) && !tcp_syn (tcp0))) |
| goto drop; |
| |
| /* SYNs, FINs and data consume sequence numbers */ |
| vnet_buffer (b0)->tcp.seq_end = seq0 + tcp_is_syn (tcp0) |
| + tcp_is_fin (tcp0) + vnet_buffer (b0)->tcp.data_len; |
| |
| /* |
| * 1. check the ACK bit |
| */ |
| |
| /* |
| * If the ACK bit is set |
| * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset (unless |
| * the RST bit is set, if so drop the segment and return) |
| * <SEQ=SEG.ACK><CTL=RST> |
| * and discard the segment. Return. |
| * If SND.UNA =< SEG.ACK =< SND.NXT then the ACK is acceptable. |
| */ |
| if (tcp_ack (tcp0)) |
| { |
| if (seq_leq (ack0, tc0->iss) || seq_gt (ack0, tc0->snd_nxt)) |
| { |
| clib_warning ("ack not in rcv wnd"); |
| if (!tcp_rst (tcp0)) |
| tcp_send_reset_w_pkt (tc0, b0, is_ip4); |
| goto drop; |
| } |
| |
| /* Make sure ACK is valid */ |
| if (seq_gt (tc0->snd_una, ack0)) |
| { |
| clib_warning ("ack invalid"); |
| goto drop; |
| } |
| } |
| |
| /* |
| * 2. check the RST bit |
| */ |
| |
| if (tcp_rst (tcp0)) |
| { |
| /* If ACK is acceptable, signal client that peer is not |
| * willing to accept connection and drop connection*/ |
| if (tcp_ack (tcp0)) |
| tcp_connection_reset (tc0); |
| goto drop; |
| } |
| |
| /* |
| * 3. check the security and precedence (skipped) |
| */ |
| |
| /* |
| * 4. check the SYN bit |
| */ |
| |
| /* No SYN flag. Drop. */ |
| if (!tcp_syn (tcp0)) |
| { |
| clib_warning ("not synack"); |
| goto drop; |
| } |
| |
| /* Parse options */ |
| if (tcp_options_parse (tcp0, &tc0->rcv_opts)) |
| { |
| clib_warning ("options parse fail"); |
| goto drop; |
| } |
| |
| /* Valid SYN or SYN-ACK. Move connection from half-open pool to |
| * current thread pool. */ |
| pool_get (tm->connections[my_thread_index], new_tc0); |
| clib_memcpy (new_tc0, tc0, sizeof (*new_tc0)); |
| new_tc0->c_c_index = new_tc0 - tm->connections[my_thread_index]; |
| new_tc0->c_thread_index = my_thread_index; |
| new_tc0->rcv_nxt = vnet_buffer (b0)->tcp.seq_end; |
| new_tc0->irs = seq0; |
| new_tc0->timers[TCP_TIMER_ESTABLISH] = TCP_TIMER_HANDLE_INVALID; |
| new_tc0->timers[TCP_TIMER_RETRANSMIT_SYN] = |
| TCP_TIMER_HANDLE_INVALID; |
| |
| /* If this is not the owning thread, wait for syn retransmit to |
| * expire and cleanup then */ |
| if (tcp_half_open_connection_cleanup (tc0)) |
| tc0->flags |= TCP_CONN_HALF_OPEN_DONE; |
| |
| if (tcp_opts_tstamp (&new_tc0->rcv_opts)) |
| { |
| new_tc0->tsval_recent = new_tc0->rcv_opts.tsval; |
| new_tc0->tsval_recent_age = tcp_time_now (); |
| } |
| |
| if (tcp_opts_wscale (&new_tc0->rcv_opts)) |
| new_tc0->snd_wscale = new_tc0->rcv_opts.wscale; |
| |
| /* RFC1323: SYN and SYN-ACK wnd not scaled */ |
| new_tc0->snd_wnd = clib_net_to_host_u16 (tcp0->window); |
| new_tc0->snd_wl1 = seq0; |
| new_tc0->snd_wl2 = ack0; |
| |
| tcp_connection_init_vars (new_tc0); |
| |
| /* SYN-ACK: See if we can switch to ESTABLISHED state */ |
| if (PREDICT_TRUE (tcp_ack (tcp0))) |
| { |
| /* Our SYN is ACKed: we have iss < ack = snd_una */ |
| |
| /* TODO Dequeue acknowledged segments if we support Fast Open */ |
| new_tc0->snd_una = ack0; |
| new_tc0->state = TCP_STATE_ESTABLISHED; |
| |
| /* Make sure las is initialized for the wnd computation */ |
| new_tc0->rcv_las = new_tc0->rcv_nxt; |
| |
| /* Notify app that we have connection. If session layer can't |
| * allocate session send reset */ |
| if (session_stream_connect_notify (&new_tc0->connection, 0)) |
| { |
| clib_warning ("connect notify fail"); |
| tcp_send_reset_w_pkt (new_tc0, b0, is_ip4); |
| tcp_connection_cleanup (new_tc0); |
| goto drop; |
| } |
| |
| /* Make sure after data segment processing ACK is sent */ |
| new_tc0->flags |= TCP_CONN_SNDACK; |
| |
| /* Update rtt with the syn-ack sample */ |
| tcp_update_rtt (new_tc0, vnet_buffer (b0)->tcp.ack_number); |
| TCP_EVT_DBG (TCP_EVT_SYNACK_RCVD, new_tc0); |
| } |
| /* SYN: Simultaneous open. Change state to SYN-RCVD and send SYN-ACK */ |
| else |
| { |
| new_tc0->state = TCP_STATE_SYN_RCVD; |
| |
| /* Notify app that we have connection */ |
| if (session_stream_connect_notify (&new_tc0->connection, 0)) |
| { |
| tcp_connection_cleanup (new_tc0); |
| tcp_send_reset_w_pkt (tc0, b0, is_ip4); |
| TCP_EVT_DBG (TCP_EVT_RST_SENT, tc0); |
| goto drop; |
| } |
| |
| tc0->rtt_ts = 0; |
| tcp_init_snd_vars (tc0); |
| tcp_make_synack (new_tc0, b0); |
| next0 = tcp_next_output (is_ip4); |
| |
| goto drop; |
| } |
| |
| /* Read data, if any */ |
| if (PREDICT_FALSE (vnet_buffer (b0)->tcp.data_len)) |
| { |
| ASSERT (0); |
| error0 = tcp_segment_rcv (tm, new_tc0, b0, &next0); |
| if (error0 == TCP_ERROR_PURE_ACK) |
| error0 = TCP_ERROR_SYN_ACKS_RCVD; |
| } |
| else |
| { |
| tcp_make_ack (new_tc0, b0); |
| next0 = tcp_next_output (new_tc0->c_is_ip4); |
| } |
| |
| drop: |
| |
| b0->error = error0 ? node->errors[error0] : 0; |
| if (PREDICT_FALSE |
| ((b0->flags & VLIB_BUFFER_IS_TRACED) && tcp0 != 0)) |
| { |
| t0 = vlib_add_trace (vm, node, b0, sizeof (*t0)); |
| clib_memcpy (&t0->tcp_header, tcp0, sizeof (t0->tcp_header)); |
| clib_memcpy (&t0->tcp_connection, tc0, |
| sizeof (t0->tcp_connection)); |
| } |
| |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next, |
| n_left_to_next, bi0, next0); |
| } |
| |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| |
| errors = session_manager_flush_enqueue_events (TRANSPORT_PROTO_TCP, |
| my_thread_index); |
| tcp_node_inc_counter (vm, is_ip4, tcp4_syn_sent_node.index, |
| tcp6_syn_sent_node.index, |
| TCP_ERROR_EVENT_FIFO_FULL, errors); |
| return from_frame->n_vectors; |
| } |
| |
| static uword |
| tcp4_syn_sent (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_syn_sent_inline (vm, node, from_frame, 1 /* is_ip4 */ ); |
| } |
| |
| static uword |
| tcp6_syn_sent_rcv (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_syn_sent_inline (vm, node, from_frame, 0 /* is_ip4 */ ); |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp4_syn_sent_node) = |
| { |
| .function = tcp4_syn_sent, |
| .name = "tcp4-syn-sent", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_strings = tcp_error_strings, |
| .n_next_nodes = TCP_SYN_SENT_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_SYN_SENT_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| VLIB_NODE_FUNCTION_MULTIARCH (tcp4_syn_sent_node, tcp4_syn_sent); |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp6_syn_sent_node) = |
| { |
| .function = tcp6_syn_sent_rcv, |
| .name = "tcp6-syn-sent", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_strings = tcp_error_strings, |
| .n_next_nodes = TCP_SYN_SENT_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_SYN_SENT_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| VLIB_NODE_FUNCTION_MULTIARCH (tcp6_syn_sent_node, tcp6_syn_sent_rcv); |
| |
| vlib_node_registration_t tcp4_rcv_process_node; |
| vlib_node_registration_t tcp6_rcv_process_node; |
| |
| /** |
| * Handles reception for all states except LISTEN, SYN-SENT and ESTABLISHED |
| * as per RFC793 p. 64 |
| */ |
| always_inline uword |
| tcp46_rcv_process_inline (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame, int is_ip4) |
| { |
| tcp_main_t *tm = vnet_get_tcp_main (); |
| u32 n_left_from, next_index, *from, *to_next; |
| u32 my_thread_index = vm->thread_index, errors = 0; |
| |
| from = vlib_frame_vector_args (from_frame); |
| n_left_from = from_frame->n_vectors; |
| |
| next_index = node->cached_next_index; |
| |
| while (n_left_from > 0) |
| { |
| u32 n_left_to_next; |
| |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| |
| while (n_left_from > 0 && n_left_to_next > 0) |
| { |
| u32 bi0; |
| vlib_buffer_t *b0; |
| tcp_header_t *tcp0 = 0; |
| tcp_connection_t *tc0; |
| u32 next0 = tcp_next_drop (is_ip4), error0 = TCP_ERROR_ENQUEUED; |
| u8 is_fin0; |
| |
| bi0 = from[0]; |
| to_next[0] = bi0; |
| from += 1; |
| to_next += 1; |
| n_left_from -= 1; |
| n_left_to_next -= 1; |
| |
| b0 = vlib_get_buffer (vm, bi0); |
| tc0 = tcp_connection_get (vnet_buffer (b0)->tcp.connection_index, |
| my_thread_index); |
| if (PREDICT_FALSE (tc0 == 0)) |
| { |
| error0 = TCP_ERROR_INVALID_CONNECTION; |
| goto drop; |
| } |
| |
| tcp0 = tcp_buffer_hdr (b0); |
| is_fin0 = tcp_is_fin (tcp0); |
| |
| /* SYNs, FINs and data consume sequence numbers */ |
| vnet_buffer (b0)->tcp.seq_end = vnet_buffer (b0)->tcp.seq_number |
| + tcp_is_syn (tcp0) + is_fin0 + vnet_buffer (b0)->tcp.data_len; |
| |
| if (CLIB_DEBUG) |
| { |
| tcp_connection_t *tmp; |
| tmp = |
| tcp_lookup_connection (tc0->c_fib_index, b0, my_thread_index, |
| is_ip4); |
| if (tmp->state != tc0->state) |
| { |
| clib_warning ("state changed"); |
| ASSERT (0); |
| goto drop; |
| } |
| } |
| |
| /* |
| * Special treatment for CLOSED |
| */ |
| switch (tc0->state) |
| { |
| case TCP_STATE_CLOSED: |
| goto drop; |
| break; |
| } |
| |
| /* |
| * For all other states (except LISTEN) |
| */ |
| |
| /* 1-4: check SEQ, RST, SYN */ |
| if (PREDICT_FALSE (tcp_segment_validate (vm, tc0, b0, tcp0, |
| &next0))) |
| { |
| error0 = TCP_ERROR_SEGMENT_INVALID; |
| goto drop; |
| } |
| |
| /* 5: check the ACK field */ |
| switch (tc0->state) |
| { |
| case TCP_STATE_SYN_RCVD: |
| /* |
| * If the segment acknowledgment is not acceptable, form a |
| * reset segment, |
| * <SEQ=SEG.ACK><CTL=RST> |
| * and send it. |
| */ |
| if (!tcp_rcv_ack_is_acceptable (tc0, b0)) |
| { |
| TCP_DBG ("connection not accepted"); |
| tcp_send_reset_w_pkt (tc0, b0, is_ip4); |
| goto drop; |
| } |
| |
| /* Update rtt and rto */ |
| tcp_update_rtt (tc0, vnet_buffer (b0)->tcp.ack_number); |
| |
| /* Switch state to ESTABLISHED */ |
| tc0->state = TCP_STATE_ESTABLISHED; |
| TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0); |
| |
| /* Initialize session variables */ |
| tc0->snd_una = vnet_buffer (b0)->tcp.ack_number; |
| tc0->snd_wnd = clib_net_to_host_u16 (tcp0->window) |
| << tc0->rcv_opts.wscale; |
| tc0->snd_wl1 = vnet_buffer (b0)->tcp.seq_number; |
| tc0->snd_wl2 = vnet_buffer (b0)->tcp.ack_number; |
| |
| /* Reset SYN-ACK retransmit and SYN_RCV establish timers */ |
| tcp_retransmit_timer_reset (tc0); |
| tcp_timer_reset (tc0, TCP_TIMER_ESTABLISH); |
| |
| stream_session_accept_notify (&tc0->connection); |
| break; |
| case TCP_STATE_ESTABLISHED: |
| /* We can get packets in established state here because they |
| * were enqueued before state change */ |
| if (tcp_rcv_ack (tc0, b0, tcp0, &next0, &error0)) |
| goto drop; |
| |
| break; |
| case TCP_STATE_FIN_WAIT_1: |
| /* In addition to the processing for the ESTABLISHED state, if |
| * our FIN is now acknowledged then enter FIN-WAIT-2 and |
| * continue processing in that state. */ |
| if (tcp_rcv_ack (tc0, b0, tcp0, &next0, &error0)) |
| goto drop; |
| |
| /* Still have to send the FIN */ |
| if (tc0->flags & TCP_CONN_FINPNDG) |
| { |
| /* TX fifo finally drained */ |
| if (!stream_session_tx_fifo_max_dequeue (&tc0->connection)) |
| tcp_send_fin (tc0); |
| } |
| /* If FIN is ACKed */ |
| else if (tc0->snd_una == tc0->snd_una_max) |
| { |
| tc0->state = TCP_STATE_FIN_WAIT_2; |
| TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0); |
| |
| /* Stop all retransmit timers because we have nothing more |
| * to send. Enable waitclose though because we're willing to |
| * wait for peer's FIN but not indefinitely. */ |
| tcp_connection_timers_reset (tc0); |
| tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_2MSL_TIME); |
| } |
| break; |
| case TCP_STATE_FIN_WAIT_2: |
| /* In addition to the processing for the ESTABLISHED state, if |
| * the retransmission queue is empty, the user's CLOSE can be |
| * acknowledged ("ok") but do not delete the TCB. */ |
| if (tcp_rcv_ack (tc0, b0, tcp0, &next0, &error0)) |
| goto drop; |
| break; |
| case TCP_STATE_CLOSE_WAIT: |
| /* Do the same processing as for the ESTABLISHED state. */ |
| if (tcp_rcv_ack (tc0, b0, tcp0, &next0, &error0)) |
| goto drop; |
| break; |
| case TCP_STATE_CLOSING: |
| /* In addition to the processing for the ESTABLISHED state, if |
| * the ACK acknowledges our FIN then enter the TIME-WAIT state, |
| * otherwise ignore the segment. */ |
| if (tcp_rcv_ack (tc0, b0, tcp0, &next0, &error0)) |
| goto drop; |
| |
| tc0->state = TCP_STATE_TIME_WAIT; |
| TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0); |
| tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_TIMEWAIT_TIME); |
| goto drop; |
| |
| break; |
| case TCP_STATE_LAST_ACK: |
| /* The only thing that [should] arrive in this state is an |
| * acknowledgment of our FIN. If our FIN is now acknowledged, |
| * delete the TCB, enter the CLOSED state, and return. */ |
| |
| if (!tcp_rcv_ack_is_acceptable (tc0, b0)) |
| { |
| error0 = TCP_ERROR_ACK_INVALID; |
| goto drop; |
| } |
| |
| tc0->snd_una = vnet_buffer (b0)->tcp.ack_number; |
| /* Apparently our ACK for the peer's FIN was lost */ |
| if (is_fin0 && tc0->snd_una != tc0->snd_una_max) |
| { |
| tcp_send_fin (tc0); |
| goto drop; |
| } |
| |
| tc0->state = TCP_STATE_CLOSED; |
| TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0); |
| tcp_connection_timers_reset (tc0); |
| |
| /* Don't delete the connection/session yet. Instead, wait a |
| * reasonable amount of time until the pipes are cleared. In |
| * particular, this makes sure that we won't have dead sessions |
| * when processing events on the tx path */ |
| tcp_timer_set (tc0, TCP_TIMER_WAITCLOSE, TCP_CLEANUP_TIME); |
| |
| goto drop; |
| |
| break; |
| case TCP_STATE_TIME_WAIT: |
| /* The only thing that can arrive in this state is a |
| * retransmission of the remote FIN. Acknowledge it, and restart |
| * the 2 MSL timeout. */ |
| |
| if (tcp_rcv_ack (tc0, b0, tcp0, &next0, &error0)) |
| goto drop; |
| |
| tcp_make_ack (tc0, b0); |
| next0 = tcp_next_output (is_ip4); |
| tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_TIMEWAIT_TIME); |
| |
| goto drop; |
| |
| break; |
| default: |
| ASSERT (0); |
| } |
| |
| /* 6: check the URG bit TODO */ |
| |
| /* 7: process the segment text */ |
| switch (tc0->state) |
| { |
| case TCP_STATE_ESTABLISHED: |
| case TCP_STATE_FIN_WAIT_1: |
| case TCP_STATE_FIN_WAIT_2: |
| if (vnet_buffer (b0)->tcp.data_len) |
| error0 = tcp_segment_rcv (tm, tc0, b0, &next0); |
| else if (is_fin0) |
| tc0->rcv_nxt += 1; |
| break; |
| case TCP_STATE_CLOSE_WAIT: |
| case TCP_STATE_CLOSING: |
| case TCP_STATE_LAST_ACK: |
| case TCP_STATE_TIME_WAIT: |
| /* This should not occur, since a FIN has been received from the |
| * remote side. Ignore the segment text. */ |
| break; |
| } |
| |
| /* 8: check the FIN bit */ |
| if (!is_fin0) |
| goto drop; |
| |
| switch (tc0->state) |
| { |
| case TCP_STATE_ESTABLISHED: |
| case TCP_STATE_SYN_RCVD: |
| /* Send FIN-ACK notify app and enter CLOSE-WAIT */ |
| tcp_connection_timers_reset (tc0); |
| tcp_make_fin (tc0, b0); |
| tc0->snd_nxt += 1; |
| next0 = tcp_next_output (tc0->c_is_ip4); |
| stream_session_disconnect_notify (&tc0->connection); |
| tc0->state = TCP_STATE_CLOSE_WAIT; |
| TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0); |
| break; |
| case TCP_STATE_CLOSE_WAIT: |
| case TCP_STATE_CLOSING: |
| case TCP_STATE_LAST_ACK: |
| /* move along .. */ |
| break; |
| case TCP_STATE_FIN_WAIT_1: |
| tc0->state = TCP_STATE_CLOSING; |
| tcp_make_ack (tc0, b0); |
| next0 = tcp_next_output (is_ip4); |
| TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0); |
| /* Wait for ACK but not forever */ |
| tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_2MSL_TIME); |
| break; |
| case TCP_STATE_FIN_WAIT_2: |
| /* Got FIN, send ACK! Be more aggressive with resource cleanup */ |
| tc0->state = TCP_STATE_TIME_WAIT; |
| tcp_connection_timers_reset (tc0); |
| tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_TIMEWAIT_TIME); |
| tcp_make_ack (tc0, b0); |
| next0 = tcp_next_output (is_ip4); |
| TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0); |
| break; |
| case TCP_STATE_TIME_WAIT: |
| /* Remain in the TIME-WAIT state. Restart the time-wait |
| * timeout. |
| */ |
| tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_TIMEWAIT_TIME); |
| break; |
| } |
| TCP_EVT_DBG (TCP_EVT_FIN_RCVD, tc0); |
| |
| drop: |
| b0->error = error0 ? node->errors[error0] : 0; |
| |
| if (PREDICT_FALSE (b0->flags & VLIB_BUFFER_IS_TRACED)) |
| { |
| tcp_rx_trace_t *t0 = |
| vlib_add_trace (vm, node, b0, sizeof (*t0)); |
| tcp_set_rx_trace_data (t0, tc0, tcp0, b0, is_ip4); |
| } |
| |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next, |
| n_left_to_next, bi0, next0); |
| } |
| |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| |
| errors = session_manager_flush_enqueue_events (TRANSPORT_PROTO_TCP, |
| my_thread_index); |
| tcp_node_inc_counter (vm, is_ip4, tcp4_rcv_process_node.index, |
| tcp6_rcv_process_node.index, |
| TCP_ERROR_EVENT_FIFO_FULL, errors); |
| |
| return from_frame->n_vectors; |
| } |
| |
| static uword |
| tcp4_rcv_process (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_rcv_process_inline (vm, node, from_frame, 1 /* is_ip4 */ ); |
| } |
| |
| static uword |
| tcp6_rcv_process (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_rcv_process_inline (vm, node, from_frame, 0 /* is_ip4 */ ); |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp4_rcv_process_node) = |
| { |
| .function = tcp4_rcv_process, |
| .name = "tcp4-rcv-process", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_strings = tcp_error_strings, |
| .n_next_nodes = TCP_RCV_PROCESS_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_RCV_PROCESS_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| VLIB_NODE_FUNCTION_MULTIARCH (tcp4_rcv_process_node, tcp4_rcv_process); |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp6_rcv_process_node) = |
| { |
| .function = tcp6_rcv_process, |
| .name = "tcp6-rcv-process", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_strings = tcp_error_strings, |
| .n_next_nodes = TCP_RCV_PROCESS_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_RCV_PROCESS_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| VLIB_NODE_FUNCTION_MULTIARCH (tcp6_rcv_process_node, tcp6_rcv_process); |
| |
| vlib_node_registration_t tcp4_listen_node; |
| vlib_node_registration_t tcp6_listen_node; |
| |
| /** |
| * LISTEN state processing as per RFC 793 p. 65 |
| */ |
| always_inline uword |
| tcp46_listen_inline (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame, int is_ip4) |
| { |
| u32 n_left_from, next_index, *from, *to_next; |
| u32 my_thread_index = vm->thread_index; |
| |
| from = vlib_frame_vector_args (from_frame); |
| n_left_from = from_frame->n_vectors; |
| |
| next_index = node->cached_next_index; |
| |
| while (n_left_from > 0) |
| { |
| u32 n_left_to_next; |
| |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| |
| while (n_left_from > 0 && n_left_to_next > 0) |
| { |
| u32 bi0; |
| vlib_buffer_t *b0; |
| tcp_rx_trace_t *t0; |
| tcp_header_t *th0 = 0; |
| tcp_connection_t *lc0; |
| ip4_header_t *ip40; |
| ip6_header_t *ip60; |
| tcp_connection_t *child0; |
| u32 error0 = TCP_ERROR_SYNS_RCVD, next0 = tcp_next_drop (is_ip4); |
| |
| bi0 = from[0]; |
| to_next[0] = bi0; |
| from += 1; |
| to_next += 1; |
| n_left_from -= 1; |
| n_left_to_next -= 1; |
| |
| b0 = vlib_get_buffer (vm, bi0); |
| lc0 = tcp_listener_get (vnet_buffer (b0)->tcp.connection_index); |
| |
| if (is_ip4) |
| { |
| ip40 = vlib_buffer_get_current (b0); |
| th0 = ip4_next_header (ip40); |
| } |
| else |
| { |
| ip60 = vlib_buffer_get_current (b0); |
| th0 = ip6_next_header (ip60); |
| } |
| |
| /* Create child session. For syn-flood protection use filter */ |
| |
| /* 1. first check for an RST: handled in dispatch */ |
| /* if (tcp_rst (th0)) |
| goto drop; */ |
| |
| /* 2. second check for an ACK: handled in dispatch */ |
| /* if (tcp_ack (th0)) |
| { |
| tcp_send_reset (b0, is_ip4); |
| goto drop; |
| } */ |
| |
| /* 3. check for a SYN (did that already) */ |
| |
| /* Make sure connection wasn't just created */ |
| child0 = |
| tcp_lookup_connection (lc0->c_fib_index, b0, my_thread_index, |
| is_ip4); |
| if (PREDICT_FALSE (child0->state != TCP_STATE_LISTEN)) |
| { |
| error0 = TCP_ERROR_CREATE_EXISTS; |
| goto drop; |
| } |
| |
| /* Create child session and send SYN-ACK */ |
| child0 = tcp_connection_new (my_thread_index); |
| child0->c_lcl_port = th0->dst_port; |
| child0->c_rmt_port = th0->src_port; |
| child0->c_is_ip4 = is_ip4; |
| child0->state = TCP_STATE_SYN_RCVD; |
| child0->c_fib_index = lc0->c_fib_index; |
| |
| if (is_ip4) |
| { |
| child0->c_lcl_ip4.as_u32 = ip40->dst_address.as_u32; |
| child0->c_rmt_ip4.as_u32 = ip40->src_address.as_u32; |
| } |
| else |
| { |
| clib_memcpy (&child0->c_lcl_ip6, &ip60->dst_address, |
| sizeof (ip6_address_t)); |
| clib_memcpy (&child0->c_rmt_ip6, &ip60->src_address, |
| sizeof (ip6_address_t)); |
| } |
| |
| if (tcp_options_parse (th0, &child0->rcv_opts)) |
| { |
| clib_warning ("options parse fail"); |
| goto drop; |
| } |
| |
| child0->irs = vnet_buffer (b0)->tcp.seq_number; |
| child0->rcv_nxt = vnet_buffer (b0)->tcp.seq_number + 1; |
| child0->rcv_las = child0->rcv_nxt; |
| |
| /* RFC1323: TSval timestamps sent on {SYN} and {SYN,ACK} |
| * segments are used to initialize PAWS. */ |
| if (tcp_opts_tstamp (&child0->rcv_opts)) |
| { |
| child0->tsval_recent = child0->rcv_opts.tsval; |
| child0->tsval_recent_age = tcp_time_now (); |
| } |
| |
| if (tcp_opts_wscale (&child0->rcv_opts)) |
| child0->snd_wscale = child0->rcv_opts.wscale; |
| |
| child0->snd_wnd = clib_net_to_host_u16 (th0->window) |
| << child0->snd_wscale; |
| child0->snd_wl1 = vnet_buffer (b0)->tcp.seq_number; |
| child0->snd_wl2 = vnet_buffer (b0)->tcp.ack_number; |
| |
| tcp_connection_init_vars (child0); |
| TCP_EVT_DBG (TCP_EVT_SYN_RCVD, child0, 1); |
| |
| if (stream_session_accept (&child0->connection, lc0->c_s_index, |
| 0 /* notify */ )) |
| { |
| clib_warning ("session accept fail"); |
| tcp_connection_cleanup (child0); |
| error0 = TCP_ERROR_CREATE_SESSION_FAIL; |
| goto drop; |
| } |
| |
| /* Reuse buffer to make syn-ack and send */ |
| tcp_make_synack (child0, b0); |
| next0 = tcp_next_output (is_ip4); |
| tcp_timer_set (child0, TCP_TIMER_ESTABLISH, TCP_SYN_RCVD_TIME); |
| |
| drop: |
| if (PREDICT_FALSE (b0->flags & VLIB_BUFFER_IS_TRACED)) |
| { |
| t0 = vlib_add_trace (vm, node, b0, sizeof (*t0)); |
| clib_memcpy (&t0->tcp_header, th0, sizeof (t0->tcp_header)); |
| clib_memcpy (&t0->tcp_connection, lc0, |
| sizeof (t0->tcp_connection)); |
| } |
| |
| b0->error = node->errors[error0]; |
| |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next, |
| n_left_to_next, bi0, next0); |
| } |
| |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| return from_frame->n_vectors; |
| } |
| |
| static uword |
| tcp4_listen (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_listen_inline (vm, node, from_frame, 1 /* is_ip4 */ ); |
| } |
| |
| static uword |
| tcp6_listen (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_listen_inline (vm, node, from_frame, 0 /* is_ip4 */ ); |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp4_listen_node) = |
| { |
| .function = tcp4_listen, |
| .name = "tcp4-listen", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_strings = tcp_error_strings, |
| .n_next_nodes = TCP_LISTEN_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_LISTEN_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| VLIB_NODE_FUNCTION_MULTIARCH (tcp4_listen_node, tcp4_listen); |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp6_listen_node) = |
| { |
| .function = tcp6_listen, |
| .name = "tcp6-listen", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_strings = tcp_error_strings, |
| .n_next_nodes = TCP_LISTEN_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_LISTEN_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| VLIB_NODE_FUNCTION_MULTIARCH (tcp6_listen_node, tcp6_listen); |
| |
| vlib_node_registration_t tcp4_input_node; |
| vlib_node_registration_t tcp6_input_node; |
| |
| typedef enum _tcp_input_next |
| { |
| TCP_INPUT_NEXT_DROP, |
| TCP_INPUT_NEXT_LISTEN, |
| TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_INPUT_NEXT_SYN_SENT, |
| TCP_INPUT_NEXT_ESTABLISHED, |
| TCP_INPUT_NEXT_RESET, |
| TCP_INPUT_NEXT_PUNT, |
| TCP_INPUT_N_NEXT |
| } tcp_input_next_t; |
| |
| #define foreach_tcp4_input_next \ |
| _ (DROP, "ip4-drop") \ |
| _ (LISTEN, "tcp4-listen") \ |
| _ (RCV_PROCESS, "tcp4-rcv-process") \ |
| _ (SYN_SENT, "tcp4-syn-sent") \ |
| _ (ESTABLISHED, "tcp4-established") \ |
| _ (RESET, "tcp4-reset") \ |
| _ (PUNT, "ip4-punt") |
| |
| #define foreach_tcp6_input_next \ |
| _ (DROP, "ip6-drop") \ |
| _ (LISTEN, "tcp6-listen") \ |
| _ (RCV_PROCESS, "tcp6-rcv-process") \ |
| _ (SYN_SENT, "tcp6-syn-sent") \ |
| _ (ESTABLISHED, "tcp6-established") \ |
| _ (RESET, "tcp6-reset") \ |
| _ (PUNT, "ip6-punt") |
| |
| #define filter_flags (TCP_FLAG_SYN|TCP_FLAG_ACK|TCP_FLAG_RST|TCP_FLAG_FIN) |
| |
| always_inline uword |
| tcp46_input_inline (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame, int is_ip4) |
| { |
| u32 n_left_from, next_index, *from, *to_next; |
| u32 my_thread_index = vm->thread_index; |
| tcp_main_t *tm = vnet_get_tcp_main (); |
| |
| from = vlib_frame_vector_args (from_frame); |
| n_left_from = from_frame->n_vectors; |
| next_index = node->cached_next_index; |
| tcp_set_time_now (my_thread_index); |
| |
| while (n_left_from > 0) |
| { |
| u32 n_left_to_next; |
| |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| |
| while (n_left_from > 0 && n_left_to_next > 0) |
| { |
| int n_advance_bytes0, n_data_bytes0; |
| u32 bi0, fib_index0; |
| vlib_buffer_t *b0; |
| tcp_header_t *tcp0 = 0; |
| tcp_connection_t *tc0; |
| transport_connection_t *tconn; |
| ip4_header_t *ip40; |
| ip6_header_t *ip60; |
| u32 error0 = TCP_ERROR_NO_LISTENER, next0 = TCP_INPUT_NEXT_DROP; |
| u8 flags0, is_filtered = 0; |
| |
| bi0 = from[0]; |
| to_next[0] = bi0; |
| from += 1; |
| to_next += 1; |
| n_left_from -= 1; |
| n_left_to_next -= 1; |
| |
| b0 = vlib_get_buffer (vm, bi0); |
| vnet_buffer (b0)->tcp.flags = 0; |
| fib_index0 = vnet_buffer (b0)->ip.fib_index; |
| |
| /* Checksum computed by ipx_local no need to compute again */ |
| |
| if (is_ip4) |
| { |
| ip40 = vlib_buffer_get_current (b0); |
| tcp0 = ip4_next_header (ip40); |
| n_advance_bytes0 = (ip4_header_bytes (ip40) |
| + tcp_header_bytes (tcp0)); |
| n_data_bytes0 = clib_net_to_host_u16 (ip40->length) |
| - n_advance_bytes0; |
| tconn = session_lookup_connection_wt4 (fib_index0, |
| &ip40->dst_address, |
| &ip40->src_address, |
| tcp0->dst_port, |
| tcp0->src_port, |
| TRANSPORT_PROTO_TCP, |
| my_thread_index, |
| &is_filtered); |
| } |
| else |
| { |
| ip60 = vlib_buffer_get_current (b0); |
| tcp0 = ip6_next_header (ip60); |
| n_advance_bytes0 = tcp_header_bytes (tcp0); |
| n_data_bytes0 = clib_net_to_host_u16 (ip60->payload_length) |
| - n_advance_bytes0; |
| n_advance_bytes0 += sizeof (ip60[0]); |
| tconn = session_lookup_connection_wt6 (fib_index0, |
| &ip60->dst_address, |
| &ip60->src_address, |
| tcp0->dst_port, |
| tcp0->src_port, |
| TRANSPORT_PROTO_TCP, |
| my_thread_index, |
| &is_filtered); |
| } |
| |
| /* Length check */ |
| if (PREDICT_FALSE (n_advance_bytes0 < 0)) |
| { |
| error0 = TCP_ERROR_LENGTH; |
| goto done; |
| } |
| |
| vnet_buffer (b0)->tcp.hdr_offset = (u8 *) tcp0 |
| - (u8 *) vlib_buffer_get_current (b0); |
| |
| /* Session exists */ |
| if (PREDICT_TRUE (0 != tconn)) |
| { |
| tc0 = tcp_get_connection_from_transport (tconn); |
| ASSERT (tcp_lookup_is_valid (tc0, tcp0)); |
| |
| /* Save connection index */ |
| vnet_buffer (b0)->tcp.connection_index = tc0->c_c_index; |
| vnet_buffer (b0)->tcp.seq_number = |
| clib_net_to_host_u32 (tcp0->seq_number); |
| vnet_buffer (b0)->tcp.ack_number = |
| clib_net_to_host_u32 (tcp0->ack_number); |
| |
| vnet_buffer (b0)->tcp.data_offset = n_advance_bytes0; |
| vnet_buffer (b0)->tcp.data_len = n_data_bytes0; |
| |
| flags0 = tcp0->flags & filter_flags; |
| next0 = tm->dispatch_table[tc0->state][flags0].next; |
| error0 = tm->dispatch_table[tc0->state][flags0].error; |
| |
| if (PREDICT_FALSE (error0 == TCP_ERROR_DISPATCH |
| || next0 == TCP_INPUT_NEXT_RESET)) |
| { |
| /* Overload tcp flags to store state */ |
| tcp_state_t state0 = tc0->state; |
| vnet_buffer (b0)->tcp.flags = tc0->state; |
| |
| if (error0 == TCP_ERROR_DISPATCH) |
| clib_warning ("disp error state %U flags %U", |
| format_tcp_state, state0, format_tcp_flags, |
| (int) flags0); |
| } |
| } |
| else |
| { |
| if (is_filtered) |
| { |
| next0 = TCP_INPUT_NEXT_DROP; |
| error0 = TCP_ERROR_FILTERED; |
| } |
| else if ((is_ip4 && tm->punt_unknown4) || |
| (!is_ip4 && tm->punt_unknown6)) |
| { |
| next0 = TCP_INPUT_NEXT_PUNT; |
| error0 = TCP_ERROR_PUNT; |
| } |
| else |
| { |
| /* Send reset */ |
| next0 = TCP_INPUT_NEXT_RESET; |
| error0 = TCP_ERROR_NO_LISTENER; |
| } |
| tc0 = 0; |
| } |
| |
| done: |
| b0->error = error0 ? node->errors[error0] : 0; |
| |
| if (PREDICT_FALSE (b0->flags & VLIB_BUFFER_IS_TRACED)) |
| { |
| tcp_rx_trace_t *t0; |
| t0 = vlib_add_trace (vm, node, b0, sizeof (*t0)); |
| tcp_set_rx_trace_data (t0, tc0, tcp0, b0, is_ip4); |
| } |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next, |
| n_left_to_next, bi0, next0); |
| } |
| |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| |
| return from_frame->n_vectors; |
| } |
| |
| static uword |
| tcp4_input (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_input_inline (vm, node, from_frame, 1 /* is_ip4 */ ); |
| } |
| |
| static uword |
| tcp6_input (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_input_inline (vm, node, from_frame, 0 /* is_ip4 */ ); |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp4_input_node) = |
| { |
| .function = tcp4_input, |
| .name = "tcp4-input", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_strings = tcp_error_strings, |
| .n_next_nodes = TCP_INPUT_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_INPUT_NEXT_##s] = n, |
| foreach_tcp4_input_next |
| #undef _ |
| }, |
| .format_buffer = format_tcp_header, |
| .format_trace = format_tcp_rx_trace, |
| }; |
| /* *INDENT-ON* */ |
| |
| VLIB_NODE_FUNCTION_MULTIARCH (tcp4_input_node, tcp4_input); |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp6_input_node) = |
| { |
| .function = tcp6_input, |
| .name = "tcp6-input", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_strings = tcp_error_strings, |
| .n_next_nodes = TCP_INPUT_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_INPUT_NEXT_##s] = n, |
| foreach_tcp6_input_next |
| #undef _ |
| }, |
| .format_buffer = format_tcp_header, |
| .format_trace = format_tcp_rx_trace, |
| }; |
| /* *INDENT-ON* */ |
| |
| VLIB_NODE_FUNCTION_MULTIARCH (tcp6_input_node, tcp6_input); |
| |
| static void |
| tcp_dispatch_table_init (tcp_main_t * tm) |
| { |
| int i, j; |
| for (i = 0; i < ARRAY_LEN (tm->dispatch_table); i++) |
| for (j = 0; j < ARRAY_LEN (tm->dispatch_table[i]); j++) |
| { |
| tm->dispatch_table[i][j].next = TCP_INPUT_NEXT_DROP; |
| tm->dispatch_table[i][j].error = TCP_ERROR_DISPATCH; |
| } |
| |
| #define _(t,f,n,e) \ |
| do { \ |
| tm->dispatch_table[TCP_STATE_##t][f].next = (n); \ |
| tm->dispatch_table[TCP_STATE_##t][f].error = (e); \ |
| } while (0) |
| |
| /* SYNs for new connections -> tcp-listen. */ |
| _(LISTEN, TCP_FLAG_SYN, TCP_INPUT_NEXT_LISTEN, TCP_ERROR_NONE); |
| _(LISTEN, TCP_FLAG_ACK, TCP_INPUT_NEXT_RESET, TCP_ERROR_NONE); |
| _(LISTEN, TCP_FLAG_RST, TCP_INPUT_NEXT_DROP, TCP_ERROR_NONE); |
| _(LISTEN, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RESET, |
| TCP_ERROR_NONE); |
| /* ACK for for a SYN-ACK -> tcp-rcv-process. */ |
| _(SYN_RCVD, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| /* SYN-ACK for a SYN */ |
| _(SYN_SENT, TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_SYN_SENT, |
| TCP_ERROR_NONE); |
| _(SYN_SENT, TCP_FLAG_ACK, TCP_INPUT_NEXT_SYN_SENT, TCP_ERROR_NONE); |
| _(SYN_SENT, TCP_FLAG_RST, TCP_INPUT_NEXT_SYN_SENT, TCP_ERROR_NONE); |
| _(SYN_SENT, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_SYN_SENT, |
| TCP_ERROR_NONE); |
| /* ACK for for established connection -> tcp-established. */ |
| _(ESTABLISHED, TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| /* FIN for for established connection -> tcp-established. */ |
| _(ESTABLISHED, TCP_FLAG_FIN, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED, |
| TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_RST, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED, |
| TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_SYN, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED, |
| TCP_ERROR_NONE); |
| /* ACK or FIN-ACK to our FIN */ |
| _(FIN_WAIT_1, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_ACK | TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| /* FIN in reply to our FIN from the other side */ |
| _(FIN_WAIT_1, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| /* FIN confirming that the peer (app) has closed */ |
| _(FIN_WAIT_2, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_2, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_2, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(CLOSE_WAIT, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSE_WAIT, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(TIME_WAIT, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(TIME_WAIT, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(TIME_WAIT, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(TIME_WAIT, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSED, TCP_FLAG_ACK, TCP_INPUT_NEXT_DROP, TCP_ERROR_CONNECTION_CLOSED); |
| _(CLOSED, TCP_FLAG_RST, TCP_INPUT_NEXT_DROP, TCP_ERROR_CONNECTION_CLOSED); |
| _(CLOSED, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_DROP, |
| TCP_ERROR_CONNECTION_CLOSED); |
| #undef _ |
| } |
| |
| clib_error_t * |
| tcp_input_init (vlib_main_t * vm) |
| { |
| clib_error_t *error = 0; |
| tcp_main_t *tm = vnet_get_tcp_main (); |
| |
| if ((error = vlib_call_init_function (vm, tcp_init))) |
| return error; |
| |
| /* Initialize dispatch table. */ |
| tcp_dispatch_table_init (tm); |
| |
| return error; |
| } |
| |
| VLIB_INIT_FUNCTION (tcp_input_init); |
| |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |