blob: 7435599c347aeff647794ddd05f073990c0d61af [file] [log] [blame]
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* ethernet.h: types/functions for ethernet.
*
* Copyright (c) 2008 Eliot Dresselhaus
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef included_ethernet_h
#define included_ethernet_h
#include <vnet/vnet.h>
#include <vnet/ethernet/packet.h>
#include <vnet/pg/pg.h>
#include <vnet/feature/feature.h>
/* ethernet-input frame flags and scalar data */
/* all packets in frame share same sw_if_index */
#define ETH_INPUT_FRAME_F_SINGLE_SW_IF_IDX (1 << 0)
/* all ip4 packets in frame have correct ip4 checksum */
#define ETH_INPUT_FRAME_F_IP4_CKSUM_OK (1 << 1)
typedef struct
{
u32 sw_if_index;
u32 hw_if_index;
} ethernet_input_frame_t;
always_inline u64
ethernet_mac_address_u64 (const u8 * a)
{
return (((u64) a[0] << (u64) (5 * 8))
| ((u64) a[1] << (u64) (4 * 8))
| ((u64) a[2] << (u64) (3 * 8))
| ((u64) a[3] << (u64) (2 * 8))
| ((u64) a[4] << (u64) (1 * 8)) | ((u64) a[5] << (u64) (0 * 8)));
}
always_inline void
ethernet_mac_address_from_u64 (u64 u, u8 * a)
{
i8 ii;
for (ii = 5; ii >= 0; ii--)
{
a[ii] = u & 0xFF;
u = u >> 8;
}
}
static inline int
ethernet_mac_address_is_multicast_u64 (u64 a)
{
return (a & (1ULL << (5 * 8))) != 0;
}
static inline int
ethernet_mac_address_is_zero (const u8 * mac)
{
return ((*((u32 *) mac) == 0) && (*((u16 *) (mac + 4)) == 0));
}
#ifdef CLIB_HAVE_VEC128
static const u16x8 tagged_ethertypes = {
(u16) ETHERNET_TYPE_VLAN,
(u16) ETHERNET_TYPE_DOT1AD,
(u16) ETHERNET_TYPE_VLAN_9100,
(u16) ETHERNET_TYPE_VLAN_9200,
/* duplicate last one to fill register */
(u16) ETHERNET_TYPE_VLAN_9200,
(u16) ETHERNET_TYPE_VLAN_9200,
(u16) ETHERNET_TYPE_VLAN_9200,
(u16) ETHERNET_TYPE_VLAN_9200
};
#endif
static_always_inline int
ethernet_frame_is_tagged (u16 type)
{
#ifdef CLIB_HAVE_VEC128
return !u16x8_is_all_zero (tagged_ethertypes == u16x8_splat (type));
#else
if ((type == ETHERNET_TYPE_VLAN) ||
(type == ETHERNET_TYPE_DOT1AD) ||
(type == ETHERNET_TYPE_VLAN_9100) || (type == ETHERNET_TYPE_VLAN_9200))
return 1;
#endif
return 0;
}
static_always_inline int
ethernet_frame_is_any_tagged_x2 (u16 type0, u16 type1)
{
#ifdef CLIB_HAVE_VEC128
u16x8 r0 = (tagged_ethertypes == u16x8_splat (type0));
u16x8 r1 = (tagged_ethertypes == u16x8_splat (type1));
return !u16x8_is_all_zero (r0 | r1);
#else
return ethernet_frame_is_tagged (type0) || ethernet_frame_is_tagged (type1);
#endif
}
static_always_inline int
ethernet_frame_is_any_tagged_x4 (u16 type0, u16 type1, u16 type2, u16 type3)
{
#ifdef CLIB_HAVE_VEC128
u16x8 r0 = (tagged_ethertypes == u16x8_splat (type0));
u16x8 r1 = (tagged_ethertypes == u16x8_splat (type1));
u16x8 r2 = (tagged_ethertypes == u16x8_splat (type2));
u16x8 r3 = (tagged_ethertypes == u16x8_splat (type3));
return !u16x8_is_all_zero (r0 | r1 | r2 | r3);
#else
return ethernet_frame_is_tagged (type0) || ethernet_frame_is_tagged (type1)
|| ethernet_frame_is_tagged (type2) || ethernet_frame_is_tagged (type3);
#endif
}
/* Max. sized ethernet/vlan header for parsing. */
typedef struct
{
ethernet_header_t ethernet;
/* Allow up to 2 stacked vlan headers. */
ethernet_vlan_header_t vlan[2];
} ethernet_max_header_t;
struct vnet_hw_interface_t;
/* Ethernet flag change callback. */
typedef u32 (ethernet_flag_change_function_t)
(vnet_main_t * vnm, struct vnet_hw_interface_t * hi, u32 flags);
#define ETHERNET_MIN_PACKET_BYTES 64
#define ETHERNET_MAX_PACKET_BYTES 9216
/* Ethernet interface instance. */
typedef struct ethernet_interface
{
u32 flags;
/* Accept all packets (promiscuous mode). */
#define ETHERNET_INTERFACE_FLAG_ACCEPT_ALL (1 << 0)
#define ETHERNET_INTERFACE_FLAG_CONFIG_PROMISC(flags) \
(((flags) & ~ETHERNET_INTERFACE_FLAG_ACCEPT_ALL) == 0)
/* Change MTU on interface from hw interface structure */
#define ETHERNET_INTERFACE_FLAG_MTU (1 << 1)
#define ETHERNET_INTERFACE_FLAG_CONFIG_MTU(flags) \
((flags) & ETHERNET_INTERFACE_FLAG_MTU)
/* Callback, e.g. to turn on/off promiscuous mode */
ethernet_flag_change_function_t *flag_change;
u32 driver_instance;
/* Ethernet (MAC) address for this interface. */
u8 address[6];
} ethernet_interface_t;
extern vnet_hw_interface_class_t ethernet_hw_interface_class;
typedef struct
{
/* Name (a c string). */
char *name;
/* Ethernet type in host byte order. */
ethernet_type_t type;
/* Node which handles this type. */
u32 node_index;
/* Next index for this type. */
u32 next_index;
} ethernet_type_info_t;
typedef enum
{
#define ethernet_error(n,c,s) ETHERNET_ERROR_##n,
#include <vnet/ethernet/error.def>
#undef ethernet_error
ETHERNET_N_ERROR,
} ethernet_error_t;
// Structs used when parsing packet to find sw_if_index
typedef struct
{
u32 sw_if_index;
u32 flags;
// config entry is-valid flag
// exact match flags (valid if packet has 0/1/2/3 tags)
// L2 vs L3 forwarding mode
#define SUBINT_CONFIG_MATCH_0_TAG (1<<0)
#define SUBINT_CONFIG_MATCH_1_TAG (1<<1)
#define SUBINT_CONFIG_MATCH_2_TAG (1<<2)
#define SUBINT_CONFIG_MATCH_3_TAG (1<<3)
#define SUBINT_CONFIG_VALID (1<<4)
#define SUBINT_CONFIG_L2 (1<<5)
#define SUBINT_CONFIG_P2P (1<<6)
} subint_config_t;
always_inline u32
eth_create_valid_subint_match_flags (u32 num_tags)
{
return SUBINT_CONFIG_VALID | (1 << num_tags);
}
typedef struct
{
subint_config_t untagged_subint;
subint_config_t default_subint;
u16 dot1q_vlans; // pool id for vlan table
u16 dot1ad_vlans; // pool id for vlan table
} main_intf_t;
typedef struct
{
subint_config_t single_tag_subint;
subint_config_t inner_any_subint;
u32 qinqs; // pool id for qinq table
} vlan_intf_t;
typedef struct
{
vlan_intf_t vlans[ETHERNET_N_VLAN];
} vlan_table_t;
typedef struct
{
subint_config_t subint;
} qinq_intf_t;
typedef struct
{
qinq_intf_t vlans[ETHERNET_N_VLAN];
} qinq_table_t;
// Structure mapping to a next index based on ethertype.
// Common ethertypes are stored explicitly, others are
// stored in a sparse table.
typedef struct
{
/* Sparse vector mapping ethernet type in network byte order
to next index. */
u16 *input_next_by_type;
u32 *sparse_index_by_input_next_index;
/* cached next indexes for common ethertypes */
u32 input_next_ip4;
u32 input_next_ip6;
u32 input_next_mpls;
} next_by_ethertype_t;
typedef struct
{
vlib_main_t *vlib_main;
/* next node index for the L3 input node of each ethertype */
next_by_ethertype_t l3_next;
/* next node index for L2 interfaces */
u32 l2_next;
/* flag and next node index for L3 redirect */
u32 redirect_l3;
u32 redirect_l3_next;
/* Pool of ethernet interface instances. */
ethernet_interface_t *interfaces;
ethernet_type_info_t *type_infos;
/* Hash tables mapping name/type to type info index. */
uword *type_info_by_name, *type_info_by_type;
// The root of the vlan parsing tables. A vector with one element
// for each main interface, indexed by hw_if_index.
main_intf_t *main_intfs;
// Pool of vlan tables
vlan_table_t *vlan_pool;
// Pool of qinq tables;
qinq_table_t *qinq_pool;
/* Set to one to use AB.CD.EF instead of A:B:C:D:E:F as ethernet format. */
int format_ethernet_address_16bit;
/* debug: make sure we don't wipe out an ethernet registration by mistake */
u8 next_by_ethertype_register_called;
/* Feature arc index */
u8 output_feature_arc_index;
/* Allocated loopback instances */
uword *bm_loopback_instances;
} ethernet_main_t;
extern ethernet_main_t ethernet_main;
always_inline ethernet_type_info_t *
ethernet_get_type_info (ethernet_main_t * em, ethernet_type_t type)
{
uword *p = hash_get (em->type_info_by_type, type);
return p ? vec_elt_at_index (em->type_infos, p[0]) : 0;
}
ethernet_interface_t *ethernet_get_interface (ethernet_main_t * em,
u32 hw_if_index);
clib_error_t *ethernet_register_interface (vnet_main_t * vnm,
u32 dev_class_index,
u32 dev_instance,
u8 * address,
u32 * hw_if_index_return,
ethernet_flag_change_function_t
flag_change);
void ethernet_delete_interface (vnet_main_t * vnm, u32 hw_if_index);
/* Register given node index to take input for given ethernet type. */
void
ethernet_register_input_type (vlib_main_t * vm,
ethernet_type_t type, u32 node_index);
/* Register given node index to take input for packet from L2 interfaces. */
void ethernet_register_l2_input (vlib_main_t * vm, u32 node_index);
/* Register given node index to take redirected L3 traffic, and enable L3 redirect */
void ethernet_register_l3_redirect (vlib_main_t * vm, u32 node_index);
/* Formats ethernet address X:X:X:X:X:X */
u8 *format_mac_address (u8 * s, va_list * args);
u8 *format_ethernet_address (u8 * s, va_list * args);
u8 *format_ethernet_type (u8 * s, va_list * args);
u8 *format_ethernet_vlan_tci (u8 * s, va_list * va);
u8 *format_ethernet_header (u8 * s, va_list * args);
u8 *format_ethernet_header_with_length (u8 * s, va_list * args);
/* Parse ethernet address in either X:X:X:X:X:X unix or X.X.X cisco format. */
uword unformat_ethernet_address (unformat_input_t * input, va_list * args);
uword unformat_mac_address (unformat_input_t * input, va_list * args);
/* Parse ethernet type as 0xXXXX or type name from ethernet/types.def.
In either host or network byte order. */
uword
unformat_ethernet_type_host_byte_order (unformat_input_t * input,
va_list * args);
uword
unformat_ethernet_type_net_byte_order (unformat_input_t * input,
va_list * args);
/* Parse ethernet header. */
uword unformat_ethernet_header (unformat_input_t * input, va_list * args);
/* Parse ethernet interface name; return hw_if_index. */
uword unformat_ethernet_interface (unformat_input_t * input, va_list * args);
uword unformat_pg_ethernet_header (unformat_input_t * input, va_list * args);
always_inline void
ethernet_setup_node (vlib_main_t * vm, u32 node_index)
{
vlib_node_t *n = vlib_get_node (vm, node_index);
pg_node_t *pn = pg_get_node (node_index);
n->format_buffer = format_ethernet_header_with_length;
n->unformat_buffer = unformat_ethernet_header;
pn->unformat_edit = unformat_pg_ethernet_header;
}
always_inline ethernet_header_t *
ethernet_buffer_get_header (vlib_buffer_t * b)
{
return (void *) (b->data + vnet_buffer (b)->l2_hdr_offset);
}
/** Returns the number of VLAN headers in the current Ethernet frame in the
* buffer. Returns 0, 1, 2 for the known header count. The value 3 indicates
* the number of headers is not known.
*/
#define ethernet_buffer_get_vlan_count(b) ( \
((b)->flags & VNET_BUFFER_FLAGS_VLAN_BITS) >> VNET_BUFFER_F_LOG2_VLAN_1_DEEP \
)
/** Sets the number of VLAN headers in the current Ethernet frame in the
* buffer. Values 0, 1, 2 indicate the header count. The value 3 indicates
* the number of headers is not known.
*/
#define ethernet_buffer_set_vlan_count(b, v) ( \
(b)->flags = ((b)->flags & ~VNET_BUFFER_FLAGS_VLAN_BITS) | \
(((v) << VNET_BUFFER_F_LOG2_VLAN_1_DEEP) & VNET_BUFFER_FLAGS_VLAN_BITS) \
)
/** Adjusts the vlan count by the delta in 'v' */
#define ethernet_buffer_adjust_vlan_count(b, v) ( \
ethernet_buffer_set_vlan_count(b, \
(word)ethernet_buffer_get_vlan_count(b) + (word)(v)) \
)
/** Adjusts the vlan count by the header size byte delta in 'v' */
#define ethernet_buffer_adjust_vlan_count_by_bytes(b, v) ( \
(b)->flags = ((b)->flags & ~VNET_BUFFER_FLAGS_VLAN_BITS) | (( \
((b)->flags & VNET_BUFFER_FLAGS_VLAN_BITS) + \
((v) << (VNET_BUFFER_F_LOG2_VLAN_1_DEEP - 2)) \
) & VNET_BUFFER_FLAGS_VLAN_BITS) \
)
/**
* Determine the size of the Ethernet headers of the current frame in
* the buffer. This uses the VLAN depth flags that are set by
* ethernet-input. Because these flags are stored in the vlib_buffer_t
* "flags" field this count is valid regardless of the node so long as it's
* checked downstream of ethernet-input; That is, the value is not stored in
* the opaque space.
*/
#define ethernet_buffer_header_size(b) ( \
ethernet_buffer_get_vlan_count((b)) * sizeof(ethernet_vlan_header_t) + \
sizeof(ethernet_header_t) \
)
ethernet_main_t *ethernet_get_main (vlib_main_t * vm);
u32 ethernet_set_flags (vnet_main_t * vnm, u32 hw_if_index, u32 flags);
void ethernet_sw_interface_set_l2_mode (vnet_main_t * vnm, u32 sw_if_index,
u32 l2);
void ethernet_sw_interface_set_l2_mode_noport (vnet_main_t * vnm,
u32 sw_if_index, u32 l2);
void ethernet_set_rx_redirect (vnet_main_t * vnm, vnet_hw_interface_t * hi,
u32 enable);
clib_error_t *next_by_ethertype_init (next_by_ethertype_t * l3_next);
clib_error_t *next_by_ethertype_register (next_by_ethertype_t * l3_next,
u32 ethertype, u32 next_index);
int vnet_create_loopback_interface (u32 * sw_if_indexp, u8 * mac_address,
u8 is_specified, u32 user_instance);
int vnet_delete_loopback_interface (u32 sw_if_index);
int vnet_delete_sub_interface (u32 sw_if_index);
// Perform ethernet subinterface classification table lookups given
// the ports's sw_if_index and fields extracted from the ethernet header.
// The resulting tables are used by identify_subint().
always_inline void
eth_vlan_table_lookups (ethernet_main_t * em,
vnet_main_t * vnm,
u32 port_sw_if_index0,
u16 first_ethertype,
u16 outer_id,
u16 inner_id,
vnet_hw_interface_t ** hi,
main_intf_t ** main_intf,
vlan_intf_t ** vlan_intf, qinq_intf_t ** qinq_intf)
{
vlan_table_t *vlan_table;
qinq_table_t *qinq_table;
u32 vlan_table_id;
// Read the main, vlan, and qinq interface table entries
// TODO: Consider if/how to prefetch tables. Also consider
// single-entry cache to skip table lookups and identify_subint()
// processing.
*hi = vnet_get_sup_hw_interface (vnm, port_sw_if_index0);
*main_intf = vec_elt_at_index (em->main_intfs, (*hi)->hw_if_index);
// Always read the vlan and qinq tables, even if there are not that
// many tags on the packet. This makes the lookups and comparisons
// easier (and less branchy).
vlan_table_id = (first_ethertype == ETHERNET_TYPE_DOT1AD) ?
(*main_intf)->dot1ad_vlans : (*main_intf)->dot1q_vlans;
vlan_table = vec_elt_at_index (em->vlan_pool, vlan_table_id);
*vlan_intf = &vlan_table->vlans[outer_id];
qinq_table = vec_elt_at_index (em->qinq_pool, (*vlan_intf)->qinqs);
*qinq_intf = &qinq_table->vlans[inner_id];
}
// Determine the subinterface for this packet, given the result of the
// vlan table lookups and vlan header parsing. Check the most specific
// matches first.
// Returns 1 if a matching subinterface was found, otherwise returns 0.
always_inline u32
eth_identify_subint (vnet_hw_interface_t * hi,
vlib_buffer_t * b0,
u32 match_flags,
main_intf_t * main_intf,
vlan_intf_t * vlan_intf,
qinq_intf_t * qinq_intf,
u32 * new_sw_if_index, u8 * error0, u32 * is_l2)
{
subint_config_t *subint;
// Each comparison is checking both the valid flag and the number of tags
// (incorporating exact-match/non-exact-match).
// check for specific double tag
subint = &qinq_intf->subint;
if ((subint->flags & match_flags) == match_flags)
goto matched;
// check for specific outer and 'any' inner
subint = &vlan_intf->inner_any_subint;
if ((subint->flags & match_flags) == match_flags)
goto matched;
// check for specific single tag
subint = &vlan_intf->single_tag_subint;
if ((subint->flags & match_flags) == match_flags)
goto matched;
// check for default interface
subint = &main_intf->default_subint;
if ((subint->flags & match_flags) == match_flags)
goto matched;
// check for untagged interface
subint = &main_intf->untagged_subint;
if ((subint->flags & match_flags) == match_flags)
goto matched;
// No matching subinterface
*new_sw_if_index = ~0;
*error0 = ETHERNET_ERROR_UNKNOWN_VLAN;
*is_l2 = 0;
return 0;
matched:
*new_sw_if_index = subint->sw_if_index;
*is_l2 = subint->flags & SUBINT_CONFIG_L2;
return 1;
}
// Compare two ethernet macs. Return 1 if they are the same, 0 if different
always_inline u32
eth_mac_equal (const u8 * mac1, const u8 * mac2)
{
return (*((u32 *) (mac1 + 0)) == *((u32 *) (mac2 + 0)) &&
*((u32 *) (mac1 + 2)) == *((u32 *) (mac2 + 2)));
}
always_inline ethernet_main_t *
vnet_get_ethernet_main (void)
{
return &ethernet_main;
}
void vnet_register_ip4_arp_resolution_event (vnet_main_t * vnm,
void *address_arg,
uword node_index,
uword type_opaque, uword data);
int vnet_add_del_ip4_arp_change_event (vnet_main_t * vnm,
void *data_callback,
u32 pid,
void *address_arg,
uword node_index,
uword type_opaque,
uword data, int is_add);
void wc_arp_set_publisher_node (uword inode_index, uword event_type);
void ethernet_arp_change_mac (u32 sw_if_index);
void ethernet_ndp_change_mac (u32 sw_if_index);
void arp_update_adjacency (vnet_main_t * vnm, u32 sw_if_index, u32 ai);
void ethernet_update_adjacency (vnet_main_t * vnm, u32 sw_if_index, u32 ai);
u8 *ethernet_build_rewrite (vnet_main_t * vnm,
u32 sw_if_index,
vnet_link_t link_type, const void *dst_address);
const u8 *ethernet_ip4_mcast_dst_addr (void);
const u8 *ethernet_ip6_mcast_dst_addr (void);
extern vlib_node_registration_t ethernet_input_node;
typedef struct
{
u32 sw_if_index;
u32 ip4;
u8 mac[6];
} wc_arp_report_t;
#endif /* included_ethernet_h */
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/