| /* |
| * Copyright (c) 2016 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| /** |
| * @brief |
| * A Data-Path Object is an object that represents actions that are |
| * applied to packets are they are switched through VPP. |
| * |
| * The DPO is a base class that is specialised by other objects to provide |
| * concreate actions |
| * |
| * The VLIB graph nodes are graph of types, the DPO graph is a graph of instances. |
| */ |
| |
| #include <vnet/dpo/dpo.h> |
| #include <vnet/ip/lookup.h> |
| #include <vnet/ip/format.h> |
| #include <vnet/adj/adj.h> |
| |
| #include <vnet/dpo/load_balance.h> |
| #include <vnet/dpo/mpls_label_dpo.h> |
| #include <vnet/dpo/lookup_dpo.h> |
| #include <vnet/dpo/drop_dpo.h> |
| #include <vnet/dpo/receive_dpo.h> |
| #include <vnet/dpo/punt_dpo.h> |
| #include <vnet/dpo/classify_dpo.h> |
| #include <vnet/dpo/ip_null_dpo.h> |
| #include <vnet/dpo/replicate_dpo.h> |
| #include <vnet/dpo/interface_rx_dpo.h> |
| #include <vnet/dpo/interface_tx_dpo.h> |
| #include <vnet/dpo/mpls_disposition.h> |
| #include <vnet/dpo/dvr_dpo.h> |
| #include <vnet/dpo/l3_proxy_dpo.h> |
| #include <vnet/dpo/ip6_ll_dpo.h> |
| |
| /** |
| * Array of char* names for the DPO types and protos |
| */ |
| static const char* dpo_type_names[] = DPO_TYPES; |
| static const char* dpo_proto_names[] = DPO_PROTOS; |
| |
| /** |
| * @brief Vector of virtual function tables for the DPO types |
| * |
| * This is a vector so we can dynamically register new DPO types in plugins. |
| */ |
| static dpo_vft_t *dpo_vfts; |
| |
| /** |
| * @brief vector of graph node names associated with each DPO type and protocol. |
| * |
| * dpo_nodes[child_type][child_proto][node_X] = node_name; |
| * i.e. |
| * dpo_node[DPO_LOAD_BALANCE][DPO_PROTO_IP4][0] = "ip4-lookup" |
| * dpo_node[DPO_LOAD_BALANCE][DPO_PROTO_IP4][1] = "ip4-load-balance" |
| * |
| * This is a vector so we can dynamically register new DPO types in plugins. |
| */ |
| static const char* const * const ** dpo_nodes; |
| |
| /** |
| * @brief Vector of edge indicies from parent DPO nodes to child |
| * |
| * dpo_edges[child_type][child_proto][parent_type][parent_proto] = edge_index |
| * |
| * This array is derived at init time from the dpo_nodes above. Note that |
| * the third dimension in dpo_nodes is lost, hence, the edge index from each |
| * node MUST be the same. |
| * Including both the child and parent protocol is required to support the |
| * case where it changes as the grapth is traversed, most notablly when an |
| * MPLS label is popped. |
| * |
| * Note that this array is child type specific, not child instance specific. |
| */ |
| static u32 ****dpo_edges; |
| |
| /** |
| * @brief The DPO type value that can be assigend to the next dynamic |
| * type registration. |
| */ |
| static dpo_type_t dpo_dynamic = DPO_LAST; |
| |
| dpo_proto_t |
| vnet_link_to_dpo_proto (vnet_link_t linkt) |
| { |
| switch (linkt) |
| { |
| case VNET_LINK_IP6: |
| return (DPO_PROTO_IP6); |
| case VNET_LINK_IP4: |
| return (DPO_PROTO_IP4); |
| case VNET_LINK_MPLS: |
| return (DPO_PROTO_MPLS); |
| case VNET_LINK_ETHERNET: |
| return (DPO_PROTO_ETHERNET); |
| case VNET_LINK_NSH: |
| return (DPO_PROTO_NSH); |
| case VNET_LINK_ARP: |
| break; |
| } |
| ASSERT(0); |
| return (0); |
| } |
| |
| vnet_link_t |
| dpo_proto_to_link (dpo_proto_t dp) |
| { |
| switch (dp) |
| { |
| case DPO_PROTO_IP6: |
| return (VNET_LINK_IP6); |
| case DPO_PROTO_IP4: |
| return (VNET_LINK_IP4); |
| case DPO_PROTO_MPLS: |
| case DPO_PROTO_BIER: |
| return (VNET_LINK_MPLS); |
| case DPO_PROTO_ETHERNET: |
| return (VNET_LINK_ETHERNET); |
| case DPO_PROTO_NSH: |
| return (VNET_LINK_NSH); |
| } |
| return (~0); |
| } |
| |
| u8 * |
| format_dpo_type (u8 * s, va_list * args) |
| { |
| dpo_type_t type = va_arg (*args, int); |
| |
| s = format(s, "%s", dpo_type_names[type]); |
| |
| return (s); |
| } |
| |
| u8 * |
| format_dpo_id (u8 * s, va_list * args) |
| { |
| dpo_id_t *dpo = va_arg (*args, dpo_id_t*); |
| u32 indent = va_arg (*args, u32); |
| |
| s = format(s, "[@%d]: ", dpo->dpoi_next_node); |
| |
| if (NULL != dpo_vfts[dpo->dpoi_type].dv_format) |
| { |
| s = format(s, "%U", |
| dpo_vfts[dpo->dpoi_type].dv_format, |
| dpo->dpoi_index, |
| indent); |
| } |
| else |
| { |
| switch (dpo->dpoi_type) |
| { |
| case DPO_FIRST: |
| s = format(s, "unset"); |
| break; |
| default: |
| s = format(s, "unknown"); |
| break; |
| } |
| } |
| return (s); |
| } |
| |
| u8 * |
| format_dpo_proto (u8 * s, va_list * args) |
| { |
| dpo_proto_t proto = va_arg (*args, int); |
| |
| return (format(s, "%s", dpo_proto_names[proto])); |
| } |
| |
| void |
| dpo_set (dpo_id_t *dpo, |
| dpo_type_t type, |
| dpo_proto_t proto, |
| index_t index) |
| { |
| dpo_id_t tmp = *dpo; |
| |
| dpo->dpoi_type = type; |
| dpo->dpoi_proto = proto, |
| dpo->dpoi_index = index; |
| |
| if (DPO_ADJACENCY == type) |
| { |
| /* |
| * set the adj subtype |
| */ |
| ip_adjacency_t *adj; |
| |
| adj = adj_get(index); |
| |
| switch (adj->lookup_next_index) |
| { |
| case IP_LOOKUP_NEXT_ARP: |
| dpo->dpoi_type = DPO_ADJACENCY_INCOMPLETE; |
| break; |
| case IP_LOOKUP_NEXT_MIDCHAIN: |
| dpo->dpoi_type = DPO_ADJACENCY_MIDCHAIN; |
| break; |
| case IP_LOOKUP_NEXT_MCAST_MIDCHAIN: |
| dpo->dpoi_type = DPO_ADJACENCY_MCAST_MIDCHAIN; |
| break; |
| case IP_LOOKUP_NEXT_MCAST: |
| dpo->dpoi_type = DPO_ADJACENCY_MCAST; |
| break; |
| case IP_LOOKUP_NEXT_GLEAN: |
| dpo->dpoi_type = DPO_ADJACENCY_GLEAN; |
| break; |
| default: |
| break; |
| } |
| } |
| dpo_lock(dpo); |
| dpo_unlock(&tmp); |
| } |
| |
| void |
| dpo_reset (dpo_id_t *dpo) |
| { |
| dpo_id_t tmp = DPO_INVALID; |
| |
| /* |
| * use the atomic copy operation. |
| */ |
| dpo_copy(dpo, &tmp); |
| } |
| |
| /** |
| * \brief |
| * Compare two Data-path objects |
| * |
| * like memcmp, return 0 is matching, !0 otherwise. |
| */ |
| int |
| dpo_cmp (const dpo_id_t *dpo1, |
| const dpo_id_t *dpo2) |
| { |
| int res; |
| |
| res = dpo1->dpoi_type - dpo2->dpoi_type; |
| |
| if (0 != res) return (res); |
| |
| return (dpo1->dpoi_index - dpo2->dpoi_index); |
| } |
| |
| void |
| dpo_copy (dpo_id_t *dst, |
| const dpo_id_t *src) |
| { |
| dpo_id_t tmp = *dst; |
| |
| /* |
| * the destination is written in a single u64 write - hence atomically w.r.t |
| * any packets inflight. |
| */ |
| *((u64*)dst) = *(u64*)src; |
| |
| dpo_lock(dst); |
| dpo_unlock(&tmp); |
| } |
| |
| int |
| dpo_is_adj (const dpo_id_t *dpo) |
| { |
| return ((dpo->dpoi_type == DPO_ADJACENCY) || |
| (dpo->dpoi_type == DPO_ADJACENCY_INCOMPLETE) || |
| (dpo->dpoi_type == DPO_ADJACENCY_MIDCHAIN) || |
| (dpo->dpoi_type == DPO_ADJACENCY_GLEAN)); |
| } |
| |
| static u32 * |
| dpo_default_get_next_node (const dpo_id_t *dpo) |
| { |
| u32 *node_indices = NULL; |
| const char *node_name; |
| u32 ii = 0; |
| |
| node_name = dpo_nodes[dpo->dpoi_type][dpo->dpoi_proto][ii]; |
| while (NULL != node_name) |
| { |
| vlib_node_t *node; |
| |
| node = vlib_get_node_by_name(vlib_get_main(), (u8*) node_name); |
| ASSERT(NULL != node); |
| vec_add1(node_indices, node->index); |
| |
| ++ii; |
| node_name = dpo_nodes[dpo->dpoi_type][dpo->dpoi_proto][ii]; |
| } |
| |
| return (node_indices); |
| } |
| |
| /** |
| * A default variant of the make interpose function that just returns |
| * the original |
| */ |
| static void |
| dpo_default_mk_interpose (const dpo_id_t *original, |
| const dpo_id_t *parent, |
| dpo_id_t *clone) |
| { |
| dpo_copy(clone, original); |
| } |
| |
| void |
| dpo_register (dpo_type_t type, |
| const dpo_vft_t *vft, |
| const char * const * const * nodes) |
| { |
| vec_validate(dpo_vfts, type); |
| dpo_vfts[type] = *vft; |
| if (NULL == dpo_vfts[type].dv_get_next_node) |
| { |
| dpo_vfts[type].dv_get_next_node = dpo_default_get_next_node; |
| } |
| if (NULL == dpo_vfts[type].dv_mk_interpose) |
| { |
| dpo_vfts[type].dv_mk_interpose = dpo_default_mk_interpose; |
| } |
| |
| vec_validate(dpo_nodes, type); |
| dpo_nodes[type] = nodes; |
| } |
| |
| dpo_type_t |
| dpo_register_new_type (const dpo_vft_t *vft, |
| const char * const * const * nodes) |
| { |
| dpo_type_t type = dpo_dynamic++; |
| |
| dpo_register(type, vft, nodes); |
| |
| return (type); |
| } |
| |
| void |
| dpo_mk_interpose (const dpo_id_t *original, |
| const dpo_id_t *parent, |
| dpo_id_t *clone) |
| { |
| if (!dpo_id_is_valid(original)) |
| return; |
| |
| dpo_vfts[original->dpoi_type].dv_mk_interpose(original, parent, clone); |
| } |
| |
| void |
| dpo_lock (dpo_id_t *dpo) |
| { |
| if (!dpo_id_is_valid(dpo)) |
| return; |
| |
| dpo_vfts[dpo->dpoi_type].dv_lock(dpo); |
| } |
| |
| void |
| dpo_unlock (dpo_id_t *dpo) |
| { |
| if (!dpo_id_is_valid(dpo)) |
| return; |
| |
| dpo_vfts[dpo->dpoi_type].dv_unlock(dpo); |
| } |
| |
| u32 |
| dpo_get_urpf(const dpo_id_t *dpo) |
| { |
| if (dpo_id_is_valid(dpo) && |
| (NULL != dpo_vfts[dpo->dpoi_type].dv_get_urpf)) |
| { |
| return (dpo_vfts[dpo->dpoi_type].dv_get_urpf(dpo)); |
| } |
| |
| return (~0); |
| } |
| |
| static u32 |
| dpo_get_next_node (dpo_type_t child_type, |
| dpo_proto_t child_proto, |
| const dpo_id_t *parent_dpo) |
| { |
| dpo_proto_t parent_proto; |
| dpo_type_t parent_type; |
| |
| parent_type = parent_dpo->dpoi_type; |
| parent_proto = parent_dpo->dpoi_proto; |
| |
| vec_validate(dpo_edges, child_type); |
| vec_validate(dpo_edges[child_type], child_proto); |
| vec_validate(dpo_edges[child_type][child_proto], parent_type); |
| vec_validate_init_empty( |
| dpo_edges[child_type][child_proto][parent_type], |
| parent_proto, ~0); |
| |
| /* |
| * if the edge index has not yet been created for this node to node transistion |
| */ |
| if (~0 == dpo_edges[child_type][child_proto][parent_type][parent_proto]) |
| { |
| vlib_node_t *child_node; |
| u32 *parent_indices; |
| vlib_main_t *vm; |
| u32 edge, *pi, cc; |
| |
| vm = vlib_get_main(); |
| |
| ASSERT(NULL != dpo_vfts[parent_type].dv_get_next_node); |
| ASSERT(NULL != dpo_nodes[child_type]); |
| ASSERT(NULL != dpo_nodes[child_type][child_proto]); |
| |
| cc = 0; |
| parent_indices = dpo_vfts[parent_type].dv_get_next_node(parent_dpo); |
| |
| vlib_worker_thread_barrier_sync(vm); |
| |
| /* |
| * create a graph arc from each of the child's registered node types, |
| * to each of the parent's. |
| */ |
| while (NULL != dpo_nodes[child_type][child_proto][cc]) |
| { |
| child_node = |
| vlib_get_node_by_name(vm, |
| (u8*) dpo_nodes[child_type][child_proto][cc]); |
| |
| vec_foreach(pi, parent_indices) |
| { |
| edge = vlib_node_add_next(vm, child_node->index, *pi); |
| |
| if (~0 == dpo_edges[child_type][child_proto][parent_type][parent_proto]) |
| { |
| dpo_edges[child_type][child_proto][parent_type][parent_proto] = edge; |
| } |
| else |
| { |
| ASSERT(dpo_edges[child_type][child_proto][parent_type][parent_proto] == edge); |
| } |
| } |
| cc++; |
| } |
| |
| vlib_worker_thread_barrier_release(vm); |
| vec_free(parent_indices); |
| } |
| |
| return (dpo_edges[child_type][child_proto][parent_type][parent_proto]); |
| } |
| |
| /** |
| * @brief return already stacked up next node index for a given |
| * child_type/child_proto and parent_type/patent_proto. |
| * The VLIB graph arc used is taken from the parent and child types |
| * passed. |
| */ |
| u32 |
| dpo_get_next_node_by_type_and_proto (dpo_type_t child_type, |
| dpo_proto_t child_proto, |
| dpo_type_t parent_type, |
| dpo_proto_t parent_proto) |
| { |
| return (dpo_edges[child_type][child_proto][parent_type][parent_proto]); |
| } |
| |
| /** |
| * @brief Stack one DPO object on another, and thus establish a child parent |
| * relationship. The VLIB graph arc used is taken from the parent and child types |
| * passed. |
| */ |
| static void |
| dpo_stack_i (u32 edge, |
| dpo_id_t *dpo, |
| const dpo_id_t *parent) |
| { |
| /* |
| * in order to get an atomic update of the parent we create a temporary, |
| * from a copy of the child, and add the next_node. then we copy to the parent |
| */ |
| dpo_id_t tmp = DPO_INVALID; |
| dpo_copy(&tmp, parent); |
| |
| /* |
| * get the edge index for the parent to child VLIB graph transisition |
| */ |
| tmp.dpoi_next_node = edge; |
| |
| /* |
| * this update is atomic. |
| */ |
| dpo_copy(dpo, &tmp); |
| |
| dpo_reset(&tmp); |
| } |
| |
| /** |
| * @brief Stack one DPO object on another, and thus establish a child-parent |
| * relationship. The VLIB graph arc used is taken from the parent and child types |
| * passed. |
| */ |
| void |
| dpo_stack (dpo_type_t child_type, |
| dpo_proto_t child_proto, |
| dpo_id_t *dpo, |
| const dpo_id_t *parent) |
| { |
| dpo_stack_i(dpo_get_next_node(child_type, child_proto, parent), dpo, parent); |
| } |
| |
| /** |
| * @brief Stack one DPO object on another, and thus establish a child parent |
| * relationship. A new VLIB graph arc is created from the child node passed |
| * to the nodes registered by the parent. The VLIB infra will ensure this arc |
| * is added only once. |
| */ |
| void |
| dpo_stack_from_node (u32 child_node_index, |
| dpo_id_t *dpo, |
| const dpo_id_t *parent) |
| { |
| dpo_type_t parent_type; |
| u32 *parent_indices; |
| vlib_main_t *vm; |
| u32 edge, *pi; |
| |
| edge = 0; |
| parent_type = parent->dpoi_type; |
| vm = vlib_get_main(); |
| |
| ASSERT(NULL != dpo_vfts[parent_type].dv_get_next_node); |
| parent_indices = dpo_vfts[parent_type].dv_get_next_node(parent); |
| ASSERT(parent_indices); |
| |
| /* |
| * This loop is purposefully written with the worker thread lock in the |
| * inner loop because; |
| * 1) the likelihood that the edge does not exist is smaller |
| * 2) the likelihood there is more than one node is even smaller |
| * so we are optimising for not need to take the lock |
| */ |
| vec_foreach(pi, parent_indices) |
| { |
| edge = vlib_node_get_next(vm, child_node_index, *pi); |
| |
| if (~0 == edge) |
| { |
| vlib_worker_thread_barrier_sync(vm); |
| |
| edge = vlib_node_add_next(vm, child_node_index, *pi); |
| |
| vlib_worker_thread_barrier_release(vm); |
| } |
| } |
| dpo_stack_i(edge, dpo, parent); |
| |
| /* should free this local vector to avoid memory leak */ |
| vec_free(parent_indices); |
| } |
| |
| static clib_error_t * |
| dpo_module_init (vlib_main_t * vm) |
| { |
| drop_dpo_module_init(); |
| punt_dpo_module_init(); |
| receive_dpo_module_init(); |
| load_balance_module_init(); |
| mpls_label_dpo_module_init(); |
| classify_dpo_module_init(); |
| lookup_dpo_module_init(); |
| ip_null_dpo_module_init(); |
| ip6_ll_dpo_module_init(); |
| replicate_module_init(); |
| interface_rx_dpo_module_init(); |
| interface_tx_dpo_module_init(); |
| mpls_disp_dpo_module_init(); |
| dvr_dpo_module_init(); |
| l3_proxy_dpo_module_init(); |
| |
| return (NULL); |
| } |
| |
| VLIB_INIT_FUNCTION(dpo_module_init); |
| |
| static clib_error_t * |
| dpo_memory_show (vlib_main_t * vm, |
| unformat_input_t * input, |
| vlib_cli_command_t * cmd) |
| { |
| dpo_vft_t *vft; |
| |
| vlib_cli_output (vm, "DPO memory"); |
| vlib_cli_output (vm, "%=30s %=5s %=8s/%=9s totals", |
| "Name","Size", "in-use", "allocated"); |
| |
| vec_foreach(vft, dpo_vfts) |
| { |
| if (NULL != vft->dv_mem_show) |
| vft->dv_mem_show(); |
| } |
| |
| return (NULL); |
| } |
| |
| /* *INDENT-OFF* */ |
| /*? |
| * The '<em>sh dpo memory </em>' command displays the memory usage for each |
| * data-plane object type. |
| * |
| * @cliexpar |
| * @cliexstart{show dpo memory} |
| * DPO memory |
| * Name Size in-use /allocated totals |
| * load-balance 64 12 / 12 768/768 |
| * Adjacency 256 1 / 1 256/256 |
| * Receive 24 5 / 5 120/120 |
| * Lookup 12 0 / 0 0/0 |
| * Classify 12 0 / 0 0/0 |
| * MPLS label 24 0 / 0 0/0 |
| * @cliexend |
| ?*/ |
| VLIB_CLI_COMMAND (show_fib_memory, static) = { |
| .path = "show dpo memory", |
| .function = dpo_memory_show, |
| .short_help = "show dpo memory", |
| }; |
| /* *INDENT-ON* */ |