| /* $NetBSD: radix.c,v 1.47 2016/12/12 03:55:57 ozaki-r Exp $ */ |
| |
| /* |
| * Copyright (c) 1988, 1989, 1993 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the University nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * @(#)radix.c 8.6 (Berkeley) 10/17/95 |
| */ |
| |
| /* |
| * Routines to build and maintain radix trees for routing lookups. |
| */ |
| |
| #include <vnet/util/radix.h> |
| |
| typedef void (*rn_printer_t)(void *, const char *fmt, ...); |
| |
| static int max_keylen = 33; // me |
| struct radix_mask *rn_mkfreelist; |
| struct radix_node_head *mask_rnhead; |
| static char *addmask_key; |
| static const char normal_chars[] = |
| {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1}; |
| static char *rn_zeros, *rn_ones; |
| |
| #define rn_masktop (mask_rnhead->rnh_treetop) |
| |
| static int rn_satisfies_leaf(const char *, struct radix_node *, int); |
| static int rn_lexobetter(const void *, const void *); |
| static struct radix_mask *rn_new_radix_mask(struct radix_node *, |
| struct radix_mask *); |
| static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t, |
| void *); |
| static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t, |
| void *); |
| static void rn_nodeprint(struct radix_node *, rn_printer_t, void *, |
| const char *); |
| |
| #define SUBTREE_OPEN "[ " |
| #define SUBTREE_CLOSE " ]" |
| |
| #ifdef RN_DEBUG |
| static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *); |
| #endif /* RN_DEBUG */ |
| |
| #define MIN(x,y) (((x)<(y))?(x):(y)) |
| |
| static struct radix_mask* |
| rm_alloc (void) |
| { |
| struct radix_mask *rm = clib_mem_alloc(sizeof(struct radix_mask)); |
| |
| clib_memset(rm, 0, sizeof(*rm)); |
| |
| return (rm); |
| } |
| |
| static void |
| rm_free (struct radix_mask *rm) |
| { |
| clib_mem_free(rm); |
| } |
| |
| #define R_Malloc(p, t, n) \ |
| { \ |
| p = (t) clib_mem_alloc((unsigned int)(n)); \ |
| clib_memset(p, 0, n); \ |
| } |
| #define Free(p) clib_mem_free((p)) |
| #define log(a,b, c...) |
| #define bool i32 |
| |
| /* |
| * The data structure for the keys is a radix tree with one way |
| * branching removed. The index rn_b at an internal node n represents a bit |
| * position to be tested. The tree is arranged so that all descendants |
| * of a node n have keys whose bits all agree up to position rn_b - 1. |
| * (We say the index of n is rn_b.) |
| * |
| * There is at least one descendant which has a one bit at position rn_b, |
| * and at least one with a zero there. |
| * |
| * A route is determined by a pair of key and mask. We require that the |
| * bit-wise logical and of the key and mask to be the key. |
| * We define the index of a route to associated with the mask to be |
| * the first bit number in the mask where 0 occurs (with bit number 0 |
| * representing the highest order bit). |
| * |
| * We say a mask is normal if every bit is 0, past the index of the mask. |
| * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b, |
| * and m is a normal mask, then the route applies to every descendant of n. |
| * If the index(m) < rn_b, this implies the trailing last few bits of k |
| * before bit b are all 0, (and hence consequently true of every descendant |
| * of n), so the route applies to all descendants of the node as well. |
| * |
| * Similar logic shows that a non-normal mask m such that |
| * index(m) <= index(n) could potentially apply to many children of n. |
| * Thus, for each non-host route, we attach its mask to a list at an internal |
| * node as high in the tree as we can go. |
| * |
| * The present version of the code makes use of normal routes in short- |
| * circuiting an explicit mask and compare operation when testing whether |
| * a key satisfies a normal route, and also in remembering the unique leaf |
| * that governs a subtree. |
| */ |
| |
| struct radix_node * |
| rn_search( |
| const void *v_arg, |
| struct radix_node *head) |
| { |
| const u8 * const v = v_arg; |
| struct radix_node *x; |
| |
| for (x = head; x->rn_b >= 0;) { |
| if (x->rn_bmask & v[x->rn_off]) |
| x = x->rn_r; |
| else |
| x = x->rn_l; |
| } |
| return x; |
| } |
| |
| struct radix_node * |
| rn_search_m( |
| const void *v_arg, |
| struct radix_node *head, |
| const void *m_arg) |
| { |
| struct radix_node *x; |
| const u8 * const v = v_arg; |
| const u8 * const m = m_arg; |
| |
| for (x = head; x->rn_b >= 0;) { |
| if ((x->rn_bmask & m[x->rn_off]) && |
| (x->rn_bmask & v[x->rn_off])) |
| x = x->rn_r; |
| else |
| x = x->rn_l; |
| } |
| return x; |
| } |
| |
| int |
| rn_refines( |
| const void *m_arg, |
| const void *n_arg) |
| { |
| const char *m = m_arg; |
| const char *n = n_arg; |
| const char *lim = n + *(const u8 *)n; |
| const char *lim2 = lim; |
| int longer = (*(const u8 *)n++) - (int)(*(const u8 *)m++); |
| int masks_are_equal = 1; |
| |
| if (longer > 0) |
| lim -= longer; |
| while (n < lim) { |
| if (*n & ~(*m)) |
| return 0; |
| if (*n++ != *m++) |
| masks_are_equal = 0; |
| } |
| while (n < lim2) |
| if (*n++) |
| return 0; |
| if (masks_are_equal && (longer < 0)) |
| for (lim2 = m - longer; m < lim2; ) |
| if (*m++) |
| return 1; |
| return !masks_are_equal; |
| } |
| |
| struct radix_node * |
| rn_lookup( |
| const void *v_arg, |
| const void *m_arg, |
| struct radix_node_head *head) |
| { |
| struct radix_node *x; |
| const char *netmask = NULL; |
| |
| if (m_arg) { |
| if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0) |
| return NULL; |
| netmask = x->rn_key; |
| } |
| x = rn_match(v_arg, head); |
| if (x != NULL && netmask != NULL) { |
| while (x != NULL && x->rn_mask != netmask) |
| x = x->rn_dupedkey; |
| } |
| return x; |
| } |
| |
| static int |
| rn_satisfies_leaf( |
| const char *trial, |
| struct radix_node *leaf, |
| int skip) |
| { |
| const char *cp = trial; |
| const char *cp2 = leaf->rn_key; |
| const char *cp3 = leaf->rn_mask; |
| const char *cplim; |
| int length = MIN(*(const u8 *)cp, *(const u8 *)cp2); |
| |
| if (cp3 == 0) |
| cp3 = rn_ones; |
| else |
| length = MIN(length, *(const u8 *)cp3); |
| cplim = cp + length; cp3 += skip; cp2 += skip; |
| for (cp += skip; cp < cplim; cp++, cp2++, cp3++) |
| if ((*cp ^ *cp2) & *cp3) |
| return 0; |
| return 1; |
| } |
| |
| struct radix_node * |
| rn_match( |
| const void *v_arg, |
| struct radix_node_head *head) |
| { |
| const char * const v = v_arg; |
| struct radix_node *t = head->rnh_treetop; |
| struct radix_node *top = t; |
| struct radix_node *x; |
| struct radix_node *saved_t; |
| const char *cp = v; |
| const char *cp2; |
| const char *cplim; |
| int off = t->rn_off; |
| int vlen = *(const u8 *)cp; |
| int matched_off; |
| int test, b, rn_b; |
| |
| /* |
| * Open code rn_search(v, top) to avoid overhead of extra |
| * subroutine call. |
| */ |
| for (; t->rn_b >= 0; ) { |
| if (t->rn_bmask & cp[t->rn_off]) |
| t = t->rn_r; |
| else |
| t = t->rn_l; |
| } |
| /* |
| * See if we match exactly as a host destination |
| * or at least learn how many bits match, for normal mask finesse. |
| * |
| * It doesn't hurt us to limit how many bytes to check |
| * to the length of the mask, since if it matches we had a genuine |
| * match and the leaf we have is the most specific one anyway; |
| * if it didn't match with a shorter length it would fail |
| * with a long one. This wins big for class B&C netmasks which |
| * are probably the most common case... |
| */ |
| if (t->rn_mask) |
| vlen = *(const u8 *)t->rn_mask; |
| cp += off; cp2 = t->rn_key + off; cplim = v + vlen; |
| for (; cp < cplim; cp++, cp2++) |
| if (*cp != *cp2) |
| goto on1; |
| /* |
| * This extra grot is in case we are explicitly asked |
| * to look up the default. Ugh! |
| */ |
| if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey) |
| t = t->rn_dupedkey; |
| return t; |
| on1: |
| test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ |
| for (b = 7; (test >>= 1) > 0;) |
| b--; |
| matched_off = cp - v; |
| b += matched_off << 3; |
| rn_b = -1 - b; |
| /* |
| * If there is a host route in a duped-key chain, it will be first. |
| */ |
| if ((saved_t = t)->rn_mask == 0) |
| t = t->rn_dupedkey; |
| for (; t; t = t->rn_dupedkey) |
| /* |
| * Even if we don't match exactly as a host, |
| * we may match if the leaf we wound up at is |
| * a route to a net. |
| */ |
| if (t->rn_flags & RNF_NORMAL) { |
| if (rn_b <= t->rn_b) |
| return t; |
| } else if (rn_satisfies_leaf(v, t, matched_off)) |
| return t; |
| t = saved_t; |
| /* start searching up the tree */ |
| do { |
| struct radix_mask *m; |
| t = t->rn_p; |
| m = t->rn_mklist; |
| if (m) { |
| /* |
| * If non-contiguous masks ever become important |
| * we can restore the masking and open coding of |
| * the search and satisfaction test and put the |
| * calculation of "off" back before the "do". |
| */ |
| do { |
| if (m->rm_flags & RNF_NORMAL) { |
| if (rn_b <= m->rm_b) |
| return m->rm_leaf; |
| } else { |
| off = MIN(t->rn_off, matched_off); |
| x = rn_search_m(v, t, m->rm_mask); |
| while (x && x->rn_mask != m->rm_mask) |
| x = x->rn_dupedkey; |
| if (x && rn_satisfies_leaf(v, x, off)) |
| return x; |
| } |
| m = m->rm_mklist; |
| } while (m); |
| } |
| } while (t != top); |
| return NULL; |
| } |
| |
| static void |
| rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg, |
| const char *delim) |
| { |
| (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)", |
| delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p, |
| rn->rn_l, rn->rn_r); |
| } |
| |
| #ifdef RN_DEBUG |
| int rn_debug = 1; |
| |
| static void |
| rn_dbg_print(void *arg, const char *fmt, ...) |
| { |
| va_list ap; |
| |
| va_start(ap, fmt); |
| vlog(LOG_DEBUG, fmt, ap); |
| va_end(ap); |
| } |
| |
| static void |
| rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg) |
| { |
| struct radix_node *dup, *rn; |
| const char *delim; |
| |
| if (printer == NULL) |
| return; |
| |
| rn = rn_walkfirst(h->rnh_treetop, printer, arg); |
| for (;;) { |
| /* Process leaves */ |
| delim = ""; |
| for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) { |
| if ((dup->rn_flags & RNF_ROOT) != 0) |
| continue; |
| rn_nodeprint(dup, printer, arg, delim); |
| delim = ", "; |
| } |
| rn = rn_walknext(rn, printer, arg); |
| if (rn->rn_flags & RNF_ROOT) |
| return; |
| } |
| /* NOTREACHED */ |
| } |
| |
| #define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn)) |
| #endif /* RN_DEBUG */ |
| |
| struct radix_node * |
| rn_newpair( |
| const void *v, |
| int b, |
| struct radix_node nodes[2]) |
| { |
| struct radix_node *tt = nodes; |
| struct radix_node *t = tt + 1; |
| t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7); |
| t->rn_l = tt; t->rn_off = b >> 3; |
| tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t; |
| tt->rn_flags = t->rn_flags = RNF_ACTIVE; |
| return t; |
| } |
| |
| struct radix_node * |
| rn_insert( |
| const void *v_arg, |
| struct radix_node_head *head, |
| int *dupentry, |
| struct radix_node nodes[2]) |
| { |
| struct radix_node *top = head->rnh_treetop; |
| struct radix_node *t = rn_search(v_arg, top); |
| struct radix_node *tt; |
| const char *v = v_arg; |
| int head_off = top->rn_off; |
| int vlen = *((const u8 *)v); |
| const char *cp = v + head_off; |
| int b; |
| /* |
| * Find first bit at which v and t->rn_key differ |
| */ |
| { |
| const char *cp2 = t->rn_key + head_off; |
| const char *cplim = v + vlen; |
| int cmp_res; |
| |
| while (cp < cplim) |
| if (*cp2++ != *cp++) |
| goto on1; |
| *dupentry = 1; |
| return t; |
| on1: |
| *dupentry = 0; |
| cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; |
| for (b = (cp - v) << 3; cmp_res; b--) |
| cmp_res >>= 1; |
| } |
| { |
| struct radix_node *p, *x = top; |
| cp = v; |
| do { |
| p = x; |
| if (cp[x->rn_off] & x->rn_bmask) |
| x = x->rn_r; |
| else x = x->rn_l; |
| } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */ |
| #ifdef RN_DEBUG |
| if (rn_debug) |
| log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p); |
| #endif |
| t = rn_newpair(v_arg, b, nodes); tt = t->rn_l; |
| if ((cp[p->rn_off] & p->rn_bmask) == 0) |
| p->rn_l = t; |
| else |
| p->rn_r = t; |
| x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */ |
| if ((cp[t->rn_off] & t->rn_bmask) == 0) { |
| t->rn_r = x; |
| } else { |
| t->rn_r = tt; t->rn_l = x; |
| } |
| #ifdef RN_DEBUG |
| if (rn_debug) { |
| log(LOG_DEBUG, "%s: Coming Out:\n", __func__), |
| traverse(head, p); |
| } |
| #endif /* RN_DEBUG */ |
| } |
| return tt; |
| } |
| |
| struct radix_node * |
| rn_addmask( |
| const void *n_arg, |
| int search, |
| int skip) |
| { |
| const char *netmask = n_arg; |
| const char *cp; |
| const char *cplim; |
| struct radix_node *x; |
| struct radix_node *saved_x; |
| int b = 0, mlen, j; |
| int maskduplicated, m0, isnormal; |
| static int last_zeroed = 0; |
| |
| if ((mlen = *(const u8 *)netmask) > max_keylen) |
| mlen = max_keylen; |
| if (skip == 0) |
| skip = 1; |
| if (mlen <= skip) |
| return mask_rnhead->rnh_nodes; |
| if (skip > 1) |
| memmove(addmask_key + 1, rn_ones + 1, skip - 1); |
| if ((m0 = mlen) > skip) |
| memmove(addmask_key + skip, netmask + skip, mlen - skip); |
| /* |
| * Trim trailing zeroes. |
| */ |
| for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) |
| cp--; |
| mlen = cp - addmask_key; |
| if (mlen <= skip) { |
| if (m0 >= last_zeroed) |
| last_zeroed = mlen; |
| return mask_rnhead->rnh_nodes; |
| } |
| if (m0 < last_zeroed) |
| clib_memset(addmask_key + m0, 0, last_zeroed - m0); |
| *addmask_key = last_zeroed = mlen; |
| x = rn_search(addmask_key, rn_masktop); |
| if (memcmp(addmask_key, x->rn_key, mlen) != 0) |
| x = 0; |
| if (x || search) |
| return x; |
| R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x)); |
| if ((saved_x = x) == NULL) |
| return NULL; |
| clib_memset(x, 0, max_keylen + 2 * sizeof (*x)); |
| cp = netmask = (void *)(x + 2); |
| memmove(x + 2, addmask_key, mlen); |
| x = rn_insert(cp, mask_rnhead, &maskduplicated, x); |
| if (maskduplicated) { |
| log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n"); |
| Free(saved_x); |
| return x; |
| } |
| /* |
| * Calculate index of mask, and check for normalcy. |
| */ |
| cplim = netmask + mlen; isnormal = 1; |
| for (cp = netmask + skip; (cp < cplim) && *(const u8 *)cp == 0xff;) |
| cp++; |
| if (cp != cplim) { |
| for (j = 0x80; (j & *cp) != 0; j >>= 1) |
| b++; |
| if (*cp != normal_chars[b] || cp != (cplim - 1)) |
| isnormal = 0; |
| } |
| b += (cp - netmask) << 3; |
| x->rn_b = -1 - b; |
| if (isnormal) |
| x->rn_flags |= RNF_NORMAL; |
| return x; |
| } |
| |
| static int /* XXX: arbitrary ordering for non-contiguous masks */ |
| rn_lexobetter( |
| const void *m_arg, |
| const void *n_arg) |
| { |
| const u8 *mp = m_arg; |
| const u8 *np = n_arg; |
| const u8 *lim; |
| |
| if (*mp > *np) |
| return 1; /* not really, but need to check longer one first */ |
| if (*mp == *np) |
| for (lim = mp + *mp; mp < lim;) |
| if (*mp++ > *np++) |
| return 1; |
| return 0; |
| } |
| |
| static struct radix_mask * |
| rn_new_radix_mask( |
| struct radix_node *tt, |
| struct radix_mask *next) |
| { |
| struct radix_mask *m; |
| |
| m = rm_alloc(); |
| if (m == NULL) { |
| log(LOG_ERR, "Mask for route not entered\n"); |
| return NULL; |
| } |
| clib_memset(m, 0, sizeof(*m)); |
| m->rm_b = tt->rn_b; |
| m->rm_flags = tt->rn_flags; |
| if (tt->rn_flags & RNF_NORMAL) |
| m->rm_leaf = tt; |
| else |
| m->rm_mask = tt->rn_mask; |
| m->rm_mklist = next; |
| tt->rn_mklist = m; |
| return m; |
| } |
| |
| struct radix_node * |
| rn_addroute( |
| const void *v_arg, |
| const void *n_arg, |
| struct radix_node_head *head, |
| struct radix_node treenodes[2]) |
| { |
| const char *v = v_arg, *netmask = n_arg; |
| struct radix_node *t, *x = NULL, *tt; |
| struct radix_node *saved_tt, *top = head->rnh_treetop; |
| short b = 0, b_leaf = 0; |
| int keyduplicated; |
| const char *mmask; |
| struct radix_mask *m, **mp; |
| |
| /* |
| * In dealing with non-contiguous masks, there may be |
| * many different routes which have the same mask. |
| * We will find it useful to have a unique pointer to |
| * the mask to speed avoiding duplicate references at |
| * nodes and possibly save time in calculating indices. |
| */ |
| if (netmask != NULL) { |
| if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL) |
| return NULL; |
| b_leaf = x->rn_b; |
| b = -1 - x->rn_b; |
| netmask = x->rn_key; |
| } |
| /* |
| * Deal with duplicated keys: attach node to previous instance |
| */ |
| saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); |
| if (keyduplicated) { |
| for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) { |
| if (tt->rn_mask == netmask) |
| return NULL; |
| if (netmask == NULL || |
| (tt->rn_mask != NULL && |
| (b_leaf < tt->rn_b || /* index(netmask) > node */ |
| rn_refines(netmask, tt->rn_mask) || |
| rn_lexobetter(netmask, tt->rn_mask)))) |
| break; |
| } |
| /* |
| * If the mask is not duplicated, we wouldn't |
| * find it among possible duplicate key entries |
| * anyway, so the above test doesn't hurt. |
| * |
| * We sort the masks for a duplicated key the same way as |
| * in a masklist -- most specific to least specific. |
| * This may require the unfortunate nuisance of relocating |
| * the head of the list. |
| * |
| * We also reverse, or doubly link the list through the |
| * parent pointer. |
| */ |
| if (tt == saved_tt) { |
| struct radix_node *xx = x; |
| /* link in at head of list */ |
| (tt = treenodes)->rn_dupedkey = t; |
| tt->rn_flags = t->rn_flags; |
| tt->rn_p = x = t->rn_p; |
| t->rn_p = tt; |
| if (x->rn_l == t) |
| x->rn_l = tt; |
| else |
| x->rn_r = tt; |
| saved_tt = tt; |
| x = xx; |
| } else { |
| (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; |
| t->rn_dupedkey = tt; |
| tt->rn_p = t; |
| if (tt->rn_dupedkey) |
| tt->rn_dupedkey->rn_p = tt; |
| } |
| tt->rn_key = v; |
| tt->rn_b = -1; |
| tt->rn_flags = RNF_ACTIVE; |
| } |
| /* |
| * Put mask in tree. |
| */ |
| if (netmask != NULL) { |
| tt->rn_mask = netmask; |
| tt->rn_b = x->rn_b; |
| tt->rn_flags |= x->rn_flags & RNF_NORMAL; |
| } |
| t = saved_tt->rn_p; |
| if (keyduplicated) |
| goto on2; |
| b_leaf = -1 - t->rn_b; |
| if (t->rn_r == saved_tt) |
| x = t->rn_l; |
| else |
| x = t->rn_r; |
| /* Promote general routes from below */ |
| if (x->rn_b < 0) { |
| for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) { |
| if (x->rn_mask != NULL && x->rn_b >= b_leaf && |
| x->rn_mklist == NULL) { |
| *mp = m = rn_new_radix_mask(x, NULL); |
| if (m != NULL) |
| mp = &m->rm_mklist; |
| } |
| } |
| } else if (x->rn_mklist != NULL) { |
| /* |
| * Skip over masks whose index is > that of new node |
| */ |
| for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) |
| if (m->rm_b >= b_leaf) |
| break; |
| t->rn_mklist = m; |
| *mp = NULL; |
| } |
| on2: |
| /* Add new route to highest possible ancestor's list */ |
| if (netmask == NULL || b > t->rn_b) |
| return tt; /* can't lift at all */ |
| b_leaf = tt->rn_b; |
| do { |
| x = t; |
| t = t->rn_p; |
| } while (b <= t->rn_b && x != top); |
| /* |
| * Search through routes associated with node to |
| * insert new route according to index. |
| * Need same criteria as when sorting dupedkeys to avoid |
| * double loop on deletion. |
| */ |
| for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { |
| if (m->rm_b < b_leaf) |
| continue; |
| if (m->rm_b > b_leaf) |
| break; |
| if (m->rm_flags & RNF_NORMAL) { |
| mmask = m->rm_leaf->rn_mask; |
| if (tt->rn_flags & RNF_NORMAL) { |
| log(LOG_ERR, "Non-unique normal route," |
| " mask not entered\n"); |
| return tt; |
| } |
| } else |
| mmask = m->rm_mask; |
| if (mmask == netmask) { |
| m->rm_refs++; |
| tt->rn_mklist = m; |
| return tt; |
| } |
| if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) |
| break; |
| } |
| *mp = rn_new_radix_mask(tt, *mp); |
| return tt; |
| } |
| |
| struct radix_node * |
| rn_delete1( |
| const void *v_arg, |
| const void *netmask_arg, |
| struct radix_node_head *head, |
| struct radix_node *rn) |
| { |
| struct radix_node *t, *p, *x, *tt; |
| struct radix_mask *m, *saved_m, **mp; |
| struct radix_node *dupedkey, *saved_tt, *top; |
| const char *v, *netmask; |
| int b, head_off, vlen; |
| |
| v = v_arg; |
| netmask = netmask_arg; |
| x = head->rnh_treetop; |
| tt = rn_search(v, x); |
| head_off = x->rn_off; |
| vlen = *(const u8 *)v; |
| saved_tt = tt; |
| top = x; |
| if (tt == NULL || |
| memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0) |
| return NULL; |
| /* |
| * Delete our route from mask lists. |
| */ |
| if (netmask != NULL) { |
| if ((x = rn_addmask(netmask, 1, head_off)) == NULL) |
| return NULL; |
| netmask = x->rn_key; |
| while (tt->rn_mask != netmask) |
| if ((tt = tt->rn_dupedkey) == NULL) |
| return NULL; |
| } |
| if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL) |
| goto on1; |
| if (tt->rn_flags & RNF_NORMAL) { |
| if (m->rm_leaf != tt || m->rm_refs > 0) { |
| log(LOG_ERR, "rn_delete: inconsistent annotation\n"); |
| return NULL; /* dangling ref could cause disaster */ |
| } |
| } else { |
| if (m->rm_mask != tt->rn_mask) { |
| log(LOG_ERR, "rn_delete: inconsistent annotation\n"); |
| goto on1; |
| } |
| if (--m->rm_refs >= 0) |
| goto on1; |
| } |
| b = -1 - tt->rn_b; |
| t = saved_tt->rn_p; |
| if (b > t->rn_b) |
| goto on1; /* Wasn't lifted at all */ |
| do { |
| x = t; |
| t = t->rn_p; |
| } while (b <= t->rn_b && x != top); |
| for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { |
| if (m == saved_m) { |
| *mp = m->rm_mklist; |
| rm_free(m); |
| break; |
| } |
| } |
| if (m == NULL) { |
| log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); |
| if (tt->rn_flags & RNF_NORMAL) |
| return NULL; /* Dangling ref to us */ |
| } |
| on1: |
| /* |
| * Eliminate us from tree |
| */ |
| if (tt->rn_flags & RNF_ROOT) |
| return NULL; |
| #ifdef RN_DEBUG |
| if (rn_debug) |
| log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt); |
| #endif |
| t = tt->rn_p; |
| dupedkey = saved_tt->rn_dupedkey; |
| if (dupedkey != NULL) { |
| /* |
| * Here, tt is the deletion target, and |
| * saved_tt is the head of the dupedkey chain. |
| */ |
| if (tt == saved_tt) { |
| x = dupedkey; |
| x->rn_p = t; |
| if (t->rn_l == tt) |
| t->rn_l = x; |
| else |
| t->rn_r = x; |
| } else { |
| /* find node in front of tt on the chain */ |
| for (x = p = saved_tt; |
| p != NULL && p->rn_dupedkey != tt;) |
| p = p->rn_dupedkey; |
| if (p != NULL) { |
| p->rn_dupedkey = tt->rn_dupedkey; |
| if (tt->rn_dupedkey != NULL) |
| tt->rn_dupedkey->rn_p = p; |
| } else |
| log(LOG_ERR, "rn_delete: couldn't find us\n"); |
| } |
| t = tt + 1; |
| if (t->rn_flags & RNF_ACTIVE) { |
| *++x = *t; |
| p = t->rn_p; |
| if (p->rn_l == t) |
| p->rn_l = x; |
| else |
| p->rn_r = x; |
| x->rn_l->rn_p = x; |
| x->rn_r->rn_p = x; |
| } |
| goto out; |
| } |
| if (t->rn_l == tt) |
| x = t->rn_r; |
| else |
| x = t->rn_l; |
| p = t->rn_p; |
| if (p->rn_r == t) |
| p->rn_r = x; |
| else |
| p->rn_l = x; |
| x->rn_p = p; |
| /* |
| * Demote routes attached to us. |
| */ |
| if (t->rn_mklist == NULL) |
| ; |
| else if (x->rn_b >= 0) { |
| for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) |
| ; |
| *mp = t->rn_mklist; |
| } else { |
| /* If there are any key,mask pairs in a sibling |
| duped-key chain, some subset will appear sorted |
| in the same order attached to our mklist */ |
| for (m = t->rn_mklist; |
| m != NULL && x != NULL; |
| x = x->rn_dupedkey) { |
| if (m == x->rn_mklist) { |
| struct radix_mask *mm = m->rm_mklist; |
| x->rn_mklist = NULL; |
| if (--(m->rm_refs) < 0) |
| rm_free(m); |
| m = mm; |
| } |
| } |
| if (m != NULL) { |
| log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n", |
| m, x); |
| } |
| } |
| /* |
| * We may be holding an active internal node in the tree. |
| */ |
| x = tt + 1; |
| if (t != x) { |
| *t = *x; |
| t->rn_l->rn_p = t; |
| t->rn_r->rn_p = t; |
| p = x->rn_p; |
| if (p->rn_l == x) |
| p->rn_l = t; |
| else |
| p->rn_r = t; |
| } |
| out: |
| #ifdef RN_DEBUG |
| if (rn_debug) { |
| log(LOG_DEBUG, "%s: Coming Out:\n", __func__), |
| traverse(head, tt); |
| } |
| #endif /* RN_DEBUG */ |
| tt->rn_flags &= ~RNF_ACTIVE; |
| tt[1].rn_flags &= ~RNF_ACTIVE; |
| return tt; |
| } |
| |
| struct radix_node * |
| rn_delete( |
| const void *v_arg, |
| const void *netmask_arg, |
| struct radix_node_head *head) |
| { |
| return rn_delete1(v_arg, netmask_arg, head, NULL); |
| } |
| |
| static struct radix_node * |
| rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg) |
| { |
| /* If at right child go back up, otherwise, go right */ |
| while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) { |
| if (printer != NULL) |
| (*printer)(arg, SUBTREE_CLOSE); |
| rn = rn->rn_p; |
| } |
| if (printer) |
| rn_nodeprint(rn->rn_p, printer, arg, ""); |
| /* Find the next *leaf* since next node might vanish, too */ |
| for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) { |
| if (printer != NULL) |
| (*printer)(arg, SUBTREE_OPEN); |
| rn = rn->rn_l; |
| } |
| return rn; |
| } |
| |
| static struct radix_node * |
| rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg) |
| { |
| /* First time through node, go left */ |
| while (rn->rn_b >= 0) { |
| if (printer != NULL) |
| (*printer)(arg, SUBTREE_OPEN); |
| rn = rn->rn_l; |
| } |
| return rn; |
| } |
| |
| int |
| rn_walktree( |
| struct radix_node_head *h, |
| int (*f)(struct radix_node *, void *), |
| void *w) |
| { |
| int error; |
| struct radix_node *base, *next, *rn; |
| /* |
| * This gets complicated because we may delete the node |
| * while applying the function f to it, so we need to calculate |
| * the successor node in advance. |
| */ |
| rn = rn_walkfirst(h->rnh_treetop, NULL, NULL); |
| for (;;) { |
| base = rn; |
| next = rn_walknext(rn, NULL, NULL); |
| /* Process leaves */ |
| while ((rn = base) != NULL) { |
| base = rn->rn_dupedkey; |
| if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) |
| return error; |
| } |
| rn = next; |
| if (rn->rn_flags & RNF_ROOT) |
| return 0; |
| } |
| /* NOTREACHED */ |
| } |
| |
| struct radix_node * |
| rn_search_matched(struct radix_node_head *h, |
| int (*matcher)(struct radix_node *, void *), void *w) |
| { |
| bool matched; |
| struct radix_node *base, *next, *rn; |
| /* |
| * This gets complicated because we may delete the node |
| * while applying the function f to it, so we need to calculate |
| * the successor node in advance. |
| */ |
| rn = rn_walkfirst(h->rnh_treetop, NULL, NULL); |
| for (;;) { |
| base = rn; |
| next = rn_walknext(rn, NULL, NULL); |
| /* Process leaves */ |
| while ((rn = base) != NULL) { |
| base = rn->rn_dupedkey; |
| if (!(rn->rn_flags & RNF_ROOT)) { |
| matched = (*matcher)(rn, w); |
| if (matched) |
| return rn; |
| } |
| } |
| rn = next; |
| if (rn->rn_flags & RNF_ROOT) |
| return NULL; |
| } |
| /* NOTREACHED */ |
| } |
| |
| int |
| rn_inithead(void **head, int off) |
| { |
| struct radix_node_head *rnh; |
| |
| if (*head != NULL) |
| return 1; |
| R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh)); |
| if (rnh == NULL) |
| return 0; |
| *head = rnh; |
| return rn_inithead0(rnh, off); |
| } |
| |
| int |
| rn_inithead0(struct radix_node_head *rnh, int off) |
| { |
| struct radix_node *t; |
| struct radix_node *tt; |
| struct radix_node *ttt; |
| |
| clib_memset(rnh, 0, sizeof(*rnh)); |
| t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); |
| ttt = rnh->rnh_nodes + 2; |
| t->rn_r = ttt; |
| t->rn_p = t; |
| tt = t->rn_l; |
| tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; |
| tt->rn_b = -1 - off; |
| *ttt = *tt; |
| ttt->rn_key = rn_ones; |
| rnh->rnh_addaddr = rn_addroute; |
| rnh->rnh_deladdr = rn_delete; |
| rnh->rnh_matchaddr = rn_match; |
| rnh->rnh_lookup = rn_lookup; |
| rnh->rnh_treetop = t; |
| return 1; |
| } |
| |
| static clib_error_t * |
| rn_module_init (vlib_main_t * vm) |
| { |
| char *cp, *cplim; |
| |
| R_Malloc(rn_zeros, char *, 3 * max_keylen); |
| if (rn_zeros == NULL) |
| return (clib_error_return (0, "RN Zeros...")); |
| |
| clib_memset(rn_zeros, 0, 3 * max_keylen); |
| rn_ones = cp = rn_zeros + max_keylen; |
| addmask_key = cplim = rn_ones + max_keylen; |
| while (cp < cplim) |
| *cp++ = -1; |
| if (rn_inithead((void *)&mask_rnhead, 0) == 0) |
| return (clib_error_return (0, "RN Init 2")); |
| |
| return (NULL); |
| } |
| |
| VLIB_INIT_FUNCTION(rn_module_init); |