blob: 82e3c961e1a40d40639f0eee5a1f604d6b571718 [file] [log] [blame]
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __ESP_H__
#define __ESP_H__
#include <vnet/ip/ip.h>
#include <vnet/ipsec/ipsec.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <openssl/evp.h>
typedef struct
{
u32 spi;
u32 seq;
u8 data[0];
} esp_header_t;
typedef struct
{
u8 pad_length;
u8 next_header;
} esp_footer_t;
/* *INDENT-OFF* */
typedef CLIB_PACKED (struct {
ip4_header_t ip4;
esp_header_t esp;
}) ip4_and_esp_header_t;
/* *INDENT-ON* */
/* *INDENT-OFF* */
typedef CLIB_PACKED (struct {
ip6_header_t ip6;
esp_header_t esp;
}) ip6_and_esp_header_t;
/* *INDENT-ON* */
typedef struct
{
const EVP_CIPHER *type;
} ipsec_proto_main_crypto_alg_t;
typedef struct
{
const EVP_MD *md;
u8 trunc_size;
} ipsec_proto_main_integ_alg_t;
typedef struct
{
CLIB_CACHE_LINE_ALIGN_MARK (cacheline0);
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
EVP_CIPHER_CTX *encrypt_ctx;
#else
EVP_CIPHER_CTX encrypt_ctx;
#endif
CLIB_CACHE_LINE_ALIGN_MARK (cacheline1);
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
EVP_CIPHER_CTX *decrypt_ctx;
#else
EVP_CIPHER_CTX decrypt_ctx;
#endif
CLIB_CACHE_LINE_ALIGN_MARK (cacheline2);
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
HMAC_CTX *hmac_ctx;
#else
HMAC_CTX hmac_ctx;
#endif
ipsec_crypto_alg_t last_encrypt_alg;
ipsec_crypto_alg_t last_decrypt_alg;
ipsec_integ_alg_t last_integ_alg;
} ipsec_proto_main_per_thread_data_t;
typedef struct
{
ipsec_proto_main_crypto_alg_t *ipsec_proto_main_crypto_algs;
ipsec_proto_main_integ_alg_t *ipsec_proto_main_integ_algs;
ipsec_proto_main_per_thread_data_t *per_thread_data;
} ipsec_proto_main_t;
extern ipsec_proto_main_t ipsec_proto_main;
#define ESP_WINDOW_SIZE (64)
#define ESP_SEQ_MAX (4294967295UL)
u8 *format_esp_header (u8 * s, va_list * args);
always_inline int
esp_replay_check (ipsec_sa_t * sa, u32 seq)
{
u32 diff;
if (PREDICT_TRUE (seq > sa->last_seq))
return 0;
diff = sa->last_seq - seq;
if (ESP_WINDOW_SIZE > diff)
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
else
return 1;
return 0;
}
always_inline int
esp_replay_check_esn (ipsec_sa_t * sa, u32 seq)
{
u32 tl = sa->last_seq;
u32 th = sa->last_seq_hi;
u32 diff = tl - seq;
if (PREDICT_TRUE (tl >= (ESP_WINDOW_SIZE - 1)))
{
if (seq >= (tl - ESP_WINDOW_SIZE + 1))
{
sa->seq_hi = th;
if (seq <= tl)
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
else
return 0;
}
else
{
sa->seq_hi = th + 1;
return 0;
}
}
else
{
if (seq >= (tl - ESP_WINDOW_SIZE + 1))
{
sa->seq_hi = th - 1;
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
}
else
{
sa->seq_hi = th;
if (seq <= tl)
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
else
return 0;
}
}
return 0;
}
/* TODO seq increment should be atomic to be accessed by multiple workers */
always_inline void
esp_replay_advance (ipsec_sa_t * sa, u32 seq)
{
u32 pos;
if (seq > sa->last_seq)
{
pos = seq - sa->last_seq;
if (pos < ESP_WINDOW_SIZE)
sa->replay_window = ((sa->replay_window) << pos) | 1;
else
sa->replay_window = 1;
sa->last_seq = seq;
}
else
{
pos = sa->last_seq - seq;
sa->replay_window |= (1ULL << pos);
}
}
always_inline void
esp_replay_advance_esn (ipsec_sa_t * sa, u32 seq)
{
int wrap = sa->seq_hi - sa->last_seq_hi;
u32 pos;
if (wrap == 0 && seq > sa->last_seq)
{
pos = seq - sa->last_seq;
if (pos < ESP_WINDOW_SIZE)
sa->replay_window = ((sa->replay_window) << pos) | 1;
else
sa->replay_window = 1;
sa->last_seq = seq;
}
else if (wrap > 0)
{
pos = ~seq + sa->last_seq + 1;
if (pos < ESP_WINDOW_SIZE)
sa->replay_window = ((sa->replay_window) << pos) | 1;
else
sa->replay_window = 1;
sa->last_seq = seq;
sa->last_seq_hi = sa->seq_hi;
}
else if (wrap < 0)
{
pos = ~seq + sa->last_seq + 1;
sa->replay_window |= (1ULL << pos);
}
else
{
pos = sa->last_seq - seq;
sa->replay_window |= (1ULL << pos);
}
}
always_inline int
esp_seq_advance (ipsec_sa_t * sa)
{
if (PREDICT_TRUE (sa->use_esn))
{
if (PREDICT_FALSE (sa->seq == ESP_SEQ_MAX))
{
if (PREDICT_FALSE
(sa->use_anti_replay && sa->seq_hi == ESP_SEQ_MAX))
return 1;
sa->seq_hi++;
}
sa->seq++;
}
else
{
if (PREDICT_FALSE (sa->use_anti_replay && sa->seq == ESP_SEQ_MAX))
return 1;
sa->seq++;
}
return 0;
}
always_inline void
ipsec_proto_init ()
{
ipsec_proto_main_t *em = &ipsec_proto_main;
vlib_thread_main_t *tm = vlib_get_thread_main ();
memset (em, 0, sizeof (em[0]));
vec_validate (em->ipsec_proto_main_crypto_algs, IPSEC_CRYPTO_N_ALG - 1);
em->ipsec_proto_main_crypto_algs[IPSEC_CRYPTO_ALG_AES_CBC_128].type =
EVP_aes_128_cbc ();
em->ipsec_proto_main_crypto_algs[IPSEC_CRYPTO_ALG_AES_CBC_192].type =
EVP_aes_192_cbc ();
em->ipsec_proto_main_crypto_algs[IPSEC_CRYPTO_ALG_AES_CBC_256].type =
EVP_aes_256_cbc ();
vec_validate (em->ipsec_proto_main_integ_algs, IPSEC_INTEG_N_ALG - 1);
ipsec_proto_main_integ_alg_t *i;
i = &em->ipsec_proto_main_integ_algs[IPSEC_INTEG_ALG_SHA1_96];
i->md = EVP_sha1 ();
i->trunc_size = 12;
i = &em->ipsec_proto_main_integ_algs[IPSEC_INTEG_ALG_SHA_256_96];
i->md = EVP_sha256 ();
i->trunc_size = 12;
i = &em->ipsec_proto_main_integ_algs[IPSEC_INTEG_ALG_SHA_256_128];
i->md = EVP_sha256 ();
i->trunc_size = 16;
i = &em->ipsec_proto_main_integ_algs[IPSEC_INTEG_ALG_SHA_384_192];
i->md = EVP_sha384 ();
i->trunc_size = 24;
i = &em->ipsec_proto_main_integ_algs[IPSEC_INTEG_ALG_SHA_512_256];
i->md = EVP_sha512 ();
i->trunc_size = 32;
vec_validate_aligned (em->per_thread_data, tm->n_vlib_mains - 1,
CLIB_CACHE_LINE_BYTES);
int thread_id;
for (thread_id = 0; thread_id < tm->n_vlib_mains - 1; thread_id++)
{
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
em->per_thread_data[thread_id].encrypt_ctx = EVP_CIPHER_CTX_new ();
em->per_thread_data[thread_id].decrypt_ctx = EVP_CIPHER_CTX_new ();
em->per_thread_data[thread_id].hmac_ctx = HMAC_CTX_new ();
#else
EVP_CIPHER_CTX_init (&(em->per_thread_data[thread_id].encrypt_ctx));
EVP_CIPHER_CTX_init (&(em->per_thread_data[thread_id].decrypt_ctx));
HMAC_CTX_init (&(em->per_thread_data[thread_id].hmac_ctx));
#endif
}
}
always_inline unsigned int
hmac_calc (ipsec_integ_alg_t alg,
u8 * key,
int key_len,
u8 * data, int data_len, u8 * signature, u8 use_esn, u32 seq_hi)
{
ipsec_proto_main_t *em = &ipsec_proto_main;
u32 thread_index = vlib_get_thread_index ();
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
HMAC_CTX *ctx = em->per_thread_data[thread_index].hmac_ctx;
#else
HMAC_CTX *ctx = &(em->per_thread_data[thread_index].hmac_ctx);
#endif
const EVP_MD *md = NULL;
unsigned int len;
ASSERT (alg < IPSEC_INTEG_N_ALG);
if (PREDICT_FALSE (em->ipsec_proto_main_integ_algs[alg].md == 0))
return 0;
if (PREDICT_FALSE (alg != em->per_thread_data[thread_index].last_integ_alg))
{
md = em->ipsec_proto_main_integ_algs[alg].md;
em->per_thread_data[thread_index].last_integ_alg = alg;
}
HMAC_Init_ex (ctx, key, key_len, md, NULL);
HMAC_Update (ctx, data, data_len);
if (PREDICT_TRUE (use_esn))
HMAC_Update (ctx, (u8 *) & seq_hi, sizeof (seq_hi));
HMAC_Final (ctx, signature, &len);
return em->ipsec_proto_main_integ_algs[alg].trunc_size;
}
#endif /* __ESP_H__ */
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/