blob: 9114d7a90f3650d5a38669879a9e919febd5e378 [file] [log] [blame]
/*
* ethernet/arp.c: IP v4 ARP node
*
* Copyright (c) 2010 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vnet/ip/ip.h>
#include <vnet/ip/ip6.h>
#include <vnet/ethernet/ethernet.h>
#include <vnet/ethernet/arp_packet.h>
#include <vnet/l2/l2_input.h>
#include <vppinfra/mhash.h>
#include <vnet/fib/ip4_fib.h>
#include <vnet/fib/fib_entry_src.h>
#include <vnet/adj/adj_nbr.h>
#include <vnet/adj/adj_mcast.h>
#include <vnet/mpls/mpls.h>
/**
* @file
* @brief IPv4 ARP.
*
* This file contains code to manage the IPv4 ARP tables (IP Address
* to MAC Address lookup).
*/
void vl_api_rpc_call_main_thread (void *fp, u8 * data, u32 data_length);
/**
* @brief Per-interface ARP configuration and state
*/
typedef struct ethernet_arp_interface_t_
{
/**
* Hash table of ARP entries.
* Since this hash table is per-interface, the key is only the IPv4 address.
*/
uword *arp_entries;
} ethernet_arp_interface_t;
typedef struct
{
u32 lo_addr;
u32 hi_addr;
u32 fib_index;
} ethernet_proxy_arp_t;
typedef struct
{
u32 next_index;
uword node_index;
uword type_opaque;
uword data;
/* Used for arp event notification only */
void *data_callback;
u32 pid;
} pending_resolution_t;
typedef struct
{
/* Hash tables mapping name to opcode. */
uword *opcode_by_name;
/* lite beer "glean" adjacency handling */
uword *pending_resolutions_by_address;
pending_resolution_t *pending_resolutions;
/* Mac address change notification */
uword *mac_changes_by_address;
pending_resolution_t *mac_changes;
ethernet_arp_ip4_entry_t *ip4_entry_pool;
/* ARP attack mitigation */
u32 arp_delete_rotor;
u32 limit_arp_cache_size;
/** Per interface state */
ethernet_arp_interface_t *ethernet_arp_by_sw_if_index;
/* Proxy arp vector */
ethernet_proxy_arp_t *proxy_arps;
uword wc_ip4_arp_publisher_node;
uword wc_ip4_arp_publisher_et;
} ethernet_arp_main_t;
static ethernet_arp_main_t ethernet_arp_main;
typedef struct
{
u32 sw_if_index;
ethernet_arp_ip4_over_ethernet_address_t a;
int is_static;
int is_no_fib_entry;
int flags;
#define ETHERNET_ARP_ARGS_REMOVE (1<<0)
#define ETHERNET_ARP_ARGS_FLUSH (1<<1)
#define ETHERNET_ARP_ARGS_POPULATE (1<<2)
#define ETHERNET_ARP_ARGS_WC_PUB (1<<3)
} vnet_arp_set_ip4_over_ethernet_rpc_args_t;
static const u8 vrrp_prefix[] = { 0x00, 0x00, 0x5E, 0x00, 0x01 };
/* Node index for send_garp_na_process */
u32 send_garp_na_process_node_index;
static void
set_ip4_over_ethernet_rpc_callback (vnet_arp_set_ip4_over_ethernet_rpc_args_t
* a);
static u8 *
format_ethernet_arp_hardware_type (u8 * s, va_list * va)
{
ethernet_arp_hardware_type_t h = va_arg (*va, ethernet_arp_hardware_type_t);
char *t = 0;
switch (h)
{
#define _(n,f) case n: t = #f; break;
foreach_ethernet_arp_hardware_type;
#undef _
default:
return format (s, "unknown 0x%x", h);
}
return format (s, "%s", t);
}
static u8 *
format_ethernet_arp_opcode (u8 * s, va_list * va)
{
ethernet_arp_opcode_t o = va_arg (*va, ethernet_arp_opcode_t);
char *t = 0;
switch (o)
{
#define _(f) case ETHERNET_ARP_OPCODE_##f: t = #f; break;
foreach_ethernet_arp_opcode;
#undef _
default:
return format (s, "unknown 0x%x", o);
}
return format (s, "%s", t);
}
static uword
unformat_ethernet_arp_opcode_host_byte_order (unformat_input_t * input,
va_list * args)
{
int *result = va_arg (*args, int *);
ethernet_arp_main_t *am = &ethernet_arp_main;
int x, i;
/* Numeric opcode. */
if (unformat (input, "0x%x", &x) || unformat (input, "%d", &x))
{
if (x >= (1 << 16))
return 0;
*result = x;
return 1;
}
/* Named type. */
if (unformat_user (input, unformat_vlib_number_by_name,
am->opcode_by_name, &i))
{
*result = i;
return 1;
}
return 0;
}
static uword
unformat_ethernet_arp_opcode_net_byte_order (unformat_input_t * input,
va_list * args)
{
int *result = va_arg (*args, int *);
if (!unformat_user
(input, unformat_ethernet_arp_opcode_host_byte_order, result))
return 0;
*result = clib_host_to_net_u16 ((u16) * result);
return 1;
}
static u8 *
format_ethernet_arp_header (u8 * s, va_list * va)
{
ethernet_arp_header_t *a = va_arg (*va, ethernet_arp_header_t *);
u32 max_header_bytes = va_arg (*va, u32);
u32 indent;
u16 l2_type, l3_type;
if (max_header_bytes != 0 && sizeof (a[0]) > max_header_bytes)
return format (s, "ARP header truncated");
l2_type = clib_net_to_host_u16 (a->l2_type);
l3_type = clib_net_to_host_u16 (a->l3_type);
indent = format_get_indent (s);
s = format (s, "%U, type %U/%U, address size %d/%d",
format_ethernet_arp_opcode, clib_net_to_host_u16 (a->opcode),
format_ethernet_arp_hardware_type, l2_type,
format_ethernet_type, l3_type,
a->n_l2_address_bytes, a->n_l3_address_bytes);
if (l2_type == ETHERNET_ARP_HARDWARE_TYPE_ethernet
&& l3_type == ETHERNET_TYPE_IP4)
{
s = format (s, "\n%U%U/%U -> %U/%U",
format_white_space, indent,
format_ethernet_address, a->ip4_over_ethernet[0].ethernet,
format_ip4_address, &a->ip4_over_ethernet[0].ip4,
format_ethernet_address, a->ip4_over_ethernet[1].ethernet,
format_ip4_address, &a->ip4_over_ethernet[1].ip4);
}
else
{
uword n2 = a->n_l2_address_bytes;
uword n3 = a->n_l3_address_bytes;
s = format (s, "\n%U%U/%U -> %U/%U",
format_white_space, indent,
format_hex_bytes, a->data + 0 * n2 + 0 * n3, n2,
format_hex_bytes, a->data + 1 * n2 + 0 * n3, n3,
format_hex_bytes, a->data + 1 * n2 + 1 * n3, n2,
format_hex_bytes, a->data + 2 * n2 + 1 * n3, n3);
}
return s;
}
u8 *
format_ethernet_arp_ip4_entry (u8 * s, va_list * va)
{
vnet_main_t *vnm = va_arg (*va, vnet_main_t *);
ethernet_arp_ip4_entry_t *e = va_arg (*va, ethernet_arp_ip4_entry_t *);
vnet_sw_interface_t *si;
u8 *flags = 0;
if (!e)
return format (s, "%=12s%=16s%=6s%=20s%=24s", "Time", "IP4",
"Flags", "Ethernet", "Interface");
si = vnet_get_sw_interface (vnm, e->sw_if_index);
if (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_STATIC)
flags = format (flags, "S");
if (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_DYNAMIC)
flags = format (flags, "D");
if (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_NO_FIB_ENTRY)
flags = format (flags, "N");
s = format (s, "%=12U%=16U%=6s%=20U%U",
format_vlib_cpu_time, vnm->vlib_main, e->cpu_time_last_updated,
format_ip4_address, &e->ip4_address,
flags ? (char *) flags : "",
format_ethernet_address, e->ethernet_address,
format_vnet_sw_interface_name, vnm, si);
vec_free (flags);
return s;
}
typedef struct
{
u8 packet_data[64];
} ethernet_arp_input_trace_t;
static u8 *
format_ethernet_arp_input_trace (u8 * s, va_list * va)
{
CLIB_UNUSED (vlib_main_t * vm) = va_arg (*va, vlib_main_t *);
CLIB_UNUSED (vlib_node_t * node) = va_arg (*va, vlib_node_t *);
ethernet_arp_input_trace_t *t = va_arg (*va, ethernet_arp_input_trace_t *);
s = format (s, "%U",
format_ethernet_arp_header,
t->packet_data, sizeof (t->packet_data));
return s;
}
static u8 *
format_arp_term_input_trace (u8 * s, va_list * va)
{
CLIB_UNUSED (vlib_main_t * vm) = va_arg (*va, vlib_main_t *);
CLIB_UNUSED (vlib_node_t * node) = va_arg (*va, vlib_node_t *);
ethernet_arp_input_trace_t *t = va_arg (*va, ethernet_arp_input_trace_t *);
/* arp-term trace data saved is either arp or ip6/icmp6 packet:
- for arp, the 1st 16-bit field is hw type of value of 0x0001.
- for ip6, the first nibble has value of 6. */
s = format (s, "%U", t->packet_data[0] == 0 ?
format_ethernet_arp_header : format_ip6_header,
t->packet_data, sizeof (t->packet_data));
return s;
}
static void
arp_nbr_probe (ip_adjacency_t * adj)
{
vnet_main_t *vnm = vnet_get_main ();
ip4_main_t *im = &ip4_main;
ip_interface_address_t *ia;
ethernet_arp_header_t *h;
vnet_hw_interface_t *hi;
vnet_sw_interface_t *si;
ip4_address_t *src;
vlib_buffer_t *b;
vlib_main_t *vm;
u32 bi = 0;
vm = vlib_get_main ();
si = vnet_get_sw_interface (vnm, adj->rewrite_header.sw_if_index);
if (!(si->flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP))
{
return;
}
src =
ip4_interface_address_matching_destination (im,
&adj->sub_type.nbr.next_hop.
ip4,
adj->rewrite_header.
sw_if_index, &ia);
if (!src)
{
return;
}
h =
vlib_packet_template_get_packet (vm, &im->ip4_arp_request_packet_template,
&bi);
hi = vnet_get_sup_hw_interface (vnm, adj->rewrite_header.sw_if_index);
clib_memcpy (h->ip4_over_ethernet[0].ethernet,
hi->hw_address, sizeof (h->ip4_over_ethernet[0].ethernet));
h->ip4_over_ethernet[0].ip4 = src[0];
h->ip4_over_ethernet[1].ip4 = adj->sub_type.nbr.next_hop.ip4;
b = vlib_get_buffer (vm, bi);
vnet_buffer (b)->sw_if_index[VLIB_RX] =
vnet_buffer (b)->sw_if_index[VLIB_TX] = adj->rewrite_header.sw_if_index;
/* Add encapsulation string for software interface (e.g. ethernet header). */
vnet_rewrite_one_header (adj[0], h, sizeof (ethernet_header_t));
vlib_buffer_advance (b, -adj->rewrite_header.data_bytes);
{
vlib_frame_t *f = vlib_get_frame_to_node (vm, hi->output_node_index);
u32 *to_next = vlib_frame_vector_args (f);
to_next[0] = bi;
f->n_vectors = 1;
vlib_put_frame_to_node (vm, hi->output_node_index, f);
}
}
static void
arp_mk_complete (adj_index_t ai, ethernet_arp_ip4_entry_t * e)
{
adj_nbr_update_rewrite
(ai, ADJ_NBR_REWRITE_FLAG_COMPLETE,
ethernet_build_rewrite (vnet_get_main (),
e->sw_if_index,
adj_get_link_type (ai), e->ethernet_address));
}
static void
arp_mk_incomplete (adj_index_t ai)
{
ip_adjacency_t *adj = adj_get (ai);
adj_nbr_update_rewrite
(ai,
ADJ_NBR_REWRITE_FLAG_INCOMPLETE,
ethernet_build_rewrite (vnet_get_main (),
adj->rewrite_header.sw_if_index,
VNET_LINK_ARP,
VNET_REWRITE_FOR_SW_INTERFACE_ADDRESS_BROADCAST));
}
static ethernet_arp_ip4_entry_t *
arp_entry_find (ethernet_arp_interface_t * eai, const ip4_address_t * addr)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_ip4_entry_t *e = NULL;
uword *p;
if (NULL != eai->arp_entries)
{
p = hash_get (eai->arp_entries, addr->as_u32);
if (!p)
return (NULL);
e = pool_elt_at_index (am->ip4_entry_pool, p[0]);
}
return (e);
}
static adj_walk_rc_t
arp_mk_complete_walk (adj_index_t ai, void *ctx)
{
ethernet_arp_ip4_entry_t *e = ctx;
arp_mk_complete (ai, e);
return (ADJ_WALK_RC_CONTINUE);
}
static adj_walk_rc_t
arp_mk_incomplete_walk (adj_index_t ai, void *ctx)
{
arp_mk_incomplete (ai);
return (ADJ_WALK_RC_CONTINUE);
}
void
arp_update_adjacency (vnet_main_t * vnm, u32 sw_if_index, u32 ai)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_interface_t *arp_int;
ethernet_arp_ip4_entry_t *e;
ip_adjacency_t *adj;
adj = adj_get (ai);
vec_validate (am->ethernet_arp_by_sw_if_index, sw_if_index);
arp_int = &am->ethernet_arp_by_sw_if_index[sw_if_index];
e = arp_entry_find (arp_int, &adj->sub_type.nbr.next_hop.ip4);
switch (adj->lookup_next_index)
{
case IP_LOOKUP_NEXT_GLEAN:
adj_glean_update_rewrite (ai);
break;
case IP_LOOKUP_NEXT_ARP:
if (NULL != e)
{
adj_nbr_walk_nh4 (sw_if_index,
&e->ip4_address, arp_mk_complete_walk, e);
}
else
{
/*
* no matching ARP entry.
* construct the rewrite required to for an ARP packet, and stick
* that in the adj's pipe to smoke.
*/
adj_nbr_update_rewrite
(ai,
ADJ_NBR_REWRITE_FLAG_INCOMPLETE,
ethernet_build_rewrite
(vnm,
sw_if_index,
VNET_LINK_ARP,
VNET_REWRITE_FOR_SW_INTERFACE_ADDRESS_BROADCAST));
/*
* since the FIB has added this adj for a route, it makes sense it
* may want to forward traffic sometime soon. Let's send a
* speculative ARP. just one. If we were to do periodically that
* wouldn't be bad either, but that's more code than i'm prepared to
* write at this time for relatively little reward.
*/
arp_nbr_probe (adj);
}
break;
case IP_LOOKUP_NEXT_MCAST:
{
/*
* Construct a partial rewrite from the known ethernet mcast dest MAC
*/
u8 *rewrite;
u8 offset;
rewrite = ethernet_build_rewrite (vnm,
sw_if_index,
adj->ia_link,
ethernet_ip4_mcast_dst_addr ());
offset = vec_len (rewrite) - 2;
/*
* Complete the remaining fields of the adj's rewrite to direct the
* complete of the rewrite at switch time by copying in the IP
* dst address's bytes.
* Ofset is 2 bytes into the MAC desintation address. And we copy 23 bits
* from the address.
*/
adj_mcast_update_rewrite (ai, rewrite, offset, 0x007fffff);
break;
}
case IP_LOOKUP_NEXT_DROP:
case IP_LOOKUP_NEXT_PUNT:
case IP_LOOKUP_NEXT_LOCAL:
case IP_LOOKUP_NEXT_REWRITE:
case IP_LOOKUP_NEXT_MCAST_MIDCHAIN:
case IP_LOOKUP_NEXT_MIDCHAIN:
case IP_LOOKUP_NEXT_ICMP_ERROR:
case IP_LOOKUP_N_NEXT:
ASSERT (0);
break;
}
}
static void
arp_adj_fib_add (ethernet_arp_ip4_entry_t * e, u32 fib_index)
{
fib_prefix_t pfx = {
.fp_len = 32,
.fp_proto = FIB_PROTOCOL_IP4,
.fp_addr.ip4 = e->ip4_address,
};
e->fib_entry_index =
fib_table_entry_path_add (fib_index, &pfx, FIB_SOURCE_ADJ,
FIB_ENTRY_FLAG_ATTACHED,
DPO_PROTO_IP4, &pfx.fp_addr,
e->sw_if_index, ~0, 1, NULL,
FIB_ROUTE_PATH_FLAG_NONE);
fib_table_lock (fib_index, FIB_PROTOCOL_IP4, FIB_SOURCE_ADJ);
}
static int
vnet_arp_set_ip4_over_ethernet_internal (vnet_main_t * vnm,
vnet_arp_set_ip4_over_ethernet_rpc_args_t
* args)
{
ethernet_arp_ip4_entry_t *e = 0;
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_ip4_over_ethernet_address_t *a = &args->a;
vlib_main_t *vm = vlib_get_main ();
int make_new_arp_cache_entry = 1;
uword *p;
pending_resolution_t *pr, *mc;
ethernet_arp_interface_t *arp_int;
int is_static = args->is_static;
u32 sw_if_index = args->sw_if_index;
int is_no_fib_entry = args->is_no_fib_entry;
vec_validate (am->ethernet_arp_by_sw_if_index, sw_if_index);
arp_int = &am->ethernet_arp_by_sw_if_index[sw_if_index];
if (NULL != arp_int->arp_entries)
{
p = hash_get (arp_int->arp_entries, a->ip4.as_u32);
if (p)
{
e = pool_elt_at_index (am->ip4_entry_pool, p[0]);
/* Refuse to over-write static arp. */
if (!is_static && (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_STATIC))
return -2;
make_new_arp_cache_entry = 0;
}
}
if (make_new_arp_cache_entry)
{
pool_get (am->ip4_entry_pool, e);
if (NULL == arp_int->arp_entries)
{
arp_int->arp_entries = hash_create (0, sizeof (u32));
}
hash_set (arp_int->arp_entries, a->ip4.as_u32, e - am->ip4_entry_pool);
e->sw_if_index = sw_if_index;
e->ip4_address = a->ip4;
e->fib_entry_index = FIB_NODE_INDEX_INVALID;
clib_memcpy (e->ethernet_address,
a->ethernet, sizeof (e->ethernet_address));
if (!is_no_fib_entry)
{
arp_adj_fib_add (e,
ip4_fib_table_get_index_for_sw_if_index
(e->sw_if_index));
}
else
{
e->flags |= ETHERNET_ARP_IP4_ENTRY_FLAG_NO_FIB_ENTRY;
}
}
else
{
/*
* prevent a DoS attack from the data-plane that
* spams us with no-op updates to the MAC address
*/
if (0 == memcmp (e->ethernet_address,
a->ethernet, sizeof (e->ethernet_address)))
goto check_customers;
/* Update time stamp and ethernet address. */
clib_memcpy (e->ethernet_address, a->ethernet,
sizeof (e->ethernet_address));
}
e->cpu_time_last_updated = clib_cpu_time_now ();
if (is_static)
e->flags |= ETHERNET_ARP_IP4_ENTRY_FLAG_STATIC;
else
e->flags |= ETHERNET_ARP_IP4_ENTRY_FLAG_DYNAMIC;
adj_nbr_walk_nh4 (sw_if_index, &e->ip4_address, arp_mk_complete_walk, e);
check_customers:
/* Customer(s) waiting for this address to be resolved? */
p = hash_get (am->pending_resolutions_by_address, a->ip4.as_u32);
if (p)
{
u32 next_index;
next_index = p[0];
while (next_index != (u32) ~ 0)
{
pr = pool_elt_at_index (am->pending_resolutions, next_index);
vlib_process_signal_event (vm, pr->node_index,
pr->type_opaque, pr->data);
next_index = pr->next_index;
pool_put (am->pending_resolutions, pr);
}
hash_unset (am->pending_resolutions_by_address, a->ip4.as_u32);
}
/* Customer(s) requesting ARP event for this address? */
p = hash_get (am->mac_changes_by_address, a->ip4.as_u32);
if (p)
{
u32 next_index;
next_index = p[0];
while (next_index != (u32) ~ 0)
{
int (*fp) (u32, u8 *, u32, u32);
int rv = 1;
mc = pool_elt_at_index (am->mac_changes, next_index);
fp = mc->data_callback;
/* Call the user's data callback, return 1 to suppress dup events */
if (fp)
rv = (*fp) (mc->data, a->ethernet, sw_if_index, 0);
/*
* Signal the resolver process, as long as the user
* says they want to be notified
*/
if (rv == 0)
vlib_process_signal_event (vm, mc->node_index,
mc->type_opaque, mc->data);
next_index = mc->next_index;
}
}
return 0;
}
void
vnet_register_ip4_arp_resolution_event (vnet_main_t * vnm,
void *address_arg,
uword node_index,
uword type_opaque, uword data)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ip4_address_t *address = address_arg;
uword *p;
pending_resolution_t *pr;
pool_get (am->pending_resolutions, pr);
pr->next_index = ~0;
pr->node_index = node_index;
pr->type_opaque = type_opaque;
pr->data = data;
pr->data_callback = 0;
p = hash_get (am->pending_resolutions_by_address, address->as_u32);
if (p)
{
/* Insert new resolution at the head of the list */
pr->next_index = p[0];
hash_unset (am->pending_resolutions_by_address, address->as_u32);
}
hash_set (am->pending_resolutions_by_address, address->as_u32,
pr - am->pending_resolutions);
}
int
vnet_add_del_ip4_arp_change_event (vnet_main_t * vnm,
void *data_callback,
u32 pid,
void *address_arg,
uword node_index,
uword type_opaque, uword data, int is_add)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ip4_address_t *address = address_arg;
/* Try to find an existing entry */
u32 *first = (u32 *) hash_get (am->mac_changes_by_address, address->as_u32);
u32 *p = first;
pending_resolution_t *mc;
while (p && *p != ~0)
{
mc = pool_elt_at_index (am->mac_changes, *p);
if (mc->node_index == node_index && mc->type_opaque == type_opaque
&& mc->pid == pid)
break;
p = &mc->next_index;
}
int found = p && *p != ~0;
if (is_add)
{
if (found)
return VNET_API_ERROR_ENTRY_ALREADY_EXISTS;
pool_get (am->mac_changes, mc);
*mc = (pending_resolution_t)
{
.next_index = ~0,.node_index = node_index,.type_opaque =
type_opaque,.data = data,.data_callback = data_callback,.pid =
pid,};
/* Insert new resolution at the end of the list */
u32 new_idx = mc - am->mac_changes;
if (p)
p[0] = new_idx;
else
hash_set (am->mac_changes_by_address, address->as_u32, new_idx);
}
else
{
if (!found)
return VNET_API_ERROR_NO_SUCH_ENTRY;
/* Clients may need to clean up pool entries, too */
void (*fp) (u32, u8 *) = data_callback;
if (fp)
(*fp) (mc->data, 0 /* no new mac addrs */ );
/* Remove the entry from the list and delete the entry */
*p = mc->next_index;
pool_put (am->mac_changes, mc);
/* Remove from hash if we deleted the last entry */
if (*p == ~0 && p == first)
hash_unset (am->mac_changes_by_address, address->as_u32);
}
return 0;
}
/* Either we drop the packet or we send a reply to the sender. */
typedef enum
{
ARP_INPUT_NEXT_DROP,
ARP_INPUT_NEXT_REPLY_TX,
ARP_INPUT_N_NEXT,
} arp_input_next_t;
#define foreach_ethernet_arp_error \
_ (replies_sent, "ARP replies sent") \
_ (l2_type_not_ethernet, "L2 type not ethernet") \
_ (l3_type_not_ip4, "L3 type not IP4") \
_ (l3_src_address_not_local, "IP4 source address not local to subnet") \
_ (l3_dst_address_not_local, "IP4 destination address not local to subnet") \
_ (l3_src_address_is_local, "IP4 source address matches local interface") \
_ (l3_src_address_learned, "ARP request IP4 source address learned") \
_ (replies_received, "ARP replies received") \
_ (opcode_not_request, "ARP opcode not request") \
_ (proxy_arp_replies_sent, "Proxy ARP replies sent") \
_ (l2_address_mismatch, "ARP hw addr does not match L2 frame src addr") \
_ (gratuitous_arp, "ARP probe or announcement dropped") \
_ (interface_no_table, "Interface is not mapped to an IP table") \
_ (interface_not_ip_enabled, "Interface is not IP enabled") \
typedef enum
{
#define _(sym,string) ETHERNET_ARP_ERROR_##sym,
foreach_ethernet_arp_error
#undef _
ETHERNET_ARP_N_ERROR,
} ethernet_arp_input_error_t;
static void
unset_random_arp_entry (void)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_ip4_entry_t *e;
vnet_main_t *vnm = vnet_get_main ();
ethernet_arp_ip4_over_ethernet_address_t delme;
u32 index;
index = pool_next_index (am->ip4_entry_pool, am->arp_delete_rotor);
am->arp_delete_rotor = index;
/* Try again from elt 0, could happen if an intfc goes down */
if (index == ~0)
{
index = pool_next_index (am->ip4_entry_pool, am->arp_delete_rotor);
am->arp_delete_rotor = index;
}
/* Nothing left in the pool */
if (index == ~0)
return;
e = pool_elt_at_index (am->ip4_entry_pool, index);
clib_memcpy (&delme.ethernet, e->ethernet_address, 6);
delme.ip4.as_u32 = e->ip4_address.as_u32;
vnet_arp_unset_ip4_over_ethernet (vnm, e->sw_if_index, &delme);
}
static int
arp_unnumbered (vlib_buffer_t * p0,
u32 input_sw_if_index, u32 conn_sw_if_index)
{
vnet_main_t *vnm = vnet_get_main ();
vnet_interface_main_t *vim = &vnm->interface_main;
vnet_sw_interface_t *si;
/* verify that the input interface is unnumbered to the connected.
* the connected interface is the interface on which the subnet is
* configured */
si = &vim->sw_interfaces[input_sw_if_index];
if (!(si->flags & VNET_SW_INTERFACE_FLAG_UNNUMBERED &&
(si->unnumbered_sw_if_index == conn_sw_if_index)))
{
/* the input interface is not unnumbered to the interface on which
* the sub-net is configured that covers the ARP request.
* So this is not the case for unnumbered.. */
return 0;
}
return !0;
}
static u32
arp_learn (vnet_main_t * vnm,
ethernet_arp_main_t * am, u32 sw_if_index, void *addr)
{
if (am->limit_arp_cache_size &&
pool_elts (am->ip4_entry_pool) >= am->limit_arp_cache_size)
unset_random_arp_entry ();
vnet_arp_set_ip4_over_ethernet (vnm, sw_if_index, addr, 0, 0);
return (ETHERNET_ARP_ERROR_l3_src_address_learned);
}
static uword
arp_input (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
vnet_main_t *vnm = vnet_get_main ();
ip4_main_t *im4 = &ip4_main;
u32 n_left_from, next_index, *from, *to_next;
u32 n_replies_sent = 0, n_proxy_arp_replies_sent = 0;
from = vlib_frame_vector_args (frame);
n_left_from = frame->n_vectors;
next_index = node->cached_next_index;
if (node->flags & VLIB_NODE_FLAG_TRACE)
vlib_trace_frame_buffers_only (vm, node, from, frame->n_vectors,
/* stride */ 1,
sizeof (ethernet_arp_input_trace_t));
while (n_left_from > 0)
{
u32 n_left_to_next;
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
while (n_left_from > 0 && n_left_to_next > 0)
{
vlib_buffer_t *p0;
vnet_hw_interface_t *hw_if0;
ethernet_arp_header_t *arp0;
ethernet_header_t *eth_rx, *eth_tx;
ip4_address_t *if_addr0, proxy_src;
u32 pi0, error0, next0, sw_if_index0, conn_sw_if_index0, fib_index0;
u8 is_request0, dst_is_local0, is_unnum0, is_vrrp_reply0;
ethernet_proxy_arp_t *pa;
fib_node_index_t dst_fei, src_fei;
fib_prefix_t pfx0;
fib_entry_flag_t src_flags, dst_flags;
u8 *rewrite0, rewrite0_len;
pi0 = from[0];
to_next[0] = pi0;
from += 1;
to_next += 1;
n_left_from -= 1;
n_left_to_next -= 1;
pa = 0;
p0 = vlib_get_buffer (vm, pi0);
arp0 = vlib_buffer_get_current (p0);
/* Fill in ethernet header. */
eth_rx = ethernet_buffer_get_header (p0);
is_request0 = arp0->opcode
== clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_request);
error0 = ETHERNET_ARP_ERROR_replies_sent;
error0 =
(arp0->l2_type !=
clib_net_to_host_u16 (ETHERNET_ARP_HARDWARE_TYPE_ethernet) ?
ETHERNET_ARP_ERROR_l2_type_not_ethernet : error0);
error0 =
(arp0->l3_type !=
clib_net_to_host_u16 (ETHERNET_TYPE_IP4) ?
ETHERNET_ARP_ERROR_l3_type_not_ip4 : error0);
sw_if_index0 = vnet_buffer (p0)->sw_if_index[VLIB_RX];
/* not playing the ARP game if the interface is not IPv4 enabled */
error0 =
(im4->ip_enabled_by_sw_if_index[sw_if_index0] == 0 ?
ETHERNET_ARP_ERROR_interface_not_ip_enabled : error0);
if (error0)
goto drop2;
/* Check that IP address is local and matches incoming interface. */
fib_index0 = ip4_fib_table_get_index_for_sw_if_index (sw_if_index0);
if (~0 == fib_index0)
{
error0 = ETHERNET_ARP_ERROR_interface_no_table;
goto drop2;
}
dst_fei = ip4_fib_table_lookup (ip4_fib_get (fib_index0),
&arp0->ip4_over_ethernet[1].ip4,
32);
dst_flags = fib_entry_get_flags (dst_fei);
conn_sw_if_index0 = fib_entry_get_resolving_interface (dst_fei);
/* Honor unnumbered interface, if any */
is_unnum0 = sw_if_index0 != conn_sw_if_index0;
{
/*
* we're looking for FIB entries that indicate the source
* is attached. There may be more specific non-attached
* routes that match the source, but these do not influence
* whether we respond to an ARP request, i.e. they do not
* influence whether we are the correct way for the sender
* to reach us, they only affect how we reach the sender.
*/
fib_entry_t *src_fib_entry;
fib_entry_src_t *src;
fib_source_t source;
fib_prefix_t pfx;
int attached;
int mask;
mask = 32;
attached = 0;
do
{
src_fei = ip4_fib_table_lookup (ip4_fib_get (fib_index0),
&arp0->
ip4_over_ethernet[0].ip4,
mask);
src_fib_entry = fib_entry_get (src_fei);
/*
* It's possible that the source that provides the
* flags we need, or the flags we must not have,
* is not the best source, so check then all.
*/
/* *INDENT-OFF* */
FOR_EACH_SRC_ADDED(src_fib_entry, src, source,
({
src_flags = fib_entry_get_flags_for_source (src_fei, source);
/* Reject requests/replies with our local interface
address. */
if (FIB_ENTRY_FLAG_LOCAL & src_flags)
{
error0 = ETHERNET_ARP_ERROR_l3_src_address_is_local;
/*
* When VPP has an interface whose address is also
* applied to a TAP interface on the host, then VPP's
* TAP interface will be unnumbered to the 'real'
* interface and do proxy ARP from the host.
* The curious aspect of this setup is that ARP requests
* from the host will come from the VPP's own address.
* So don't drop immediately here, instead go see if this
* is a proxy ARP case.
*/
goto drop1;
}
/* A Source must also be local to subnet of matching
* interface address. */
if ((FIB_ENTRY_FLAG_ATTACHED & src_flags) ||
(FIB_ENTRY_FLAG_CONNECTED & src_flags))
{
attached = 1;
break;
}
/*
* else
* The packet was sent from an address that is not
* connected nor attached i.e. it is not from an
* address that is covered by a link's sub-net,
* nor is it a already learned host resp.
*/
}));
/* *INDENT-ON* */
/*
* shorter mask lookup for the next iteration.
*/
fib_entry_get_prefix (src_fei, &pfx);
mask = pfx.fp_len - 1;
/*
* continue until we hit the default route or we find
* the attached we are looking for. The most likely
* outcome is we find the attached with the first source
* on the first lookup.
*/
}
while (!attached &&
!fib_entry_is_sourced (src_fei, FIB_SOURCE_DEFAULT_ROUTE));
if (!attached)
{
/*
* the matching route is a not attached, i.e. it was
* added as a result of routing, rather than interface/ARP
* configuration. If the matching route is not a host route
* (i.e. a /32)
*/
error0 = ETHERNET_ARP_ERROR_l3_src_address_not_local;
goto drop2;
}
}
if (!(FIB_ENTRY_FLAG_CONNECTED & dst_flags))
{
error0 = ETHERNET_ARP_ERROR_l3_dst_address_not_local;
goto drop1;
}
if (sw_if_index0 != fib_entry_get_resolving_interface (src_fei))
{
/*
* The interface the ARP was received on is not the interface
* on which the covering prefix is configured. Maybe this is a
* case for unnumbered.
*/
is_unnum0 = 1;
}
dst_is_local0 = (FIB_ENTRY_FLAG_LOCAL & dst_flags);
fib_entry_get_prefix (dst_fei, &pfx0);
if_addr0 = &pfx0.fp_addr.ip4;
is_vrrp_reply0 =
((arp0->opcode ==
clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply))
&&
(!memcmp
(arp0->ip4_over_ethernet[0].ethernet, vrrp_prefix,
sizeof (vrrp_prefix))));
/* Trash ARP packets whose ARP-level source addresses do not
match their L2-frame-level source addresses, unless it's
a reply from a VRRP virtual router */
if (memcmp
(eth_rx->src_address, arp0->ip4_over_ethernet[0].ethernet,
sizeof (eth_rx->src_address)) && !is_vrrp_reply0)
{
error0 = ETHERNET_ARP_ERROR_l2_address_mismatch;
goto drop2;
}
/* Learn or update sender's mapping only for replies to addresses
* that are local to the subnet */
if (arp0->opcode ==
clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply) &&
dst_is_local0)
{
error0 = arp_learn (vnm, am, sw_if_index0,
&arp0->ip4_over_ethernet[0]);
goto drop1;
}
else if (arp0->opcode ==
clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_request) &&
(dst_is_local0 == 0))
{
goto drop1;
}
send_reply:
/* Send a reply.
An adjacency to the sender is not always present,
so we use the interface to build us a rewrite string
which will contain all the necessary tags. */
rewrite0 = ethernet_build_rewrite (vnm, sw_if_index0,
VNET_LINK_ARP,
eth_rx->src_address);
rewrite0_len = vec_len (rewrite0);
/* Figure out how much to rewind current data from adjacency. */
vlib_buffer_advance (p0, -rewrite0_len);
eth_tx = vlib_buffer_get_current (p0);
vnet_buffer (p0)->sw_if_index[VLIB_TX] = sw_if_index0;
hw_if0 = vnet_get_sup_hw_interface (vnm, sw_if_index0);
/* Send reply back through input interface */
vnet_buffer (p0)->sw_if_index[VLIB_TX] = sw_if_index0;
next0 = ARP_INPUT_NEXT_REPLY_TX;
arp0->opcode = clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply);
arp0->ip4_over_ethernet[1] = arp0->ip4_over_ethernet[0];
clib_memcpy (arp0->ip4_over_ethernet[0].ethernet,
hw_if0->hw_address, 6);
clib_mem_unaligned (&arp0->ip4_over_ethernet[0].ip4.data_u32, u32) =
if_addr0->data_u32;
/* Hardware must be ethernet-like. */
ASSERT (vec_len (hw_if0->hw_address) == 6);
/* the rx nd tx ethernet headers wil overlap in the case
* when we received a tagged VLAN=0 packet, but we are sending
* back untagged */
clib_memcpy (eth_tx, rewrite0, vec_len (rewrite0));
vec_free (rewrite0);
if (NULL == pa)
{
if (is_unnum0)
{
if (!arp_unnumbered (p0, sw_if_index0, conn_sw_if_index0))
goto drop2;
}
}
/* We are going to reply to this request, so, in the absence of
errors, learn the sender */
if (!error0)
error0 = arp_learn (vnm, am, sw_if_index0,
&arp0->ip4_over_ethernet[1]);
vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next,
n_left_to_next, pi0, next0);
n_replies_sent += 1;
continue;
drop1:
if (0 == arp0->ip4_over_ethernet[0].ip4.as_u32 ||
(arp0->ip4_over_ethernet[0].ip4.as_u32 ==
arp0->ip4_over_ethernet[1].ip4.as_u32))
{
error0 = ETHERNET_ARP_ERROR_gratuitous_arp;
goto drop2;
}
/* See if proxy arp is configured for the address */
if (is_request0)
{
vnet_sw_interface_t *si;
u32 this_addr = clib_net_to_host_u32
(arp0->ip4_over_ethernet[1].ip4.as_u32);
u32 fib_index0;
si = vnet_get_sw_interface (vnm, sw_if_index0);
if (!(si->flags & VNET_SW_INTERFACE_FLAG_PROXY_ARP))
goto drop2;
fib_index0 = vec_elt (im4->fib_index_by_sw_if_index,
sw_if_index0);
vec_foreach (pa, am->proxy_arps)
{
u32 lo_addr = clib_net_to_host_u32 (pa->lo_addr);
u32 hi_addr = clib_net_to_host_u32 (pa->hi_addr);
/* an ARP request hit in the proxy-arp table? */
if ((this_addr >= lo_addr && this_addr <= hi_addr) &&
(fib_index0 == pa->fib_index))
{
proxy_src.as_u32 =
arp0->ip4_over_ethernet[1].ip4.data_u32;
/*
* change the interface address to the proxied
*/
if_addr0 = &proxy_src;
is_unnum0 = 0;
n_proxy_arp_replies_sent++;
goto send_reply;
}
}
}
drop2:
next0 = ARP_INPUT_NEXT_DROP;
p0->error = node->errors[error0];
vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next,
n_left_to_next, pi0, next0);
}
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
vlib_error_count (vm, node->node_index,
ETHERNET_ARP_ERROR_replies_sent,
n_replies_sent - n_proxy_arp_replies_sent);
vlib_error_count (vm, node->node_index,
ETHERNET_ARP_ERROR_proxy_arp_replies_sent,
n_proxy_arp_replies_sent);
return frame->n_vectors;
}
static char *ethernet_arp_error_strings[] = {
#define _(sym,string) string,
foreach_ethernet_arp_error
#undef _
};
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (arp_input_node, static) =
{
.function = arp_input,
.name = "arp-input",
.vector_size = sizeof (u32),
.n_errors = ETHERNET_ARP_N_ERROR,
.error_strings = ethernet_arp_error_strings,
.n_next_nodes = ARP_INPUT_N_NEXT,
.next_nodes = {
[ARP_INPUT_NEXT_DROP] = "error-drop",
[ARP_INPUT_NEXT_REPLY_TX] = "interface-output",
},
.format_buffer = format_ethernet_arp_header,
.format_trace = format_ethernet_arp_input_trace,
};
/* *INDENT-ON* */
static int
ip4_arp_entry_sort (void *a1, void *a2)
{
ethernet_arp_ip4_entry_t *e1 = a1;
ethernet_arp_ip4_entry_t *e2 = a2;
int cmp;
vnet_main_t *vnm = vnet_get_main ();
cmp = vnet_sw_interface_compare (vnm, e1->sw_if_index, e2->sw_if_index);
if (!cmp)
cmp = ip4_address_compare (&e1->ip4_address, &e2->ip4_address);
return cmp;
}
ethernet_arp_ip4_entry_t *
ip4_neighbor_entries (u32 sw_if_index)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_ip4_entry_t *n, *ns = 0;
/* *INDENT-OFF* */
pool_foreach (n, am->ip4_entry_pool, ({
if (sw_if_index != ~0 && n->sw_if_index != sw_if_index)
continue;
vec_add1 (ns, n[0]);
}));
/* *INDENT-ON* */
if (ns)
vec_sort_with_function (ns, ip4_arp_entry_sort);
return ns;
}
static clib_error_t *
show_ip4_arp (vlib_main_t * vm,
unformat_input_t * input, vlib_cli_command_t * cmd)
{
vnet_main_t *vnm = vnet_get_main ();
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_ip4_entry_t *e, *es;
ethernet_proxy_arp_t *pa;
clib_error_t *error = 0;
u32 sw_if_index;
/* Filter entries by interface if given. */
sw_if_index = ~0;
(void) unformat_user (input, unformat_vnet_sw_interface, vnm, &sw_if_index);
es = ip4_neighbor_entries (sw_if_index);
if (es)
{
vlib_cli_output (vm, "%U", format_ethernet_arp_ip4_entry, vnm, 0);
vec_foreach (e, es)
{
vlib_cli_output (vm, "%U", format_ethernet_arp_ip4_entry, vnm, e);
}
vec_free (es);
}
if (vec_len (am->proxy_arps))
{
vlib_cli_output (vm, "Proxy arps enabled for:");
vec_foreach (pa, am->proxy_arps)
{
vlib_cli_output (vm, "Fib_index %d %U - %U ",
pa->fib_index,
format_ip4_address, &pa->lo_addr,
format_ip4_address, &pa->hi_addr);
}
}
return error;
}
/*?
* Display all the IPv4 ARP entries.
*
* @cliexpar
* Example of how to display the IPv4 ARP table:
* @cliexstart{show ip arp}
* Time FIB IP4 Flags Ethernet Interface
* 346.3028 0 6.1.1.3 de:ad:be:ef:ba:be GigabitEthernet2/0/0
* 3077.4271 0 6.1.1.4 S de:ad:be:ef:ff:ff GigabitEthernet2/0/0
* 2998.6409 1 6.2.2.3 de:ad:be:ef:00:01 GigabitEthernet2/0/0
* Proxy arps enabled for:
* Fib_index 0 6.0.0.1 - 6.0.0.11
* @cliexend
?*/
/* *INDENT-OFF* */
VLIB_CLI_COMMAND (show_ip4_arp_command, static) = {
.path = "show ip arp",
.function = show_ip4_arp,
.short_help = "show ip arp",
};
/* *INDENT-ON* */
typedef struct
{
pg_edit_t l2_type, l3_type;
pg_edit_t n_l2_address_bytes, n_l3_address_bytes;
pg_edit_t opcode;
struct
{
pg_edit_t ethernet;
pg_edit_t ip4;
} ip4_over_ethernet[2];
} pg_ethernet_arp_header_t;
static inline void
pg_ethernet_arp_header_init (pg_ethernet_arp_header_t * p)
{
/* Initialize fields that are not bit fields in the IP header. */
#define _(f) pg_edit_init (&p->f, ethernet_arp_header_t, f);
_(l2_type);
_(l3_type);
_(n_l2_address_bytes);
_(n_l3_address_bytes);
_(opcode);
_(ip4_over_ethernet[0].ethernet);
_(ip4_over_ethernet[0].ip4);
_(ip4_over_ethernet[1].ethernet);
_(ip4_over_ethernet[1].ip4);
#undef _
}
uword
unformat_pg_arp_header (unformat_input_t * input, va_list * args)
{
pg_stream_t *s = va_arg (*args, pg_stream_t *);
pg_ethernet_arp_header_t *p;
u32 group_index;
p = pg_create_edit_group (s, sizeof (p[0]), sizeof (ethernet_arp_header_t),
&group_index);
pg_ethernet_arp_header_init (p);
/* Defaults. */
pg_edit_set_fixed (&p->l2_type, ETHERNET_ARP_HARDWARE_TYPE_ethernet);
pg_edit_set_fixed (&p->l3_type, ETHERNET_TYPE_IP4);
pg_edit_set_fixed (&p->n_l2_address_bytes, 6);
pg_edit_set_fixed (&p->n_l3_address_bytes, 4);
if (!unformat (input, "%U: %U/%U -> %U/%U",
unformat_pg_edit,
unformat_ethernet_arp_opcode_net_byte_order, &p->opcode,
unformat_pg_edit,
unformat_ethernet_address, &p->ip4_over_ethernet[0].ethernet,
unformat_pg_edit,
unformat_ip4_address, &p->ip4_over_ethernet[0].ip4,
unformat_pg_edit,
unformat_ethernet_address, &p->ip4_over_ethernet[1].ethernet,
unformat_pg_edit,
unformat_ip4_address, &p->ip4_over_ethernet[1].ip4))
{
/* Free up any edits we may have added. */
pg_free_edit_group (s);
return 0;
}
return 1;
}
clib_error_t *
ip4_set_arp_limit (u32 arp_limit)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
am->limit_arp_cache_size = arp_limit;
return 0;
}
/**
* @brief Control Plane hook to remove an ARP entry
*/
int
vnet_arp_unset_ip4_over_ethernet (vnet_main_t * vnm,
u32 sw_if_index, void *a_arg)
{
ethernet_arp_ip4_over_ethernet_address_t *a = a_arg;
vnet_arp_set_ip4_over_ethernet_rpc_args_t args;
args.sw_if_index = sw_if_index;
args.flags = ETHERNET_ARP_ARGS_REMOVE;
clib_memcpy (&args.a, a, sizeof (*a));
vl_api_rpc_call_main_thread (set_ip4_over_ethernet_rpc_callback,
(u8 *) & args, sizeof (args));
return 0;
}
/**
* @brief Internally generated event to flush the ARP cache on an
* interface state change event.
* A flush will remove dynamic ARP entries, and for statics remove the MAC
* address from the corresponding adjacencies.
*/
static int
vnet_arp_flush_ip4_over_ethernet (vnet_main_t * vnm,
u32 sw_if_index, void *a_arg)
{
ethernet_arp_ip4_over_ethernet_address_t *a = a_arg;
vnet_arp_set_ip4_over_ethernet_rpc_args_t args;
args.sw_if_index = sw_if_index;
args.flags = ETHERNET_ARP_ARGS_FLUSH;
clib_memcpy (&args.a, a, sizeof (*a));
vl_api_rpc_call_main_thread (set_ip4_over_ethernet_rpc_callback,
(u8 *) & args, sizeof (args));
return 0;
}
/**
* @brief Internally generated event to populate the ARP cache on an
* interface state change event.
* For static entries this will re-source the adjacencies.
*
* @param sw_if_index The interface on which the ARP entires are acted
*/
static int
vnet_arp_populate_ip4_over_ethernet (vnet_main_t * vnm,
u32 sw_if_index, void *a_arg)
{
ethernet_arp_ip4_over_ethernet_address_t *a = a_arg;
vnet_arp_set_ip4_over_ethernet_rpc_args_t args;
args.sw_if_index = sw_if_index;
args.flags = ETHERNET_ARP_ARGS_POPULATE;
clib_memcpy (&args.a, a, sizeof (*a));
vl_api_rpc_call_main_thread (set_ip4_over_ethernet_rpc_callback,
(u8 *) & args, sizeof (args));
return 0;
}
/**
* @brief publish wildcard arp event
* @param sw_if_index The interface on which the ARP entires are acted
*/
static int
vnet_arp_wc_publish (u32 sw_if_index, void *a_arg)
{
ethernet_arp_ip4_over_ethernet_address_t *a = a_arg;
vnet_arp_set_ip4_over_ethernet_rpc_args_t args = {
.flags = ETHERNET_ARP_ARGS_WC_PUB,
.sw_if_index = sw_if_index,
.a = *a
};
vl_api_rpc_call_main_thread (set_ip4_over_ethernet_rpc_callback,
(u8 *) & args, sizeof (args));
return 0;
}
static void
vnet_arp_wc_publish_internal (vnet_main_t * vnm,
vnet_arp_set_ip4_over_ethernet_rpc_args_t *
args)
{
vlib_main_t *vm = vlib_get_main ();
ethernet_arp_main_t *am = &ethernet_arp_main;
uword ni = am->wc_ip4_arp_publisher_node;
uword et = am->wc_ip4_arp_publisher_et;
if (ni == (uword) ~ 0)
return;
wc_arp_report_t *r =
vlib_process_signal_event_data (vm, ni, et, 1, sizeof *r);
r->ip4 = args->a.ip4.as_u32;
r->sw_if_index = args->sw_if_index;
memcpy (r->mac, args->a.ethernet, sizeof r->mac);
}
void
wc_arp_set_publisher_node (uword node_index, uword event_type)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
am->wc_ip4_arp_publisher_node = node_index;
am->wc_ip4_arp_publisher_et = event_type;
}
/*
* arp_add_del_interface_address
*
* callback when an interface address is added or deleted
*/
static void
arp_add_del_interface_address (ip4_main_t * im,
uword opaque,
u32 sw_if_index,
ip4_address_t * address,
u32 address_length,
u32 if_address_index, u32 is_del)
{
/*
* Flush the ARP cache of all entries covered by the address
* that is being removed.
*/
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_ip4_entry_t *e;
if (vec_len (am->ethernet_arp_by_sw_if_index) <= sw_if_index)
return;
if (is_del)
{
ethernet_arp_interface_t *eai;
u32 i, *to_delete = 0;
hash_pair_t *pair;
eai = &am->ethernet_arp_by_sw_if_index[sw_if_index];
/* *INDENT-OFF* */
hash_foreach_pair (pair, eai->arp_entries,
({
e = pool_elt_at_index(am->ip4_entry_pool,
pair->value[0]);
if (ip4_destination_matches_route (im, &e->ip4_address,
address, address_length))
{
vec_add1 (to_delete, e - am->ip4_entry_pool);
}
}));
/* *INDENT-ON* */
for (i = 0; i < vec_len (to_delete); i++)
{
ethernet_arp_ip4_over_ethernet_address_t delme;
e = pool_elt_at_index (am->ip4_entry_pool, to_delete[i]);
clib_memcpy (&delme.ethernet, e->ethernet_address, 6);
delme.ip4.as_u32 = e->ip4_address.as_u32;
vnet_arp_flush_ip4_over_ethernet (vnet_get_main (),
e->sw_if_index, &delme);
}
vec_free (to_delete);
}
}
void
arp_adj_fib_remove (ethernet_arp_ip4_entry_t * e, u32 fib_index)
{
if (FIB_NODE_INDEX_INVALID != e->fib_entry_index)
{
fib_prefix_t pfx = {
.fp_len = 32,
.fp_proto = FIB_PROTOCOL_IP4,
.fp_addr.ip4 = e->ip4_address,
};
u32 fib_index;
fib_index = ip4_fib_table_get_index_for_sw_if_index (e->sw_if_index);
fib_table_entry_path_remove (fib_index, &pfx,
FIB_SOURCE_ADJ,
DPO_PROTO_IP4,
&pfx.fp_addr,
e->sw_if_index, ~0, 1,
FIB_ROUTE_PATH_FLAG_NONE);
fib_table_unlock (fib_index, FIB_PROTOCOL_IP4, FIB_SOURCE_ADJ);
}
}
static void
arp_table_bind (ip4_main_t * im,
uword opaque,
u32 sw_if_index, u32 new_fib_index, u32 old_fib_index)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_interface_t *eai;
ethernet_arp_ip4_entry_t *e;
hash_pair_t *pair;
/*
* the IP table that the interface is bound to has changed.
* reinstall all the adj fibs.
*/
if (vec_len (am->ethernet_arp_by_sw_if_index) <= sw_if_index)
return;
eai = &am->ethernet_arp_by_sw_if_index[sw_if_index];
/* *INDENT-OFF* */
hash_foreach_pair (pair, eai->arp_entries,
({
e = pool_elt_at_index(am->ip4_entry_pool,
pair->value[0]);
/*
* remove the adj-fib from the old table and add to the new
*/
arp_adj_fib_remove(e, old_fib_index);
arp_adj_fib_add(e, new_fib_index);
}));
/* *INDENT-ON* */
}
static clib_error_t *
ethernet_arp_init (vlib_main_t * vm)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ip4_main_t *im = &ip4_main;
clib_error_t *error;
pg_node_t *pn;
if ((error = vlib_call_init_function (vm, ethernet_init)))
return error;
ethernet_register_input_type (vm, ETHERNET_TYPE_ARP, arp_input_node.index);
pn = pg_get_node (arp_input_node.index);
pn->unformat_edit = unformat_pg_arp_header;
am->opcode_by_name = hash_create_string (0, sizeof (uword));
#define _(o) hash_set_mem (am->opcode_by_name, #o, ETHERNET_ARP_OPCODE_##o);
foreach_ethernet_arp_opcode;
#undef _
/* $$$ configurable */
am->limit_arp_cache_size = 50000;
am->pending_resolutions_by_address = hash_create (0, sizeof (uword));
am->mac_changes_by_address = hash_create (0, sizeof (uword));
am->wc_ip4_arp_publisher_node = (uword) ~ 0;
/* don't trace ARP error packets */
{
vlib_node_runtime_t *rt =
vlib_node_get_runtime (vm, arp_input_node.index);
#define _(a,b) \
vnet_pcap_drop_trace_filter_add_del \
(rt->errors[ETHERNET_ARP_ERROR_##a], \
1 /* is_add */);
foreach_ethernet_arp_error
#undef _
}
ip4_add_del_interface_address_callback_t cb;
cb.function = arp_add_del_interface_address;
cb.function_opaque = 0;
vec_add1 (im->add_del_interface_address_callbacks, cb);
ip4_table_bind_callback_t cbt;
cbt.function = arp_table_bind;
cbt.function_opaque = 0;
vec_add1 (im->table_bind_callbacks, cbt);
return 0;
}
VLIB_INIT_FUNCTION (ethernet_arp_init);
static void
arp_entry_free (ethernet_arp_interface_t * eai, ethernet_arp_ip4_entry_t * e)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
arp_adj_fib_remove (e,
ip4_fib_table_get_index_for_sw_if_index
(e->sw_if_index));
hash_unset (eai->arp_entries, e->ip4_address.as_u32);
pool_put (am->ip4_entry_pool, e);
}
static inline int
vnet_arp_unset_ip4_over_ethernet_internal (vnet_main_t * vnm,
vnet_arp_set_ip4_over_ethernet_rpc_args_t
* args)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_ip4_entry_t *e;
ethernet_arp_interface_t *eai;
if (vec_len (am->ethernet_arp_by_sw_if_index) <= args->sw_if_index)
return 0;
eai = &am->ethernet_arp_by_sw_if_index[args->sw_if_index];
e = arp_entry_find (eai, &args->a.ip4);
if (NULL != e)
{
arp_entry_free (eai, e);
adj_nbr_walk_nh4 (e->sw_if_index,
&e->ip4_address, arp_mk_incomplete_walk, NULL);
}
return 0;
}
static int
vnet_arp_flush_ip4_over_ethernet_internal (vnet_main_t * vnm,
vnet_arp_set_ip4_over_ethernet_rpc_args_t
* args)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_ip4_entry_t *e;
ethernet_arp_interface_t *eai;
if (vec_len (am->ethernet_arp_by_sw_if_index) <= args->sw_if_index)
return 0;
eai = &am->ethernet_arp_by_sw_if_index[args->sw_if_index];
e = arp_entry_find (eai, &args->a.ip4);
if (NULL != e)
{
adj_nbr_walk_nh4 (e->sw_if_index,
&e->ip4_address, arp_mk_incomplete_walk, e);
/*
* The difference between flush and unset, is that an unset
* means delete for static and dynamic entries. A flush
* means delete only for dynamic. Flushing is what the DP
* does in response to interface events. unset is only done
* by the control plane.
*/
if (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_STATIC)
{
e->flags &= ETHERNET_ARP_IP4_ENTRY_FLAG_DYNAMIC;
}
else if (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_DYNAMIC)
{
arp_entry_free (eai, e);
}
}
return (0);
}
static int
vnet_arp_populate_ip4_over_ethernet_internal (vnet_main_t * vnm,
vnet_arp_set_ip4_over_ethernet_rpc_args_t
* args)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_ip4_entry_t *e;
ethernet_arp_interface_t *eai;
vec_validate (am->ethernet_arp_by_sw_if_index, args->sw_if_index);
eai = &am->ethernet_arp_by_sw_if_index[args->sw_if_index];
e = arp_entry_find (eai, &args->a.ip4);
if (NULL != e)
{
adj_nbr_walk_nh4 (e->sw_if_index,
&e->ip4_address, arp_mk_complete_walk, e);
}
return (0);
}
static void
set_ip4_over_ethernet_rpc_callback (vnet_arp_set_ip4_over_ethernet_rpc_args_t
* a)
{
vnet_main_t *vm = vnet_get_main ();
ASSERT (vlib_get_thread_index () == 0);
if (a->flags & ETHERNET_ARP_ARGS_REMOVE)
vnet_arp_unset_ip4_over_ethernet_internal (vm, a);
else if (a->flags & ETHERNET_ARP_ARGS_FLUSH)
vnet_arp_flush_ip4_over_ethernet_internal (vm, a);
else if (a->flags & ETHERNET_ARP_ARGS_POPULATE)
vnet_arp_populate_ip4_over_ethernet_internal (vm, a);
else if (a->flags & ETHERNET_ARP_ARGS_WC_PUB)
vnet_arp_wc_publish_internal (vm, a);
else
vnet_arp_set_ip4_over_ethernet_internal (vm, a);
}
/**
* @brief Invoked when the interface's admin state changes
*/
static clib_error_t *
ethernet_arp_sw_interface_up_down (vnet_main_t * vnm,
u32 sw_if_index, u32 flags)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_ip4_entry_t *e;
u32 i, *to_delete = 0;
/* *INDENT-OFF* */
pool_foreach (e, am->ip4_entry_pool,
({
if (e->sw_if_index == sw_if_index)
vec_add1 (to_delete,
e - am->ip4_entry_pool);
}));
/* *INDENT-ON* */
for (i = 0; i < vec_len (to_delete); i++)
{
ethernet_arp_ip4_over_ethernet_address_t delme;
e = pool_elt_at_index (am->ip4_entry_pool, to_delete[i]);
clib_memcpy (&delme.ethernet, e->ethernet_address, 6);
delme.ip4.as_u32 = e->ip4_address.as_u32;
if (flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP)
{
vnet_arp_populate_ip4_over_ethernet (vnm, e->sw_if_index, &delme);
}
else
{
vnet_arp_flush_ip4_over_ethernet (vnm, e->sw_if_index, &delme);
}
}
vec_free (to_delete);
return 0;
}
VNET_SW_INTERFACE_ADMIN_UP_DOWN_FUNCTION (ethernet_arp_sw_interface_up_down);
static void
increment_ip4_and_mac_address (ethernet_arp_ip4_over_ethernet_address_t * a)
{
u8 old;
int i;
for (i = 3; i >= 0; i--)
{
old = a->ip4.as_u8[i];
a->ip4.as_u8[i] += 1;
if (old < a->ip4.as_u8[i])
break;
}
for (i = 5; i >= 0; i--)
{
old = a->ethernet[i];
a->ethernet[i] += 1;
if (old < a->ethernet[i])
break;
}
}
int
vnet_arp_set_ip4_over_ethernet (vnet_main_t * vnm,
u32 sw_if_index, void *a_arg,
int is_static, int is_no_fib_entry)
{
ethernet_arp_ip4_over_ethernet_address_t *a = a_arg;
vnet_arp_set_ip4_over_ethernet_rpc_args_t args;
args.sw_if_index = sw_if_index;
args.is_static = is_static;
args.is_no_fib_entry = is_no_fib_entry;
args.flags = 0;
clib_memcpy (&args.a, a, sizeof (*a));
vl_api_rpc_call_main_thread (set_ip4_over_ethernet_rpc_callback,
(u8 *) & args, sizeof (args));
return 0;
}
int
vnet_proxy_arp_add_del (ip4_address_t * lo_addr,
ip4_address_t * hi_addr, u32 fib_index, int is_del)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_proxy_arp_t *pa;
u32 found_at_index = ~0;
vec_foreach (pa, am->proxy_arps)
{
if (pa->lo_addr == lo_addr->as_u32
&& pa->hi_addr == hi_addr->as_u32 && pa->fib_index == fib_index)
{
found_at_index = pa - am->proxy_arps;
break;
}
}
if (found_at_index != ~0)
{
/* Delete, otherwise it's already in the table */
if (is_del)
vec_delete (am->proxy_arps, 1, found_at_index);
return 0;
}
/* delete, no such entry */
if (is_del)
return VNET_API_ERROR_NO_SUCH_ENTRY;
/* add, not in table */
vec_add2 (am->proxy_arps, pa, 1);
pa->lo_addr = lo_addr->as_u32;
pa->hi_addr = hi_addr->as_u32;
pa->fib_index = fib_index;
return 0;
}
/*
* Remove any proxy arp entries asdociated with the
* specificed fib.
*/
int
vnet_proxy_arp_fib_reset (u32 fib_id)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_proxy_arp_t *pa;
u32 *entries_to_delete = 0;
u32 fib_index;
int i;
fib_index = fib_table_find (FIB_PROTOCOL_IP4, fib_id);
if (~0 == fib_index)
return VNET_API_ERROR_NO_SUCH_ENTRY;
vec_foreach (pa, am->proxy_arps)
{
if (pa->fib_index == fib_index)
{
vec_add1 (entries_to_delete, pa - am->proxy_arps);
}
}
for (i = 0; i < vec_len (entries_to_delete); i++)
{
vec_delete (am->proxy_arps, 1, entries_to_delete[i]);
}
vec_free (entries_to_delete);
return 0;
}
static clib_error_t *
ip_arp_add_del_command_fn (vlib_main_t * vm,
unformat_input_t * input, vlib_cli_command_t * cmd)
{
vnet_main_t *vnm = vnet_get_main ();
u32 sw_if_index;
ethernet_arp_ip4_over_ethernet_address_t lo_addr, hi_addr, addr;
int addr_valid = 0;
int is_del = 0;
int count = 1;
u32 fib_index = 0;
u32 fib_id;
int is_static = 0;
int is_no_fib_entry = 0;
int is_proxy = 0;
while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT)
{
/* set ip arp TenGigE1/1/0/1 1.2.3.4 aa:bb:... or aabb.ccdd... */
if (unformat (input, "%U %U %U",
unformat_vnet_sw_interface, vnm, &sw_if_index,
unformat_ip4_address, &addr.ip4,
unformat_ethernet_address, &addr.ethernet))
addr_valid = 1;
else if (unformat (input, "delete") || unformat (input, "del"))
is_del = 1;
else if (unformat (input, "static"))
is_static = 1;
else if (unformat (input, "no-fib-entry"))
is_no_fib_entry = 1;
else if (unformat (input, "count %d", &count))
;
else if (unformat (input, "fib-id %d", &fib_id))
{
fib_index = fib_table_find (FIB_PROTOCOL_IP4, fib_id);
if (~0 == fib_index)
return clib_error_return (0, "fib ID %d doesn't exist\n", fib_id);
}
else if (unformat (input, "proxy %U - %U",
unformat_ip4_address, &lo_addr.ip4,
unformat_ip4_address, &hi_addr.ip4))
is_proxy = 1;
else
break;
}
if (is_proxy)
{
(void) vnet_proxy_arp_add_del (&lo_addr.ip4, &hi_addr.ip4,
fib_index, is_del);
return 0;
}
if (addr_valid)
{
int i;
for (i = 0; i < count; i++)
{
if (is_del == 0)
{
uword event_type, *event_data = 0;
/* Park the debug CLI until the arp entry is installed */
vnet_register_ip4_arp_resolution_event
(vnm, &addr.ip4, vlib_current_process (vm),
1 /* type */ , 0 /* data */ );
vnet_arp_set_ip4_over_ethernet
(vnm, sw_if_index, &addr, is_static, is_no_fib_entry);
vlib_process_wait_for_event (vm);
event_type = vlib_process_get_events (vm, &event_data);
vec_reset_length (event_data);
if (event_type != 1)
clib_warning ("event type %d unexpected", event_type);
}
else
vnet_arp_unset_ip4_over_ethernet (vnm, sw_if_index, &addr);
increment_ip4_and_mac_address (&addr);
}
}
else
{
return clib_error_return (0, "unknown input `%U'",
format_unformat_error, input);
}
return 0;
}
/* *INDENT-OFF* */
/*?
* Add or delete IPv4 ARP cache entries.
*
* @note 'set ip arp' options (e.g. delete, static, 'fib-id <id>',
* 'count <number>', 'interface ip4_addr mac_addr') can be added in
* any order and combination.
*
* @cliexpar
* @parblock
* Add or delete IPv4 ARP cache entries as follows. MAC Address can be in
* either aa:bb:cc:dd:ee:ff format or aabb.ccdd.eeff format.
* @cliexcmd{set ip arp GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe}
* @cliexcmd{set ip arp delete GigabitEthernet2/0/0 6.0.0.3 de:ad:be:ef:ba:be}
*
* To add or delete an IPv4 ARP cache entry to or from a specific fib
* table:
* @cliexcmd{set ip arp fib-id 1 GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe}
* @cliexcmd{set ip arp fib-id 1 delete GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe}
*
* Add or delete IPv4 static ARP cache entries as follows:
* @cliexcmd{set ip arp static GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe}
* @cliexcmd{set ip arp static delete GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe}
*
* For testing / debugging purposes, the 'set ip arp' command can add or
* delete multiple entries. Supply the 'count N' parameter:
* @cliexcmd{set ip arp count 10 GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe}
* @endparblock
?*/
VLIB_CLI_COMMAND (ip_arp_add_del_command, static) = {
.path = "set ip arp",
.short_help =
"set ip arp [del] <intfc> <ip-address> <mac-address> [static] [no-fib-entry] [count <count>] [fib-id <fib-id>] [proxy <lo-addr> - <hi-addr>]",
.function = ip_arp_add_del_command_fn,
};
/* *INDENT-ON* */
static clib_error_t *
set_int_proxy_arp_command_fn (vlib_main_t * vm,
unformat_input_t *
input, vlib_cli_command_t * cmd)
{
vnet_main_t *vnm = vnet_get_main ();
u32 sw_if_index;
vnet_sw_interface_t *si;
int enable = 0;
int intfc_set = 0;
while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT)
{
if (unformat (input, "%U", unformat_vnet_sw_interface,
vnm, &sw_if_index))
intfc_set = 1;
else if (unformat (input, "enable") || unformat (input, "on"))
enable = 1;
else if (unformat (input, "disable") || unformat (input, "off"))
enable = 0;
else
break;
}
if (intfc_set == 0)
return clib_error_return (0, "unknown input '%U'",
format_unformat_error, input);
si = vnet_get_sw_interface (vnm, sw_if_index);
ASSERT (si);
if (enable)
si->flags |= VNET_SW_INTERFACE_FLAG_PROXY_ARP;
else
si->flags &= ~VNET_SW_INTERFACE_FLAG_PROXY_ARP;
return 0;
}
/* *INDENT-OFF* */
/*?
* Enable proxy-arp on an interface. The vpp stack will answer ARP
* requests for the indicated address range. Multiple proxy-arp
* ranges may be provisioned.
*
* @note Proxy ARP as a technology is infamous for blackholing traffic.
* Also, the underlying implementation has not been performance-tuned.
* Avoid creating an unnecessarily large set of ranges.
*
* @cliexpar
* To enable proxy arp on a range of addresses, use:
* @cliexcmd{set ip arp proxy 6.0.0.1 - 6.0.0.11}
* Append 'del' to delete a range of proxy ARP addresses:
* @cliexcmd{set ip arp proxy 6.0.0.1 - 6.0.0.11 del}
* You must then specifically enable proxy arp on individual interfaces:
* @cliexcmd{set interface proxy-arp GigabitEthernet0/8/0 enable}
* To disable proxy arp on an individual interface:
* @cliexcmd{set interface proxy-arp GigabitEthernet0/8/0 disable}
?*/
VLIB_CLI_COMMAND (set_int_proxy_enable_command, static) = {
.path = "set interface proxy-arp",
.short_help =
"set interface proxy-arp <intfc> [enable|disable]",
.function = set_int_proxy_arp_command_fn,
};
/* *INDENT-ON* */
/*
* ARP/ND Termination in a L2 Bridge Domain based on IP4/IP6 to MAC
* hash tables mac_by_ip4 and mac_by_ip6 for each BD.
*/
typedef enum
{
ARP_TERM_NEXT_L2_OUTPUT,
ARP_TERM_NEXT_DROP,
ARP_TERM_N_NEXT,
} arp_term_next_t;
u32 arp_term_next_node_index[32];
static uword
arp_term_l2bd (vlib_main_t * vm,
vlib_node_runtime_t * node, vlib_frame_t * frame)
{
l2input_main_t *l2im = &l2input_main;
u32 n_left_from, next_index, *from, *to_next;
u32 n_replies_sent = 0;
u16 last_bd_index = ~0;
l2_bridge_domain_t *last_bd_config = 0;
l2_input_config_t *cfg0;
from = vlib_frame_vector_args (frame);
n_left_from = frame->n_vectors;
next_index = node->cached_next_index;
while (n_left_from > 0)
{
u32 n_left_to_next;
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
while (n_left_from > 0 && n_left_to_next > 0)
{
vlib_buffer_t *p0;
ethernet_header_t *eth0;
ethernet_arp_header_t *arp0;
ip6_header_t *iph0;
u8 *l3h0;
u32 pi0, error0, next0, sw_if_index0;
u16 ethertype0;
u16 bd_index0;
u32 ip0;
u8 *macp0;
u8 is_vrrp_reply0;
pi0 = from[0];
to_next[0] = pi0;
from += 1;
to_next += 1;
n_left_from -= 1;
n_left_to_next -= 1;
p0 = vlib_get_buffer (vm, pi0);
// Terminate only local (SHG == 0) ARP
if (vnet_buffer (p0)->l2.shg != 0)
goto next_l2_feature;
eth0 = vlib_buffer_get_current (p0);
l3h0 = (u8 *) eth0 + vnet_buffer (p0)->l2.l2_len;
ethertype0 = clib_net_to_host_u16 (*(u16 *) (l3h0 - 2));
arp0 = (ethernet_arp_header_t *) l3h0;
if (PREDICT_FALSE ((ethertype0 != ETHERNET_TYPE_ARP) ||
(arp0->opcode !=
clib_host_to_net_u16
(ETHERNET_ARP_OPCODE_request))))
goto check_ip6_nd;
/* Must be ARP request packet here */
if (PREDICT_FALSE ((node->flags & VLIB_NODE_FLAG_TRACE) &&
(p0->flags & VLIB_BUFFER_IS_TRACED)))
{
u8 *t0 = vlib_add_trace (vm, node, p0,
sizeof (ethernet_arp_input_trace_t));
clib_memcpy (t0, l3h0, sizeof (ethernet_arp_input_trace_t));
}
error0 = ETHERNET_ARP_ERROR_replies_sent;
error0 =
(arp0->l2_type !=
clib_net_to_host_u16 (ETHERNET_ARP_HARDWARE_TYPE_ethernet)
? ETHERNET_ARP_ERROR_l2_type_not_ethernet : error0);
error0 =
(arp0->l3_type !=
clib_net_to_host_u16 (ETHERNET_TYPE_IP4) ?
ETHERNET_ARP_ERROR_l3_type_not_ip4 : error0);
sw_if_index0 = vnet_buffer (p0)->sw_if_index[VLIB_RX];
if (error0)
goto drop;
is_vrrp_reply0 =
((arp0->opcode ==
clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply))
&&
(!memcmp
(arp0->ip4_over_ethernet[0].ethernet, vrrp_prefix,
sizeof (vrrp_prefix))));
/* Trash ARP packets whose ARP-level source addresses do not
match their L2-frame-level source addresses, unless it's
a reply from a VRRP virtual router */
if (PREDICT_FALSE
(memcmp (eth0->src_address, arp0->ip4_over_ethernet[0].ethernet,
sizeof (eth0->src_address)) && !is_vrrp_reply0))
{
error0 = ETHERNET_ARP_ERROR_l2_address_mismatch;
goto drop;
}
/* Check if anyone want ARP request events for L2 BDs */
{
ethernet_arp_main_t *am = &ethernet_arp_main;
if (am->wc_ip4_arp_publisher_node != (uword) ~ 0)
vnet_arp_wc_publish (sw_if_index0, &arp0->ip4_over_ethernet[0]);
}
/* lookup BD mac_by_ip4 hash table for MAC entry */
ip0 = arp0->ip4_over_ethernet[1].ip4.as_u32;
bd_index0 = vnet_buffer (p0)->l2.bd_index;
if (PREDICT_FALSE ((bd_index0 != last_bd_index)
|| (last_bd_index == (u16) ~ 0)))
{
last_bd_index = bd_index0;
last_bd_config = vec_elt_at_index (l2im->bd_configs, bd_index0);
}
macp0 = (u8 *) hash_get (last_bd_config->mac_by_ip4, ip0);
if (PREDICT_FALSE (!macp0))
goto next_l2_feature; /* MAC not found */
/* MAC found, send ARP reply -
Convert ARP request packet to ARP reply */
arp0->opcode = clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply);
arp0->ip4_over_ethernet[1] = arp0->ip4_over_ethernet[0];
arp0->ip4_over_ethernet[0].ip4.as_u32 = ip0;
clib_memcpy (arp0->ip4_over_ethernet[0].ethernet, macp0, 6);
clib_memcpy (eth0->dst_address, eth0->src_address, 6);
clib_memcpy (eth0->src_address, macp0, 6);
n_replies_sent += 1;
output_response:
/* For BVI, need to use l2-fwd node to send ARP reply as
l2-output node cannot output packet to BVI properly */
cfg0 = vec_elt_at_index (l2im->configs, sw_if_index0);
if (PREDICT_FALSE (cfg0->bvi))
{
vnet_buffer (p0)->l2.feature_bitmap |= L2INPUT_FEAT_FWD;
vnet_buffer (p0)->sw_if_index[VLIB_RX] = 0;
goto next_l2_feature;
}
/* Send ARP/ND reply back out input interface through l2-output */
vnet_buffer (p0)->sw_if_index[VLIB_TX] = sw_if_index0;
next0 = ARP_TERM_NEXT_L2_OUTPUT;
vlib_validate_buffer_enqueue_x1 (vm, node, next_index,
to_next, n_left_to_next, pi0,
next0);
continue;
check_ip6_nd:
/* IP6 ND event notification or solicitation handling to generate
local response instead of flooding */
iph0 = (ip6_header_t *) l3h0;
if (PREDICT_FALSE (ethertype0 == ETHERNET_TYPE_IP6 &&
iph0->protocol == IP_PROTOCOL_ICMP6 &&
!ip6_address_is_unspecified
(&iph0->src_address)))
{
sw_if_index0 = vnet_buffer (p0)->sw_if_index[VLIB_RX];
if (vnet_ip6_nd_term
(vm, node, p0, eth0, iph0, sw_if_index0,
vnet_buffer (p0)->l2.bd_index))
goto output_response;
}
next_l2_feature:
{
next0 = vnet_l2_feature_next (p0, arp_term_next_node_index,
L2INPUT_FEAT_ARP_TERM);
vlib_validate_buffer_enqueue_x1 (vm, node, next_index,
to_next, n_left_to_next,
pi0, next0);
continue;
}
drop:
if (0 == arp0->ip4_over_ethernet[0].ip4.as_u32 ||
(arp0->ip4_over_ethernet[0].ip4.as_u32 ==
arp0->ip4_over_ethernet[1].ip4.as_u32))
{
error0 = ETHERNET_ARP_ERROR_gratuitous_arp;
}
next0 = ARP_TERM_NEXT_DROP;
p0->error = node->errors[error0];
vlib_validate_buffer_enqueue_x1 (vm, node, next_index,
to_next, n_left_to_next, pi0,
next0);
}
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
vlib_error_count (vm, node->node_index,
ETHERNET_ARP_ERROR_replies_sent, n_replies_sent);
return frame->n_vectors;
}
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (arp_term_l2bd_node, static) = {
.function = arp_term_l2bd,
.name = "arp-term-l2bd",
.vector_size = sizeof (u32),
.n_errors = ETHERNET_ARP_N_ERROR,
.error_strings = ethernet_arp_error_strings,
.n_next_nodes = ARP_TERM_N_NEXT,
.next_nodes = {
[ARP_TERM_NEXT_L2_OUTPUT] = "l2-output",
[ARP_TERM_NEXT_DROP] = "error-drop",
},
.format_buffer = format_ethernet_arp_header,
.format_trace = format_arp_term_input_trace,
};
/* *INDENT-ON* */
clib_error_t *
arp_term_init (vlib_main_t * vm)
{
// Initialize the feature next-node indexes
feat_bitmap_init_next_nodes (vm,
arp_term_l2bd_node.index,
L2INPUT_N_FEAT,
l2input_get_feat_names (),
arp_term_next_node_index);
return 0;
}
VLIB_INIT_FUNCTION (arp_term_init);
void
change_arp_mac (u32 sw_if_index, ethernet_arp_ip4_entry_t * e)
{
if (e->sw_if_index == sw_if_index)
{
adj_nbr_walk_nh4 (e->sw_if_index,
&e->ip4_address, arp_mk_complete_walk, e);
}
}
void
ethernet_arp_change_mac (u32 sw_if_index)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ethernet_arp_ip4_entry_t *e;
adj_index_t ai;
/* *INDENT-OFF* */
pool_foreach (e, am->ip4_entry_pool,
({
change_arp_mac (sw_if_index, e);
}));
/* *INDENT-ON* */
ai = adj_glean_get (FIB_PROTOCOL_IP4, sw_if_index);
if (ADJ_INDEX_INVALID != ai)
adj_glean_update_rewrite (ai);
}
void
send_ip4_garp (vlib_main_t * vm, const vnet_hw_interface_t * hi)
{
ip4_main_t *i4m = &ip4_main;
ip4_address_t *ip4_addr =
ip4_interface_first_address (i4m, hi->sw_if_index, 0);
send_ip4_garp_w_addr (vm, ip4_addr, hi);
}
void
send_ip4_garp_w_addr (vlib_main_t * vm,
const ip4_address_t * ip4_addr,
const vnet_hw_interface_t * hi)
{
ip4_main_t *i4m = &ip4_main;
u32 sw_if_index = hi->sw_if_index;
if (ip4_addr)
{
clib_warning ("Sending GARP for IP4 address %U on sw_if_idex %d",
format_ip4_address, ip4_addr, sw_if_index);
/* Form GARP packet for output - Gratuitous ARP is an ARP request packet
where the interface IP/MAC pair is used for both source and request
MAC/IP pairs in the request */
u32 bi = 0;
ethernet_arp_header_t *h = vlib_packet_template_get_packet
(vm, &i4m->ip4_arp_request_packet_template, &bi);
clib_memcpy (h->ip4_over_ethernet[0].ethernet, hi->hw_address,
sizeof (h->ip4_over_ethernet[0].ethernet));
clib_memcpy (h->ip4_over_ethernet[1].ethernet, hi->hw_address,
sizeof (h->ip4_over_ethernet[1].ethernet));
h->ip4_over_ethernet[0].ip4 = ip4_addr[0];
h->ip4_over_ethernet[1].ip4 = ip4_addr[0];
/* Setup MAC header with ARP Etype and broadcast DMAC */
vlib_buffer_t *b = vlib_get_buffer (vm, bi);
vlib_buffer_advance (b, -sizeof (ethernet_header_t));
ethernet_header_t *e = vlib_buffer_get_current (b);
e->type = clib_host_to_net_u16 (ETHERNET_TYPE_ARP);
clib_memcpy (e->src_address, hi->hw_address, sizeof (e->src_address));
memset (e->dst_address, 0xff, sizeof (e->dst_address));
/* Send GARP packet out the specified interface */
vnet_buffer (b)->sw_if_index[VLIB_RX] =
vnet_buffer (b)->sw_if_index[VLIB_TX] = sw_if_index;
vlib_frame_t *f = vlib_get_frame_to_node (vm, hi->output_node_index);
u32 *to_next = vlib_frame_vector_args (f);
to_next[0] = bi;
f->n_vectors = 1;
vlib_put_frame_to_node (vm, hi->output_node_index, f);
}
}
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/