blob: 71f0d89454b3ac9949c600d125f050595378f7ec [file] [log] [blame]
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vnet/vnet.h>
#include <vppinfra/vec.h>
#include <vppinfra/format.h>
#include <assert.h>
#define __USE_GNU
#include <dlfcn.h>
#include <vnet/ethernet/ethernet.h>
#include <vnet/ethernet/sfp.h>
#include <dpdk/device/dpdk.h>
#include <dpdk/device/dpdk_priv.h>
#include <vppinfra/error.h>
#define foreach_dpdk_counter \
_ (tx_frames_ok, opackets) \
_ (tx_bytes_ok, obytes) \
_ (tx_errors, oerrors) \
_ (rx_frames_ok, ipackets) \
_ (rx_bytes_ok, ibytes) \
_ (rx_errors, ierrors) \
_ (rx_missed, imissed) \
_ (rx_no_bufs, rx_nombuf)
#define foreach_dpdk_q_counter \
_ (rx_frames_ok, q_ipackets) \
_ (tx_frames_ok, q_opackets) \
_ (rx_bytes_ok, q_ibytes) \
_ (tx_bytes_ok, q_obytes) \
_ (rx_errors, q_errors)
#if RTE_VERSION < RTE_VERSION_NUM(21, 5, 0, 0)
#define PKT_RX_OUTER_IP_CKSUM_BAD PKT_RX_EIP_CKSUM_BAD
#endif
#define foreach_dpdk_pkt_rx_offload_flag \
_ (PKT_RX_VLAN, "RX packet is a 802.1q VLAN packet") \
_ (PKT_RX_RSS_HASH, "RX packet with RSS hash result") \
_ (PKT_RX_FDIR, "RX packet with FDIR infos") \
_ (PKT_RX_L4_CKSUM_BAD, "L4 cksum of RX pkt. is not OK") \
_ (PKT_RX_IP_CKSUM_BAD, "IP cksum of RX pkt. is not OK") \
_ (PKT_RX_OUTER_IP_CKSUM_BAD, "External IP header checksum error") \
_ (PKT_RX_VLAN_STRIPPED, "RX packet VLAN tag stripped") \
_ (PKT_RX_IP_CKSUM_GOOD, "IP cksum of RX pkt. is valid") \
_ (PKT_RX_L4_CKSUM_GOOD, "L4 cksum of RX pkt. is valid") \
_ (PKT_RX_IEEE1588_PTP, "RX IEEE1588 L2 Ethernet PT Packet") \
_ (PKT_RX_IEEE1588_TMST, "RX IEEE1588 L2/L4 timestamped packet") \
_ (PKT_RX_QINQ_STRIPPED, "RX packet QinQ tags stripped")
#define foreach_dpdk_pkt_type \
_ (L2, ETHER, "Ethernet packet") \
_ (L2, ETHER_TIMESYNC, "Ethernet packet for time sync") \
_ (L2, ETHER_ARP, "ARP packet") \
_ (L2, ETHER_LLDP, "LLDP (Link Layer Discovery Protocol) packet") \
_ (L2, ETHER_NSH, "NSH (Network Service Header) packet") \
_ (L2, ETHER_VLAN, "VLAN packet") \
_ (L2, ETHER_QINQ, "QinQ packet") \
_ (L3, IPV4, "IPv4 packet without extension headers") \
_ (L3, IPV4_EXT, "IPv4 packet with extension headers") \
_ (L3, IPV4_EXT_UNKNOWN, "IPv4 packet with or without extension headers") \
_ (L3, IPV6, "IPv6 packet without extension headers") \
_ (L3, IPV6_EXT, "IPv6 packet with extension headers") \
_ (L3, IPV6_EXT_UNKNOWN, "IPv6 packet with or without extension headers") \
_ (L4, TCP, "TCP packet") \
_ (L4, UDP, "UDP packet") \
_ (L4, FRAG, "Fragmented IP packet") \
_ (L4, SCTP, "SCTP (Stream Control Transmission Protocol) packet") \
_ (L4, ICMP, "ICMP packet") \
_ (L4, NONFRAG, "Non-fragmented IP packet") \
_ (TUNNEL, GRE, "GRE tunneling packet") \
_ (TUNNEL, VXLAN, "VXLAN tunneling packet") \
_ (TUNNEL, NVGRE, "NVGRE Tunneling packet") \
_ (TUNNEL, GENEVE, "GENEVE Tunneling packet") \
_ (TUNNEL, GRENAT, "Teredo, VXLAN or GRE Tunneling packet") \
_ (INNER_L2, ETHER, "Inner Ethernet packet") \
_ (INNER_L2, ETHER_VLAN, "Inner Ethernet packet with VLAN") \
_ (INNER_L3, IPV4, "Inner IPv4 packet without extension headers") \
_ (INNER_L3, IPV4_EXT, "Inner IPv4 packet with extension headers") \
_ (INNER_L3, IPV4_EXT_UNKNOWN, "Inner IPv4 packet with or without extension headers") \
_ (INNER_L3, IPV6, "Inner IPv6 packet without extension headers") \
_ (INNER_L3, IPV6_EXT, "Inner IPv6 packet with extension headers") \
_ (INNER_L3, IPV6_EXT_UNKNOWN, "Inner IPv6 packet with or without extension headers") \
_ (INNER_L4, TCP, "Inner TCP packet") \
_ (INNER_L4, UDP, "Inner UDP packet") \
_ (INNER_L4, FRAG, "Inner fragmented IP packet") \
_ (INNER_L4, SCTP, "Inner SCTP (Stream Control Transmission Protocol) packet") \
_ (INNER_L4, ICMP, "Inner ICMP packet") \
_ (INNER_L4, NONFRAG, "Inner non-fragmented IP packet")
#define foreach_dpdk_pkt_tx_offload_flag \
_ (PKT_TX_VLAN_PKT, "TX packet is a 802.1q VLAN packet") \
_ (PKT_TX_TUNNEL_VXLAN, "TX packet is a VXLAN packet") \
_ (PKT_TX_IP_CKSUM, "IP cksum of TX pkt. computed by NIC") \
_ (PKT_TX_TCP_CKSUM, "TCP cksum of TX pkt. computed by NIC") \
_ (PKT_TX_SCTP_CKSUM, "SCTP cksum of TX pkt. computed by NIC") \
_ (PKT_TX_OUTER_IP_CKSUM, "Outer IP cksum of Tx pkt. computed by NIC") \
_ (PKT_TX_TCP_SEG, "TSO of TX pkt. done by NIC") \
_ (PKT_TX_IEEE1588_TMST, "TX IEEE1588 packet to timestamp")
#define foreach_dpdk_pkt_offload_flag \
foreach_dpdk_pkt_rx_offload_flag \
foreach_dpdk_pkt_tx_offload_flag
#define foreach_dpdk_pkt_dyn_rx_offload_flag \
_ (RX_TIMESTAMP, 0, "Timestamp field is valid")
u8 *
format_dpdk_device_name (u8 * s, va_list * args)
{
dpdk_main_t *dm = &dpdk_main;
char *devname_format;
char *device_name;
u32 i = va_arg (*args, u32);
dpdk_device_t *xd = vec_elt_at_index (dm->devices, i);
struct rte_eth_dev_info dev_info;
struct rte_pci_device *pci_dev;
u8 *ret;
if (xd->name)
return format (s, "%s", xd->name);
if (dm->conf->interface_name_format_decimal)
devname_format = "%s%d/%d/%d";
else
devname_format = "%s%x/%x/%x";
switch (xd->port_type)
{
case VNET_DPDK_PORT_TYPE_ETH_1G:
device_name = "GigabitEthernet";
break;
case VNET_DPDK_PORT_TYPE_ETH_2_5G:
device_name = "Two_FiveGigabitEthernet";
break;
case VNET_DPDK_PORT_TYPE_ETH_5G:
device_name = "FiveGigabitEthernet";
break;
case VNET_DPDK_PORT_TYPE_ETH_10G:
device_name = "TenGigabitEthernet";
break;
case VNET_DPDK_PORT_TYPE_ETH_20G:
device_name = "TwentyGigabitEthernet";
break;
case VNET_DPDK_PORT_TYPE_ETH_25G:
device_name = "TwentyFiveGigabitEthernet";
break;
case VNET_DPDK_PORT_TYPE_ETH_40G:
device_name = "FortyGigabitEthernet";
break;
case VNET_DPDK_PORT_TYPE_ETH_50G:
device_name = "FiftyGigabitEthernet";
break;
case VNET_DPDK_PORT_TYPE_ETH_56G:
device_name = "FiftySixGigabitEthernet";
break;
case VNET_DPDK_PORT_TYPE_ETH_100G:
device_name = "HundredGigabitEthernet";
break;
case VNET_DPDK_PORT_TYPE_ETH_SWITCH:
device_name = "EthernetSwitch";
break;
case VNET_DPDK_PORT_TYPE_ETH_VF:
device_name = "VirtualFunctionEthernet";
break;
case VNET_DPDK_PORT_TYPE_AF_PACKET:
return format (s, "af_packet%d", xd->af_packet_instance_num);
case VNET_DPDK_PORT_TYPE_VIRTIO_USER:
device_name = "VirtioUser";
break;
case VNET_DPDK_PORT_TYPE_VHOST_ETHER:
device_name = "VhostEthernet";
break;
case VNET_DPDK_PORT_TYPE_FAILSAFE:
device_name = "FailsafeEthernet";
break;
default:
case VNET_DPDK_PORT_TYPE_UNKNOWN:
device_name = "UnknownEthernet";
break;
}
rte_eth_dev_info_get (xd->port_id, &dev_info);
pci_dev = dpdk_get_pci_device (&dev_info);
if (pci_dev && xd->port_type != VNET_DPDK_PORT_TYPE_FAILSAFE)
ret = format (s, devname_format, device_name, pci_dev->addr.bus,
pci_dev->addr.devid, pci_dev->addr.function);
else
ret = format (s, "%s%d", device_name, xd->port_id);
if (xd->interface_name_suffix)
return format (ret, "/%s", xd->interface_name_suffix);
return ret;
}
u8 *
format_dpdk_device_flags (u8 * s, va_list * args)
{
dpdk_device_t *xd = va_arg (*args, dpdk_device_t *);
u8 *t = 0;
#define _(a, b, c) if (xd->flags & (1 << a)) \
t = format (t, "%s%s", t ? " ":"", c);
foreach_dpdk_device_flags
#undef _
s = format (s, "%v", t);
vec_free (t);
return s;
}
static u8 *
format_dpdk_device_type (u8 * s, va_list * args)
{
dpdk_main_t *dm = &dpdk_main;
char *dev_type;
u32 i = va_arg (*args, u32);
switch (dm->devices[i].pmd)
{
case VNET_DPDK_PMD_E1000EM:
dev_type = "Intel 82540EM (e1000)";
break;
case VNET_DPDK_PMD_IGB:
dev_type = "Intel e1000";
break;
case VNET_DPDK_PMD_I40E:
dev_type = "Intel X710/XL710 Family";
break;
case VNET_DPDK_PMD_I40EVF:
dev_type = "Intel X710/XL710 Family VF";
break;
case VNET_DPDK_PMD_ICE:
dev_type = "Intel E810 Family";
break;
case VNET_DPDK_PMD_IAVF:
dev_type = "Intel iAVF";
break;
case VNET_DPDK_PMD_FM10K:
dev_type = "Intel FM10000 Family Ethernet Switch";
break;
case VNET_DPDK_PMD_IGBVF:
dev_type = "Intel e1000 VF";
break;
case VNET_DPDK_PMD_VIRTIO:
dev_type = "Red Hat Virtio";
break;
case VNET_DPDK_PMD_IXGBEVF:
dev_type = "Intel 82599 VF";
break;
case VNET_DPDK_PMD_IXGBE:
dev_type = "Intel 82599";
break;
case VNET_DPDK_PMD_ENIC:
dev_type = "Cisco VIC";
break;
case VNET_DPDK_PMD_CXGBE:
dev_type = "Chelsio T4/T5";
break;
case VNET_DPDK_PMD_MLX4:
dev_type = "Mellanox ConnectX-3 Family";
break;
case VNET_DPDK_PMD_MLX5:
dev_type = "Mellanox ConnectX-4 Family";
break;
case VNET_DPDK_PMD_VMXNET3:
dev_type = "VMware VMXNET3";
break;
case VNET_DPDK_PMD_AF_PACKET:
dev_type = "af_packet";
break;
case VNET_DPDK_PMD_DPAA2:
dev_type = "NXP DPAA2 Mac";
break;
case VNET_DPDK_PMD_VIRTIO_USER:
dev_type = "Virtio User";
break;
case VNET_DPDK_PMD_THUNDERX:
dev_type = "Cavium ThunderX";
break;
case VNET_DPDK_PMD_VHOST_ETHER:
dev_type = "VhostEthernet";
break;
case VNET_DPDK_PMD_ENA:
dev_type = "AWS ENA VF";
break;
case VNET_DPDK_PMD_FAILSAFE:
dev_type = "FailsafeEthernet";
break;
case VNET_DPDK_PMD_LIOVF_ETHER:
dev_type = "Cavium Lio VF";
break;
case VNET_DPDK_PMD_QEDE:
dev_type = "Cavium QLogic FastLinQ QL4xxxx";
break;
case VNET_DPDK_PMD_NETVSC:
dev_type = "Microsoft Hyper-V Netvsc";
break;
case VNET_DPDK_PMD_BNXT:
dev_type = "Broadcom NetXtreme E/S-Series";
break;
default:
case VNET_DPDK_PMD_UNKNOWN:
dev_type = "### UNKNOWN ###";
break;
}
return format (s, dev_type);
}
static u8 *
format_dpdk_link_status (u8 * s, va_list * args)
{
dpdk_device_t *xd = va_arg (*args, dpdk_device_t *);
struct rte_eth_link *l = &xd->link;
vnet_main_t *vnm = vnet_get_main ();
vnet_hw_interface_t *hi = vnet_get_hw_interface (vnm, xd->hw_if_index);
s = format (s, "%s ", l->link_status ? "up" : "down");
if (l->link_status)
{
u32 promisc = rte_eth_promiscuous_get (xd->port_id);
s = format (s, "%s duplex ", (l->link_duplex == ETH_LINK_FULL_DUPLEX) ?
"full" : "half");
s = format (s, "mtu %d %s\n", hi->max_packet_bytes, promisc ?
" promisc" : "");
}
else
s = format (s, "\n");
return s;
}
#define _(n, v, str) \
if (bitmap & v) { \
if (format_get_indent (s) > 72) \
s = format(s,"\n%U", format_white_space, indent); \
s = format(s, "%s ", str); \
}
u8 *
format_dpdk_rss_hf_name (u8 * s, va_list * args)
{
u64 bitmap = va_arg (*args, u64);
u32 indent = format_get_indent (s);
if (!bitmap)
return format (s, "none");
foreach_dpdk_rss_hf return s;
}
#undef _
/* Convert to all lower case e.g "VLAN_STRIP" -> "vlan-strip"
Works for both vector names and null terminated c strings. */
static u8 *
format_offload (u8 * s, va_list * va)
{
u8 *id = va_arg (*va, u8 *);
uword i, l;
l = ~0;
if (clib_mem_is_vec (id))
l = vec_len (id);
if (id)
for (i = 0; id[i] != 0 && i < l; i++)
{
u8 c = id[i];
if (c == '_')
c = '-';
else
c = tolower (c);
vec_add1 (s, c);
}
return s;
}
#define _(v, func) \
if (bitmap & v) { \
if (format_get_indent (s) > 72) \
s = format(s,"\n%U", format_white_space, indent); \
s = format(s, "%U ", format_offload, func (v)); \
}
u8 *
format_dpdk_rx_offload_caps (u8 * s, va_list * args)
{
u64 bitmap = va_arg (*args, u32);
u32 indent = format_get_indent (s);
uword i;
if (!bitmap)
return format (s, "none");
for (i = 0; i < 64; i++)
{
u64 mask = (u64) 1 << i;
_(mask, rte_eth_dev_rx_offload_name);
}
return s;
}
u8 *
format_dpdk_tx_offload_caps (u8 * s, va_list * args)
{
u64 bitmap = va_arg (*args, u32);
u32 indent = format_get_indent (s);
uword i;
if (!bitmap)
return format (s, "none");
for (i = 0; i < 64; i++)
{
u64 mask = (u64) 1 << i;
_(mask, rte_eth_dev_tx_offload_name);
}
return s;
}
#undef _
u8 *
format_dpdk_device_errors (u8 * s, va_list * args)
{
dpdk_device_t *xd = va_arg (*args, dpdk_device_t *);
clib_error_t *e;
u32 indent = format_get_indent (s);
vec_foreach (e, xd->errors)
{
s = format (s, "%U%v\n", format_white_space, indent, e->what);
}
return s;
}
static u8 *
format_dpdk_device_module_info (u8 * s, va_list * args)
{
dpdk_device_t *xd = va_arg (*args, dpdk_device_t *);
struct rte_eth_dev_module_info mi = { 0 };
struct rte_dev_eeprom_info ei = { 0 };
if (rte_eth_dev_get_module_info (xd->port_id, &mi) != 0)
return format (s, "unknown");
ei.length = mi.eeprom_len;
ei.data = clib_mem_alloc (mi.eeprom_len);
if (rte_eth_dev_get_module_eeprom (xd->port_id, &ei) == 0)
{
s = format (s, "%U", format_sfp_eeprom, ei.data +
(mi.type == RTE_ETH_MODULE_SFF_8436 ? 0x80 : 0));
}
else
s = format (s, "eeprom read error");
clib_mem_free (ei.data);
return s;
}
static const char *
ptr2sname (void *p)
{
Dl_info info = { 0 };
if (dladdr (p, &info) == 0)
return 0;
return info.dli_sname;
}
static u8 *
format_switch_info (u8 * s, va_list * args)
{
struct rte_eth_switch_info *si =
va_arg (*args, struct rte_eth_switch_info *);
if (si->name)
s = format (s, "name %s ", si->name);
s = format (s, "domain id %d port id %d", si->domain_id, si->port_id);
return s;
}
u8 *
format_dpdk_device (u8 * s, va_list * args)
{
u32 dev_instance = va_arg (*args, u32);
int verbose = va_arg (*args, int);
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd = vec_elt_at_index (dm->devices, dev_instance);
u32 indent = format_get_indent (s);
f64 now = vlib_time_now (dm->vlib_main);
struct rte_eth_dev_info di;
struct rte_eth_burst_mode mode;
dpdk_update_counters (xd, now);
dpdk_update_link_state (xd, now);
rte_eth_dev_info_get (xd->port_id, &di);
s = format (s, "%U\n%Ucarrier %U",
format_dpdk_device_type, dev_instance,
format_white_space, indent + 2, format_dpdk_link_status, xd);
s = format (s, "%Uflags: %U\n",
format_white_space, indent + 2, format_dpdk_device_flags, xd);
if (di.device->devargs && di.device->devargs->args)
s = format (s, "%UDevargs: %s\n",
format_white_space, indent + 2, di.device->devargs->args);
s = format (s, "%Urx: queues %d (max %d), desc %d "
"(min %d max %d align %d)\n",
format_white_space, indent + 2, xd->rx_q_used, di.max_rx_queues,
xd->nb_rx_desc, di.rx_desc_lim.nb_min, di.rx_desc_lim.nb_max,
di.rx_desc_lim.nb_align);
s = format (s, "%Utx: queues %d (max %d), desc %d "
"(min %d max %d align %d)\n",
format_white_space, indent + 2, xd->tx_q_used, di.max_tx_queues,
xd->nb_tx_desc, di.tx_desc_lim.nb_min, di.tx_desc_lim.nb_max,
di.tx_desc_lim.nb_align);
if (xd->flags & DPDK_DEVICE_FLAG_PMD)
{
struct rte_pci_device *pci;
struct rte_eth_rss_conf rss_conf;
int vlan_off;
int retval;
rss_conf.rss_key = 0;
rss_conf.rss_hf = 0;
retval = rte_eth_dev_rss_hash_conf_get (xd->port_id, &rss_conf);
if (retval < 0)
clib_warning ("rte_eth_dev_rss_hash_conf_get returned %d", retval);
pci = dpdk_get_pci_device (&di);
if (pci)
{
u8 *s2;
if (xd->cpu_socket > -1)
s2 = format (0, "%d", xd->cpu_socket);
else
s2 = format (0, "unknown");
s = format (s, "%Upci: device %04x:%04x subsystem %04x:%04x "
"address %04x:%02x:%02x.%02x numa %v\n",
format_white_space, indent + 2, pci->id.vendor_id,
pci->id.device_id, pci->id.subsystem_vendor_id,
pci->id.subsystem_device_id, pci->addr.domain,
pci->addr.bus, pci->addr.devid, pci->addr.function, s2);
vec_free (s2);
}
if (di.switch_info.domain_id != RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID)
{
s =
format (s, "%Uswitch info: %U\n", format_white_space, indent + 2,
format_switch_info, &di.switch_info);
}
if (1 < verbose)
{
s = format (s, "%Umodule: %U\n", format_white_space, indent + 2,
format_dpdk_device_module_info, xd);
}
s = format (s, "%Umax rx packet len: %d\n", format_white_space,
indent + 2, di.max_rx_pktlen);
s = format (s, "%Upromiscuous: unicast %s all-multicast %s\n",
format_white_space, indent + 2,
rte_eth_promiscuous_get (xd->port_id) ? "on" : "off",
rte_eth_allmulticast_get (xd->port_id) ? "on" : "off");
vlan_off = rte_eth_dev_get_vlan_offload (xd->port_id);
s = format (s, "%Uvlan offload: strip %s filter %s qinq %s\n",
format_white_space, indent + 2,
vlan_off & ETH_VLAN_STRIP_OFFLOAD ? "on" : "off",
vlan_off & ETH_VLAN_FILTER_OFFLOAD ? "on" : "off",
vlan_off & ETH_VLAN_EXTEND_OFFLOAD ? "on" : "off");
s = format (s, "%Urx offload avail: %U\n",
format_white_space, indent + 2,
format_dpdk_rx_offload_caps, di.rx_offload_capa);
s = format (s, "%Urx offload active: %U\n",
format_white_space, indent + 2,
format_dpdk_rx_offload_caps, xd->port_conf.rxmode.offloads);
s = format (s, "%Utx offload avail: %U\n",
format_white_space, indent + 2,
format_dpdk_tx_offload_caps, di.tx_offload_capa);
s = format (s, "%Utx offload active: %U\n",
format_white_space, indent + 2,
format_dpdk_tx_offload_caps, xd->port_conf.txmode.offloads);
s = format (s, "%Urss avail: %U\n"
"%Urss active: %U\n",
format_white_space, indent + 2,
format_dpdk_rss_hf_name, di.flow_type_rss_offloads,
format_white_space, indent + 2,
format_dpdk_rss_hf_name, rss_conf.rss_hf);
if (rte_eth_tx_burst_mode_get (xd->port_id, 0, &mode) == 0)
{
s = format (s, "%Utx burst mode: %s%s\n",
format_white_space, indent + 2,
mode.info,
mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
" (per queue)" : "");
}
else
{
s = format (s, "%Utx burst function: %s\n",
format_white_space, indent + 2,
ptr2sname (rte_eth_devices[xd->port_id].tx_pkt_burst));
}
if (rte_eth_rx_burst_mode_get (xd->port_id, 0, &mode) == 0)
{
s = format (s, "%Urx burst mode: %s%s\n",
format_white_space, indent + 2,
mode.info,
mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
" (per queue)" : "");
}
else
{
s = format (s, "%Urx burst function: %s\n",
format_white_space, indent + 2,
ptr2sname (rte_eth_devices[xd->port_id].rx_pkt_burst));
}
}
/* $$$ MIB counters */
{
#define _(N, V) \
if (xd->stats.V != 0) { \
s = format (s, "\n%U%-40U%16Lu", \
format_white_space, indent + 2, \
format_c_identifier, #N, \
xd->stats.V); \
} \
foreach_dpdk_counter
#undef _
}
u8 *xs = 0;
u32 i = 0;
struct rte_eth_xstat *xstat;
struct rte_eth_xstat_name *xstat_names = 0;
int len = vec_len (xd->xstats);
vec_validate (xstat_names, len - 1);
int ret = rte_eth_xstats_get_names (xd->port_id, xstat_names, len);
if (ret >= 0 && ret <= len)
{
/* *INDENT-OFF* */
vec_foreach_index(i, xd->xstats)
{
xstat = vec_elt_at_index(xd->xstats, i);
if (verbose == 2 || (verbose && xstat->value))
{
xs = format(xs, "\n%U%-38s%16Lu",
format_white_space, indent + 4,
xstat_names[i].name,
xstat->value);
}
}
/* *INDENT-ON* */
vec_free (xstat_names);
}
if (xs)
{
s = format (s, "\n%Uextended stats:%v",
format_white_space, indent + 2, xs);
vec_free (xs);
}
if (vec_len (xd->errors))
{
s = format (s, "%UErrors:\n %U", format_white_space, indent,
format_dpdk_device_errors, xd);
}
return s;
}
u8 *
format_dpdk_tx_trace (u8 * s, va_list * va)
{
CLIB_UNUSED (vlib_main_t * vm) = va_arg (*va, vlib_main_t *);
CLIB_UNUSED (vlib_node_t * node) = va_arg (*va, vlib_node_t *);
CLIB_UNUSED (vnet_main_t * vnm) = vnet_get_main ();
dpdk_tx_trace_t *t = va_arg (*va, dpdk_tx_trace_t *);
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd = vec_elt_at_index (dm->devices, t->device_index);
u32 indent = format_get_indent (s);
vnet_sw_interface_t *sw = vnet_get_sw_interface (vnm, xd->sw_if_index);
s = format (s, "%U tx queue %d",
format_vnet_sw_interface_name, vnm, sw, t->queue_index);
s = format (s, "\n%Ubuffer 0x%x: %U", format_white_space, indent,
t->buffer_index, format_vnet_buffer_no_chain, &t->buffer);
s = format (s, "\n%U%U",
format_white_space, indent,
format_dpdk_rte_mbuf, &t->mb, &t->data);
s = format (s, "\n%U%U", format_white_space, indent,
format_ethernet_header_with_length, t->buffer.pre_data,
sizeof (t->buffer.pre_data));
return s;
}
u8 *
format_dpdk_rx_trace (u8 * s, va_list * va)
{
CLIB_UNUSED (vlib_main_t * vm) = va_arg (*va, vlib_main_t *);
CLIB_UNUSED (vlib_node_t * node) = va_arg (*va, vlib_node_t *);
CLIB_UNUSED (vnet_main_t * vnm) = vnet_get_main ();
dpdk_rx_trace_t *t = va_arg (*va, dpdk_rx_trace_t *);
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd = vec_elt_at_index (dm->devices, t->device_index);
format_function_t *f;
u32 indent = format_get_indent (s);
vnet_sw_interface_t *sw = vnet_get_sw_interface (vnm, xd->sw_if_index);
s = format (s, "%U rx queue %d",
format_vnet_sw_interface_name, vnm, sw, t->queue_index);
s = format (s, "\n%Ubuffer 0x%x: %U", format_white_space, indent,
t->buffer_index, format_vnet_buffer_no_chain, &t->buffer);
s = format (s, "\n%U%U",
format_white_space, indent,
format_dpdk_rte_mbuf, &t->mb, &t->data);
if (vm->trace_main.verbose)
{
s = format (s, "\n%UPacket Dump%s", format_white_space, indent + 2,
t->mb.data_len > sizeof (t->data) ? " (truncated)" : "");
s = format (s, "\n%U%U", format_white_space, indent + 4,
format_hexdump, &t->data,
t->mb.data_len >
sizeof (t->data) ? sizeof (t->data) : t->mb.data_len);
}
f = node->format_buffer;
if (!f)
f = format_hex_bytes;
s = format (s, "\n%U%U", format_white_space, indent,
f, t->buffer.pre_data, sizeof (t->buffer.pre_data));
return s;
}
static inline u8 *
format_dpdk_pkt_types (u8 * s, va_list * va)
{
u32 *pkt_types = va_arg (*va, u32 *);
u32 indent __attribute__ ((unused)) = format_get_indent (s) + 2;
if (!*pkt_types)
return s;
s = format (s, "Packet Types");
#define _(L, F, S) \
if ((*pkt_types & RTE_PTYPE_##L##_MASK) == RTE_PTYPE_##L##_##F) \
{ \
s = format (s, "\n%U%s (0x%04x) %s", format_white_space, indent, \
"RTE_PTYPE_" #L "_" #F, RTE_PTYPE_##L##_##F, S); \
}
foreach_dpdk_pkt_type
#undef _
return s;
}
static inline u8 *
format_dpdk_pkt_offload_flags (u8 * s, va_list * va)
{
u64 *ol_flags = va_arg (*va, u64 *);
u32 indent = format_get_indent (s) + 2;
u64 rx_dynflag;
int rx_dynflag_offset;
if (!*ol_flags)
return s;
s = format (s, "Packet Offload Flags");
#define _(F, S) \
if (*ol_flags & F) \
{ \
s = format (s, "\n%U%s (0x%04x) %s", \
format_white_space, indent, #F, F, S); \
}
foreach_dpdk_pkt_offload_flag
#undef _
#define _(F, P, S) \
{ \
rx_dynflag_offset = rte_mbuf_dynflag_lookup(RTE_MBUF_DYNFLAG_##F##_NAME, \
P); \
if (rx_dynflag_offset >= 0) \
{ \
rx_dynflag = (u64) 1 << rx_dynflag_offset; \
if (*ol_flags & rx_dynflag) \
{ \
s = format (s, "\n%U%s %s", format_white_space, indent, \
#F, S); \
} \
} \
}
foreach_dpdk_pkt_dyn_rx_offload_flag
#undef _
return s;
}
u8 *
format_dpdk_rte_mbuf_tso (u8 *s, va_list *va)
{
struct rte_mbuf *mb = va_arg (*va, struct rte_mbuf *);
if (mb->ol_flags & PKT_TX_TCP_SEG)
{
s = format (s, "l4_len %u tso_segsz %u", mb->l4_len, mb->tso_segsz);
}
return s;
}
u8 *
format_dpdk_rte_mbuf_vlan (u8 * s, va_list * va)
{
ethernet_vlan_header_tv_t *vlan_hdr =
va_arg (*va, ethernet_vlan_header_tv_t *);
if (clib_net_to_host_u16 (vlan_hdr->type) == ETHERNET_TYPE_DOT1AD)
{
s = format (s, "%U 802.1q vlan ",
format_ethernet_vlan_tci,
clib_net_to_host_u16 (vlan_hdr->priority_cfi_and_id));
vlan_hdr++;
}
s = format (s, "%U",
format_ethernet_vlan_tci,
clib_net_to_host_u16 (vlan_hdr->priority_cfi_and_id));
return s;
}
u8 *
format_dpdk_rte_mbuf (u8 * s, va_list * va)
{
struct rte_mbuf *mb = va_arg (*va, struct rte_mbuf *);
ethernet_header_t *eth_hdr = va_arg (*va, ethernet_header_t *);
u32 indent = format_get_indent (s) + 2;
s = format (
s,
"PKT MBUF: port %d, nb_segs %d, pkt_len %d"
"\n%Ubuf_len %d, data_len %d, ol_flags 0x%lx, data_off %d, phys_addr 0x%x"
"\n%Upacket_type 0x%x l2_len %u l3_len %u outer_l2_len %u outer_l3_len %u "
"%U"
"\n%Urss 0x%x fdir.hi 0x%x fdir.lo 0x%x",
mb->port, mb->nb_segs, mb->pkt_len, format_white_space, indent,
mb->buf_len, mb->data_len, mb->ol_flags, mb->data_off, mb->buf_iova,
format_white_space, indent, mb->packet_type, mb->l2_len, mb->l3_len,
mb->outer_l2_len, mb->outer_l3_len, format_dpdk_rte_mbuf_tso, mb,
format_white_space, indent, mb->hash.rss, mb->hash.fdir.hi,
mb->hash.fdir.lo);
if (mb->ol_flags)
s = format (s, "\n%U%U", format_white_space, indent,
format_dpdk_pkt_offload_flags, &mb->ol_flags);
if ((mb->ol_flags & PKT_RX_VLAN) &&
((mb->ol_flags & (PKT_RX_VLAN_STRIPPED | PKT_RX_QINQ_STRIPPED)) == 0))
{
ethernet_vlan_header_tv_t *vlan_hdr =
((ethernet_vlan_header_tv_t *) & (eth_hdr->type));
s = format (s, " %U", format_dpdk_rte_mbuf_vlan, vlan_hdr);
}
if (mb->packet_type)
s = format (s, "\n%U%U", format_white_space, indent,
format_dpdk_pkt_types, &mb->packet_type);
return s;
}
clib_error_t *
unformat_rss_fn (unformat_input_t * input, uword * rss_fn)
{
while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT)
{
if (0)
;
#undef _
#define _(n, f, s) \
else if (unformat (input, s)) \
*rss_fn |= f;
foreach_dpdk_rss_hf
#undef _
else
{
return clib_error_return (0, "unknown input `%U'",
format_unformat_error, input);
}
}
return 0;
}
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/