blob: 0c8706567aea8b021fa48ffc177c2e5c6d1787b1 [file] [log] [blame]
/*
* Copyright (c) 2016 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vppinfra/sparse_vec.h>
#include <vnet/tcp/tcp_packet.h>
#include <vnet/tcp/tcp.h>
#include <vnet/session/session.h>
#include <math.h>
static char *tcp_error_strings[] = {
#define tcp_error(n,s) s,
#include <vnet/tcp/tcp_error.def>
#undef tcp_error
};
/* All TCP nodes have the same outgoing arcs */
#define foreach_tcp_state_next \
_ (DROP4, "ip4-drop") \
_ (DROP6, "ip6-drop") \
_ (TCP4_OUTPUT, "tcp4-output") \
_ (TCP6_OUTPUT, "tcp6-output")
typedef enum _tcp_established_next
{
#define _(s,n) TCP_ESTABLISHED_NEXT_##s,
foreach_tcp_state_next
#undef _
TCP_ESTABLISHED_N_NEXT,
} tcp_established_next_t;
typedef enum _tcp_rcv_process_next
{
#define _(s,n) TCP_RCV_PROCESS_NEXT_##s,
foreach_tcp_state_next
#undef _
TCP_RCV_PROCESS_N_NEXT,
} tcp_rcv_process_next_t;
typedef enum _tcp_syn_sent_next
{
#define _(s,n) TCP_SYN_SENT_NEXT_##s,
foreach_tcp_state_next
#undef _
TCP_SYN_SENT_N_NEXT,
} tcp_syn_sent_next_t;
typedef enum _tcp_listen_next
{
#define _(s,n) TCP_LISTEN_NEXT_##s,
foreach_tcp_state_next
#undef _
TCP_LISTEN_N_NEXT,
} tcp_listen_next_t;
/* Generic, state independent indices */
typedef enum _tcp_state_next
{
#define _(s,n) TCP_NEXT_##s,
foreach_tcp_state_next
#undef _
TCP_STATE_N_NEXT,
} tcp_state_next_t;
#define tcp_next_output(is_ip4) (is_ip4 ? TCP_NEXT_TCP4_OUTPUT \
: TCP_NEXT_TCP6_OUTPUT)
#define tcp_next_drop(is_ip4) (is_ip4 ? TCP_NEXT_DROP4 \
: TCP_NEXT_DROP6)
vlib_node_registration_t tcp4_established_node;
vlib_node_registration_t tcp6_established_node;
/**
* Validate segment sequence number. As per RFC793:
*
* Segment Receive Test
* Length Window
* ------- ------- -------------------------------------------
* 0 0 SEG.SEQ = RCV.NXT
* 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
* >0 0 not acceptable
* >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
* or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
*
* This ultimately consists in checking if segment falls within the window.
* The one important difference compared to RFC793 is that we use rcv_las,
* or the rcv_nxt at last ack sent instead of rcv_nxt since that's the
* peer's reference when computing our receive window.
*
* This:
* seq_leq (end_seq, tc->rcv_las + tc->rcv_wnd) && seq_geq (seq, tc->rcv_las)
* however, is too strict when we have retransmits. Instead we just check that
* the seq is not beyond the right edge and that the end of the segment is not
* less than the left edge.
*
* N.B. rcv_nxt and rcv_wnd are both updated in this node if acks are sent, so
* use rcv_nxt in the right edge window test instead of rcv_las.
*
*/
always_inline u8
tcp_segment_in_rcv_wnd (tcp_connection_t * tc, u32 seq, u32 end_seq)
{
return (seq_geq (end_seq, tc->rcv_las)
&& seq_leq (seq, tc->rcv_nxt + tc->rcv_wnd));
}
/**
* Parse TCP header options.
*
* @param th TCP header
* @param to TCP options data structure to be populated
* @return -1 if parsing failed
*/
static int
tcp_options_parse (tcp_header_t * th, tcp_options_t * to)
{
const u8 *data;
u8 opt_len, opts_len, kind;
int j;
sack_block_t b;
opts_len = (tcp_doff (th) << 2) - sizeof (tcp_header_t);
data = (const u8 *) (th + 1);
/* Zero out all flags but those set in SYN */
to->flags &= (TCP_OPTS_FLAG_SACK_PERMITTED | TCP_OPTS_FLAG_WSCALE
| TCP_OPTS_FLAG_SACK);
for (; opts_len > 0; opts_len -= opt_len, data += opt_len)
{
kind = data[0];
/* Get options length */
if (kind == TCP_OPTION_EOL)
break;
else if (kind == TCP_OPTION_NOOP)
{
opt_len = 1;
continue;
}
else
{
/* broken options */
if (opts_len < 2)
return -1;
opt_len = data[1];
/* weird option length */
if (opt_len < 2 || opt_len > opts_len)
return -1;
}
/* Parse options */
switch (kind)
{
case TCP_OPTION_MSS:
if ((opt_len == TCP_OPTION_LEN_MSS) && tcp_syn (th))
{
to->flags |= TCP_OPTS_FLAG_MSS;
to->mss = clib_net_to_host_u16 (*(u16 *) (data + 2));
}
break;
case TCP_OPTION_WINDOW_SCALE:
if ((opt_len == TCP_OPTION_LEN_WINDOW_SCALE) && tcp_syn (th))
{
to->flags |= TCP_OPTS_FLAG_WSCALE;
to->wscale = data[2];
if (to->wscale > TCP_MAX_WND_SCALE)
{
clib_warning ("Illegal window scaling value: %d",
to->wscale);
to->wscale = TCP_MAX_WND_SCALE;
}
}
break;
case TCP_OPTION_TIMESTAMP:
if (opt_len == TCP_OPTION_LEN_TIMESTAMP)
{
to->flags |= TCP_OPTS_FLAG_TSTAMP;
to->tsval = clib_net_to_host_u32 (*(u32 *) (data + 2));
to->tsecr = clib_net_to_host_u32 (*(u32 *) (data + 6));
}
break;
case TCP_OPTION_SACK_PERMITTED:
if (opt_len == TCP_OPTION_LEN_SACK_PERMITTED && tcp_syn (th))
to->flags |= TCP_OPTS_FLAG_SACK_PERMITTED;
break;
case TCP_OPTION_SACK_BLOCK:
/* If SACK permitted was not advertised or a SYN, break */
if ((to->flags & TCP_OPTS_FLAG_SACK_PERMITTED) == 0 || tcp_syn (th))
break;
/* If too short or not correctly formatted, break */
if (opt_len < 10 || ((opt_len - 2) % TCP_OPTION_LEN_SACK_BLOCK))
break;
to->flags |= TCP_OPTS_FLAG_SACK;
to->n_sack_blocks = (opt_len - 2) / TCP_OPTION_LEN_SACK_BLOCK;
vec_reset_length (to->sacks);
for (j = 0; j < to->n_sack_blocks; j++)
{
b.start = clib_net_to_host_u32 (*(u32 *) (data + 2 + 8 * j));
b.end = clib_net_to_host_u32 (*(u32 *) (data + 6 + 8 * j));
vec_add1 (to->sacks, b);
}
break;
default:
/* Nothing to see here */
continue;
}
}
return 0;
}
/**
* RFC1323: Check against wrapped sequence numbers (PAWS). If we have
* timestamp to echo and it's less than tsval_recent, drop segment
* but still send an ACK in order to retain TCP's mechanism for detecting
* and recovering from half-open connections
*
* Or at least that's what the theory says. It seems that this might not work
* very well with packet reordering and fast retransmit. XXX
*/
always_inline int
tcp_segment_check_paws (tcp_connection_t * tc)
{
return tcp_opts_tstamp (&tc->rcv_opts) && tc->tsval_recent
&& timestamp_lt (tc->rcv_opts.tsval, tc->tsval_recent);
}
/**
* Update tsval recent
*/
always_inline void
tcp_update_timestamp (tcp_connection_t * tc, u32 seq, u32 seq_end)
{
/*
* RFC1323: If Last.ACK.sent falls within the range of sequence numbers
* of an incoming segment:
* SEG.SEQ <= Last.ACK.sent < SEG.SEQ + SEG.LEN
* then the TSval from the segment is copied to TS.Recent;
* otherwise, the TSval is ignored.
*/
if (tcp_opts_tstamp (&tc->rcv_opts) && seq_leq (seq, tc->rcv_las)
&& seq_leq (tc->rcv_las, seq_end))
{
ASSERT (timestamp_leq (tc->tsval_recent, tc->rcv_opts.tsval));
tc->tsval_recent = tc->rcv_opts.tsval;
tc->tsval_recent_age = tcp_time_now_w_thread (tc->c_thread_index);
}
}
/**
* Validate incoming segment as per RFC793 p. 69 and RFC1323 p. 19
*
* It first verifies if segment has a wrapped sequence number (PAWS) and then
* does the processing associated to the first four steps (ignoring security
* and precedence): sequence number, rst bit and syn bit checks.
*
* @return 0 if segments passes validation.
*/
static int
tcp_segment_validate (tcp_worker_ctx_t * wrk, tcp_connection_t * tc0,
vlib_buffer_t * b0, tcp_header_t * th0, u32 * error0)
{
/* We could get a burst of RSTs interleaved with acks */
if (PREDICT_FALSE (tc0->state == TCP_STATE_CLOSED))
{
tcp_send_reset (tc0);
*error0 = TCP_ERROR_CONNECTION_CLOSED;
goto error;
}
if (PREDICT_FALSE (!tcp_ack (th0) && !tcp_rst (th0) && !tcp_syn (th0)))
{
*error0 = TCP_ERROR_SEGMENT_INVALID;
goto error;
}
if (PREDICT_FALSE (tcp_options_parse (th0, &tc0->rcv_opts)))
{
clib_warning ("options parse error");
*error0 = TCP_ERROR_OPTIONS;
goto error;
}
if (PREDICT_FALSE (tcp_segment_check_paws (tc0)))
{
*error0 = TCP_ERROR_PAWS;
if (CLIB_DEBUG > 2)
clib_warning ("paws failed\n%U", format_tcp_connection, tc0, 2);
TCP_EVT_DBG (TCP_EVT_PAWS_FAIL, tc0, vnet_buffer (b0)->tcp.seq_number,
vnet_buffer (b0)->tcp.seq_end);
/* If it just so happens that a segment updates tsval_recent for a
* segment over 24 days old, invalidate tsval_recent. */
if (timestamp_lt (tc0->tsval_recent_age + TCP_PAWS_IDLE,
tcp_time_now_w_thread (tc0->c_thread_index)))
{
/* Age isn't reset until we get a valid tsval (bsd inspired) */
tc0->tsval_recent = 0;
clib_warning ("paws failed - really old segment. REALLY?");
}
else
{
/* Drop after ack if not rst */
if (!tcp_rst (th0))
{
tcp_program_ack (wrk, tc0);
TCP_EVT_DBG (TCP_EVT_DUPACK_SENT, tc0, vnet_buffer (b0)->tcp);
}
}
goto error;
}
/* 1st: check sequence number */
if (!tcp_segment_in_rcv_wnd (tc0, vnet_buffer (b0)->tcp.seq_number,
vnet_buffer (b0)->tcp.seq_end))
{
*error0 = TCP_ERROR_RCV_WND;
/* If our window is 0 and the packet is in sequence, let it pass
* through for ack processing. It should be dropped later. */
if (!(tc0->rcv_wnd == 0
&& tc0->rcv_nxt == vnet_buffer (b0)->tcp.seq_number))
{
/* If not RST, send dup ack */
if (!tcp_rst (th0))
{
tcp_program_dupack (wrk, tc0);
TCP_EVT_DBG (TCP_EVT_DUPACK_SENT, tc0, vnet_buffer (b0)->tcp);
}
goto error;
}
}
/* 2nd: check the RST bit */
if (PREDICT_FALSE (tcp_rst (th0)))
{
tcp_connection_reset (tc0);
*error0 = TCP_ERROR_RST_RCVD;
goto error;
}
/* 3rd: check security and precedence (skip) */
/* 4th: check the SYN bit */
if (PREDICT_FALSE (tcp_syn (th0)))
{
/* TODO implement RFC 5961 */
if (tc0->state == TCP_STATE_SYN_RCVD)
{
tcp_send_synack (tc0);
TCP_EVT_DBG (TCP_EVT_SYN_RCVD, tc0, 0);
}
else
{
tcp_program_ack (wrk, tc0);
TCP_EVT_DBG (TCP_EVT_SYNACK_RCVD, tc0);
}
goto error;
}
/* If segment in window, save timestamp */
tcp_update_timestamp (tc0, vnet_buffer (b0)->tcp.seq_number,
vnet_buffer (b0)->tcp.seq_end);
return 0;
error:
return -1;
}
always_inline int
tcp_rcv_ack_is_acceptable (tcp_connection_t * tc0, vlib_buffer_t * tb0)
{
/* SND.UNA =< SEG.ACK =< SND.NXT */
return (seq_leq (tc0->snd_una, vnet_buffer (tb0)->tcp.ack_number)
&& seq_leq (vnet_buffer (tb0)->tcp.ack_number, tc0->snd_nxt));
}
/**
* Compute smoothed RTT as per VJ's '88 SIGCOMM and RFC6298
*
* Note that although the original article, srtt and rttvar are scaled
* to minimize round-off errors, here we don't. Instead, we rely on
* better precision time measurements.
*
* TODO support us rtt resolution
*/
static void
tcp_estimate_rtt (tcp_connection_t * tc, u32 mrtt)
{
int err, diff;
if (tc->srtt != 0)
{
err = mrtt - tc->srtt;
/* XXX Drop in RTT results in RTTVAR increase and bigger RTO.
* The increase should be bound */
tc->srtt = clib_max ((int) tc->srtt + (err >> 3), 1);
diff = (clib_abs (err) - (int) tc->rttvar) >> 2;
tc->rttvar = clib_max ((int) tc->rttvar + diff, 1);
}
else
{
/* First measurement. */
tc->srtt = mrtt;
tc->rttvar = mrtt >> 1;
}
}
void
tcp_update_rto (tcp_connection_t * tc)
{
tc->rto = clib_min (tc->srtt + (tc->rttvar << 2), TCP_RTO_MAX);
tc->rto = clib_max (tc->rto, TCP_RTO_MIN);
}
/**
* Update RTT estimate and RTO timer
*
* Measure RTT: We have two sources of RTT measurements: TSOPT and ACK
* timing. Middle boxes are known to fiddle with TCP options so we
* should give higher priority to ACK timing.
*
* This should be called only if previously sent bytes have been acked.
*
* return 1 if valid rtt 0 otherwise
*/
static int
tcp_update_rtt (tcp_connection_t * tc, u32 ack)
{
u32 mrtt = 0;
/* Karn's rule, part 1. Don't use retransmitted segments to estimate
* RTT because they're ambiguous. */
if (tcp_in_cong_recovery (tc) || tc->sack_sb.sacked_bytes)
{
if (tcp_in_recovery (tc))
return 0;
goto done;
}
if (tc->rtt_ts && seq_geq (ack, tc->rtt_seq))
{
f64 sample = tcp_time_now_us (tc->c_thread_index) - tc->rtt_ts;
tc->mrtt_us = tc->mrtt_us + (sample - tc->mrtt_us) * 0.125;
mrtt = clib_max ((u32) (sample * THZ), 1);
/* Allow measuring of a new RTT */
tc->rtt_ts = 0;
}
/* As per RFC7323 TSecr can be used for RTTM only if the segment advances
* snd_una, i.e., the left side of the send window:
* seq_lt (tc->snd_una, ack). This is a condition for calling update_rtt */
else if (tcp_opts_tstamp (&tc->rcv_opts) && tc->rcv_opts.tsecr)
{
u32 now = tcp_time_now_w_thread (tc->c_thread_index);
mrtt = clib_max (now - tc->rcv_opts.tsecr, 1);
}
/* Ignore dubious measurements */
if (mrtt == 0 || mrtt > TCP_RTT_MAX)
goto done;
tcp_estimate_rtt (tc, mrtt);
done:
/* If we got here something must've been ACKed so make sure boff is 0,
* even if mrtt is not valid since we update the rto lower */
tc->rto_boff = 0;
tcp_update_rto (tc);
return 0;
}
static void
tcp_estimate_initial_rtt (tcp_connection_t * tc)
{
u8 thread_index = vlib_num_workers ()? 1 : 0;
int mrtt;
if (tc->rtt_ts)
{
tc->mrtt_us = tcp_time_now_us (thread_index) - tc->rtt_ts;
mrtt = clib_max ((u32) (tc->mrtt_us * THZ), 1);
tc->rtt_ts = 0;
}
else
{
mrtt = tcp_time_now_w_thread (thread_index) - tc->rcv_opts.tsecr;
tc->mrtt_us = (f64) mrtt *TCP_TICK;
}
if (mrtt > 0 && mrtt < TCP_RTT_MAX)
tcp_estimate_rtt (tc, mrtt);
}
/**
* Dequeue bytes for connections that have received acks in last burst
*/
static void
tcp_handle_postponed_dequeues (tcp_worker_ctx_t * wrk)
{
u32 thread_index = wrk->vm->thread_index;
u32 *pending_deq_acked;
tcp_connection_t *tc;
int i;
if (!vec_len (wrk->pending_deq_acked))
return;
pending_deq_acked = wrk->pending_deq_acked;
for (i = 0; i < vec_len (pending_deq_acked); i++)
{
tc = tcp_connection_get (pending_deq_acked[i], thread_index);
tc->flags &= ~TCP_CONN_DEQ_PENDING;
if (PREDICT_FALSE (!tc->burst_acked))
continue;
/* Dequeue the newly ACKed bytes */
stream_session_dequeue_drop (&tc->connection, tc->burst_acked);
tc->burst_acked = 0;
tcp_validate_txf_size (tc, tc->snd_una_max - tc->snd_una);
/* If everything has been acked, stop retransmit timer
* otherwise update. */
tcp_retransmit_timer_update (tc);
/* If not congested, update pacer based on our new
* cwnd estimate */
if (!tcp_in_fastrecovery (tc))
tcp_connection_tx_pacer_update (tc);
}
_vec_len (wrk->pending_deq_acked) = 0;
}
static void
tcp_program_dequeue (tcp_worker_ctx_t * wrk, tcp_connection_t * tc)
{
if (!(tc->flags & TCP_CONN_DEQ_PENDING))
{
vec_add1 (wrk->pending_deq_acked, tc->c_c_index);
tc->flags |= TCP_CONN_DEQ_PENDING;
}
tc->burst_acked += tc->bytes_acked + tc->sack_sb.snd_una_adv;
}
/**
* Check if duplicate ack as per RFC5681 Sec. 2
*/
static u8
tcp_ack_is_dupack (tcp_connection_t * tc, vlib_buffer_t * b, u32 prev_snd_wnd,
u32 prev_snd_una)
{
return ((vnet_buffer (b)->tcp.ack_number == prev_snd_una)
&& seq_gt (tc->snd_una_max, tc->snd_una)
&& (vnet_buffer (b)->tcp.seq_end == vnet_buffer (b)->tcp.seq_number)
&& (prev_snd_wnd == tc->snd_wnd));
}
/**
* Checks if ack is a congestion control event.
*/
static u8
tcp_ack_is_cc_event (tcp_connection_t * tc, vlib_buffer_t * b,
u32 prev_snd_wnd, u32 prev_snd_una, u8 * is_dack)
{
/* Check if ack is duplicate. Per RFC 6675, ACKs that SACK new data are
* defined to be 'duplicate' */
*is_dack = tc->sack_sb.last_sacked_bytes
|| tcp_ack_is_dupack (tc, b, prev_snd_wnd, prev_snd_una);
return ((*is_dack || tcp_in_cong_recovery (tc)) && !tcp_is_lost_fin (tc));
}
static u32
scoreboard_hole_index (sack_scoreboard_t * sb, sack_scoreboard_hole_t * hole)
{
ASSERT (!pool_is_free_index (sb->holes, hole - sb->holes));
return hole - sb->holes;
}
static u32
scoreboard_hole_bytes (sack_scoreboard_hole_t * hole)
{
return hole->end - hole->start;
}
sack_scoreboard_hole_t *
scoreboard_get_hole (sack_scoreboard_t * sb, u32 index)
{
if (index != TCP_INVALID_SACK_HOLE_INDEX)
return pool_elt_at_index (sb->holes, index);
return 0;
}
sack_scoreboard_hole_t *
scoreboard_next_hole (sack_scoreboard_t * sb, sack_scoreboard_hole_t * hole)
{
if (hole->next != TCP_INVALID_SACK_HOLE_INDEX)
return pool_elt_at_index (sb->holes, hole->next);
return 0;
}
sack_scoreboard_hole_t *
scoreboard_prev_hole (sack_scoreboard_t * sb, sack_scoreboard_hole_t * hole)
{
if (hole->prev != TCP_INVALID_SACK_HOLE_INDEX)
return pool_elt_at_index (sb->holes, hole->prev);
return 0;
}
sack_scoreboard_hole_t *
scoreboard_first_hole (sack_scoreboard_t * sb)
{
if (sb->head != TCP_INVALID_SACK_HOLE_INDEX)
return pool_elt_at_index (sb->holes, sb->head);
return 0;
}
sack_scoreboard_hole_t *
scoreboard_last_hole (sack_scoreboard_t * sb)
{
if (sb->tail != TCP_INVALID_SACK_HOLE_INDEX)
return pool_elt_at_index (sb->holes, sb->tail);
return 0;
}
static void
scoreboard_remove_hole (sack_scoreboard_t * sb, sack_scoreboard_hole_t * hole)
{
sack_scoreboard_hole_t *next, *prev;
if (hole->next != TCP_INVALID_SACK_HOLE_INDEX)
{
next = pool_elt_at_index (sb->holes, hole->next);
next->prev = hole->prev;
}
else
{
sb->tail = hole->prev;
}
if (hole->prev != TCP_INVALID_SACK_HOLE_INDEX)
{
prev = pool_elt_at_index (sb->holes, hole->prev);
prev->next = hole->next;
}
else
{
sb->head = hole->next;
}
if (scoreboard_hole_index (sb, hole) == sb->cur_rxt_hole)
sb->cur_rxt_hole = TCP_INVALID_SACK_HOLE_INDEX;
/* Poison the entry */
if (CLIB_DEBUG > 0)
clib_memset (hole, 0xfe, sizeof (*hole));
pool_put (sb->holes, hole);
}
static sack_scoreboard_hole_t *
scoreboard_insert_hole (sack_scoreboard_t * sb, u32 prev_index,
u32 start, u32 end)
{
sack_scoreboard_hole_t *hole, *next, *prev;
u32 hole_index;
pool_get (sb->holes, hole);
clib_memset (hole, 0, sizeof (*hole));
hole->start = start;
hole->end = end;
hole_index = scoreboard_hole_index (sb, hole);
prev = scoreboard_get_hole (sb, prev_index);
if (prev)
{
hole->prev = prev_index;
hole->next = prev->next;
if ((next = scoreboard_next_hole (sb, hole)))
next->prev = hole_index;
else
sb->tail = hole_index;
prev->next = hole_index;
}
else
{
sb->head = hole_index;
hole->prev = TCP_INVALID_SACK_HOLE_INDEX;
hole->next = TCP_INVALID_SACK_HOLE_INDEX;
}
return hole;
}
static void
scoreboard_update_bytes (tcp_connection_t * tc, sack_scoreboard_t * sb)
{
sack_scoreboard_hole_t *left, *right;
u32 bytes = 0, blks = 0;
sb->lost_bytes = 0;
sb->sacked_bytes = 0;
left = scoreboard_last_hole (sb);
if (!left)
return;
if (seq_gt (sb->high_sacked, left->end))
{
bytes = sb->high_sacked - left->end;
blks = 1;
}
while ((right = left)
&& bytes < (TCP_DUPACK_THRESHOLD - 1) * tc->snd_mss
&& blks < TCP_DUPACK_THRESHOLD
/* left not updated if above conditions fail */
&& (left = scoreboard_prev_hole (sb, right)))
{
bytes += right->start - left->end;
blks++;
}
/* left is first lost */
if (left)
{
do
{
sb->lost_bytes += scoreboard_hole_bytes (right);
left->is_lost = 1;
left = scoreboard_prev_hole (sb, right);
if (left)
bytes += right->start - left->end;
}
while ((right = left));
}
sb->sacked_bytes = bytes;
}
/**
* Figure out the next hole to retransmit
*
* Follows logic proposed in RFC6675 Sec. 4, NextSeg()
*/
sack_scoreboard_hole_t *
scoreboard_next_rxt_hole (sack_scoreboard_t * sb,
sack_scoreboard_hole_t * start,
u8 have_unsent, u8 * can_rescue, u8 * snd_limited)
{
sack_scoreboard_hole_t *hole = 0;
hole = start ? start : scoreboard_first_hole (sb);
while (hole && seq_leq (hole->end, sb->high_rxt) && hole->is_lost)
hole = scoreboard_next_hole (sb, hole);
/* Nothing, return */
if (!hole)
{
sb->cur_rxt_hole = TCP_INVALID_SACK_HOLE_INDEX;
return 0;
}
/* Rule (1): if higher than rxt, less than high_sacked and lost */
if (hole->is_lost && seq_lt (hole->start, sb->high_sacked))
{
sb->cur_rxt_hole = scoreboard_hole_index (sb, hole);
}
else
{
/* Rule (2): available unsent data */
if (have_unsent)
{
sb->cur_rxt_hole = TCP_INVALID_SACK_HOLE_INDEX;
return 0;
}
/* Rule (3): if hole not lost */
else if (seq_lt (hole->start, sb->high_sacked))
{
*snd_limited = 0;
sb->cur_rxt_hole = scoreboard_hole_index (sb, hole);
}
/* Rule (4): if hole beyond high_sacked */
else
{
ASSERT (seq_geq (hole->start, sb->high_sacked));
*snd_limited = 1;
*can_rescue = 1;
/* HighRxt MUST NOT be updated */
return 0;
}
}
if (hole && seq_lt (sb->high_rxt, hole->start))
sb->high_rxt = hole->start;
return hole;
}
static void
scoreboard_init_high_rxt (sack_scoreboard_t * sb, u32 snd_una)
{
sack_scoreboard_hole_t *hole;
hole = scoreboard_first_hole (sb);
if (hole)
{
snd_una = seq_gt (snd_una, hole->start) ? snd_una : hole->start;
sb->cur_rxt_hole = sb->head;
}
sb->high_rxt = snd_una;
sb->rescue_rxt = snd_una - 1;
}
void
scoreboard_init (sack_scoreboard_t * sb)
{
sb->head = TCP_INVALID_SACK_HOLE_INDEX;
sb->tail = TCP_INVALID_SACK_HOLE_INDEX;
sb->cur_rxt_hole = TCP_INVALID_SACK_HOLE_INDEX;
}
void
scoreboard_clear (sack_scoreboard_t * sb)
{
sack_scoreboard_hole_t *hole;
while ((hole = scoreboard_first_hole (sb)))
{
scoreboard_remove_hole (sb, hole);
}
ASSERT (sb->head == sb->tail && sb->head == TCP_INVALID_SACK_HOLE_INDEX);
ASSERT (pool_elts (sb->holes) == 0);
sb->sacked_bytes = 0;
sb->last_sacked_bytes = 0;
sb->last_bytes_delivered = 0;
sb->snd_una_adv = 0;
sb->high_sacked = 0;
sb->high_rxt = 0;
sb->lost_bytes = 0;
sb->cur_rxt_hole = TCP_INVALID_SACK_HOLE_INDEX;
}
/**
* Test that scoreboard is sane after recovery
*
* Returns 1 if scoreboard is empty or if first hole beyond
* snd_una.
*/
static u8
tcp_scoreboard_is_sane_post_recovery (tcp_connection_t * tc)
{
sack_scoreboard_hole_t *hole;
hole = scoreboard_first_hole (&tc->sack_sb);
return (!hole || (seq_geq (hole->start, tc->snd_una)
&& seq_lt (hole->end, tc->snd_una_max)));
}
void
tcp_rcv_sacks (tcp_connection_t * tc, u32 ack)
{
sack_scoreboard_t *sb = &tc->sack_sb;
sack_block_t *blk, tmp;
sack_scoreboard_hole_t *hole, *next_hole, *last_hole;
u32 blk_index = 0, old_sacked_bytes, hole_index;
int i, j;
sb->last_sacked_bytes = 0;
sb->last_bytes_delivered = 0;
sb->snd_una_adv = 0;
if (!tcp_opts_sack (&tc->rcv_opts)
&& sb->head == TCP_INVALID_SACK_HOLE_INDEX)
return;
old_sacked_bytes = sb->sacked_bytes;
/* Remove invalid blocks */
blk = tc->rcv_opts.sacks;
while (blk < vec_end (tc->rcv_opts.sacks))
{
if (seq_lt (blk->start, blk->end)
&& seq_gt (blk->start, tc->snd_una)
&& seq_gt (blk->start, ack) && seq_leq (blk->end, tc->snd_una_max))
{
blk++;
continue;
}
vec_del1 (tc->rcv_opts.sacks, blk - tc->rcv_opts.sacks);
}
/* Add block for cumulative ack */
if (seq_gt (ack, tc->snd_una))
{
tmp.start = tc->snd_una;
tmp.end = ack;
vec_add1 (tc->rcv_opts.sacks, tmp);
}
if (vec_len (tc->rcv_opts.sacks) == 0)
return;
tcp_scoreboard_trace_add (tc, ack);
/* Make sure blocks are ordered */
for (i = 0; i < vec_len (tc->rcv_opts.sacks); i++)
for (j = i + 1; j < vec_len (tc->rcv_opts.sacks); j++)
if (seq_lt (tc->rcv_opts.sacks[j].start, tc->rcv_opts.sacks[i].start))
{
tmp = tc->rcv_opts.sacks[i];
tc->rcv_opts.sacks[i] = tc->rcv_opts.sacks[j];
tc->rcv_opts.sacks[j] = tmp;
}
if (sb->head == TCP_INVALID_SACK_HOLE_INDEX)
{
/* If no holes, insert the first that covers all outstanding bytes */
last_hole = scoreboard_insert_hole (sb, TCP_INVALID_SACK_HOLE_INDEX,
tc->snd_una, tc->snd_una_max);
sb->tail = scoreboard_hole_index (sb, last_hole);
tmp = tc->rcv_opts.sacks[vec_len (tc->rcv_opts.sacks) - 1];
sb->high_sacked = tmp.end;
}
else
{
/* If we have holes but snd_una_max is beyond the last hole, update
* last hole end */
tmp = tc->rcv_opts.sacks[vec_len (tc->rcv_opts.sacks) - 1];
last_hole = scoreboard_last_hole (sb);
if (seq_gt (tc->snd_una_max, last_hole->end))
{
if (seq_geq (last_hole->start, sb->high_sacked))
{
last_hole->end = tc->snd_una_max;
}
/* New hole after high sacked block */
else if (seq_lt (sb->high_sacked, tc->snd_una_max))
{
scoreboard_insert_hole (sb, sb->tail, sb->high_sacked,
tc->snd_una_max);
}
}
/* Keep track of max byte sacked for when the last hole
* is acked */
if (seq_gt (tmp.end, sb->high_sacked))
sb->high_sacked = tmp.end;
}
/* Walk the holes with the SACK blocks */
hole = pool_elt_at_index (sb->holes, sb->head);
while (hole && blk_index < vec_len (tc->rcv_opts.sacks))
{
blk = &tc->rcv_opts.sacks[blk_index];
if (seq_leq (blk->start, hole->start))
{
/* Block covers hole. Remove hole */
if (seq_geq (blk->end, hole->end))
{
next_hole = scoreboard_next_hole (sb, hole);
/* Byte accounting: snd_una needs to be advanced */
if (blk->end == ack)
{
if (next_hole)
{
if (seq_lt (ack, next_hole->start))
sb->snd_una_adv = next_hole->start - ack;
sb->last_bytes_delivered +=
next_hole->start - hole->end;
}
else
{
ASSERT (seq_geq (sb->high_sacked, ack));
sb->snd_una_adv = sb->high_sacked - ack;
sb->last_bytes_delivered += sb->high_sacked - hole->end;
}
}
scoreboard_remove_hole (sb, hole);
hole = next_hole;
}
/* Partial 'head' overlap */
else
{
if (seq_gt (blk->end, hole->start))
{
hole->start = blk->end;
}
blk_index++;
}
}
else
{
/* Hole must be split */
if (seq_lt (blk->end, hole->end))
{
hole_index = scoreboard_hole_index (sb, hole);
next_hole = scoreboard_insert_hole (sb, hole_index, blk->end,
hole->end);
/* Pool might've moved */
hole = scoreboard_get_hole (sb, hole_index);
hole->end = blk->start;
blk_index++;
ASSERT (hole->next == scoreboard_hole_index (sb, next_hole));
}
else if (seq_lt (blk->start, hole->end))
{
hole->end = blk->start;
}
hole = scoreboard_next_hole (sb, hole);
}
}
if (pool_elts (sb->holes) == 1)
{
hole = scoreboard_first_hole (sb);
if (hole->start == ack + sb->snd_una_adv
&& hole->end == tc->snd_una_max)
scoreboard_remove_hole (sb, hole);
}
scoreboard_update_bytes (tc, sb);
sb->last_sacked_bytes = sb->sacked_bytes
- (old_sacked_bytes - sb->last_bytes_delivered);
ASSERT (sb->last_sacked_bytes <= sb->sacked_bytes || tcp_in_recovery (tc));
ASSERT (sb->sacked_bytes == 0 || tcp_in_recovery (tc)
|| sb->sacked_bytes < tc->snd_una_max - seq_max (tc->snd_una, ack));
ASSERT (sb->last_sacked_bytes + sb->lost_bytes <= tc->snd_una_max
- seq_max (tc->snd_una, ack) || tcp_in_recovery (tc));
ASSERT (sb->head == TCP_INVALID_SACK_HOLE_INDEX || tcp_in_recovery (tc)
|| sb->holes[sb->head].start == ack + sb->snd_una_adv);
TCP_EVT_DBG (TCP_EVT_CC_SCOREBOARD, tc);
}
/**
* Try to update snd_wnd based on feedback received from peer.
*
* If successful, and new window is 'effectively' 0, activate persist
* timer.
*/
static void
tcp_update_snd_wnd (tcp_connection_t * tc, u32 seq, u32 ack, u32 snd_wnd)
{
/* If (SND.WL1 < SEG.SEQ or (SND.WL1 = SEG.SEQ and SND.WL2 =< SEG.ACK)), set
* SND.WND <- SEG.WND, set SND.WL1 <- SEG.SEQ, and set SND.WL2 <- SEG.ACK */
if (seq_lt (tc->snd_wl1, seq)
|| (tc->snd_wl1 == seq && seq_leq (tc->snd_wl2, ack)))
{
tc->snd_wnd = snd_wnd;
tc->snd_wl1 = seq;
tc->snd_wl2 = ack;
TCP_EVT_DBG (TCP_EVT_SND_WND, tc);
if (PREDICT_FALSE (tc->snd_wnd < tc->snd_mss))
{
/* Set persist timer if not set and we just got 0 wnd */
if (!tcp_timer_is_active (tc, TCP_TIMER_PERSIST)
&& !tcp_timer_is_active (tc, TCP_TIMER_RETRANSMIT))
tcp_persist_timer_set (tc);
}
else
{
tcp_persist_timer_reset (tc);
if (PREDICT_FALSE (!tcp_in_recovery (tc) && tc->rto_boff > 0))
{
tc->rto_boff = 0;
tcp_update_rto (tc);
}
}
}
}
/**
* Init loss recovery/fast recovery.
*
* Triggered by dup acks as opposed to timer timeout. Note that cwnd is
* updated in @ref tcp_cc_handle_event after fast retransmit
*/
void
tcp_cc_init_congestion (tcp_connection_t * tc)
{
tcp_fastrecovery_on (tc);
tc->snd_congestion = tc->snd_una_max;
tc->cwnd_acc_bytes = 0;
tc->snd_rxt_bytes = 0;
tc->prev_ssthresh = tc->ssthresh;
tc->prev_cwnd = tc->cwnd;
tc->cc_algo->congestion (tc);
TCP_EVT_DBG (TCP_EVT_CC_EVT, tc, 4);
}
static void
tcp_cc_recovery_exit (tcp_connection_t * tc)
{
tc->rto_boff = 0;
tcp_update_rto (tc);
tc->snd_rxt_ts = 0;
tc->snd_nxt = tc->snd_una_max;
tc->rtt_ts = 0;
tcp_recovery_off (tc);
TCP_EVT_DBG (TCP_EVT_CC_EVT, tc, 3);
}
void
tcp_cc_fastrecovery_exit (tcp_connection_t * tc)
{
tc->cc_algo->recovered (tc);
tc->snd_rxt_bytes = 0;
tc->rcv_dupacks = 0;
tc->snd_nxt = tc->snd_una_max;
tc->snd_rxt_bytes = 0;
tc->rtt_ts = 0;
tcp_fastrecovery_off (tc);
tcp_fastrecovery_first_off (tc);
TCP_EVT_DBG (TCP_EVT_CC_EVT, tc, 3);
}
static void
tcp_cc_congestion_undo (tcp_connection_t * tc)
{
tc->cwnd = tc->prev_cwnd;
tc->ssthresh = tc->prev_ssthresh;
tc->snd_nxt = tc->snd_una_max;
tc->rcv_dupacks = 0;
if (tcp_in_recovery (tc))
tcp_cc_recovery_exit (tc);
else if (tcp_in_fastrecovery (tc))
tcp_cc_fastrecovery_exit (tc);
ASSERT (tc->rto_boff == 0);
TCP_EVT_DBG (TCP_EVT_CC_EVT, tc, 5);
}
static inline u8
tcp_cc_is_spurious_timeout_rxt (tcp_connection_t * tc)
{
return (tcp_in_recovery (tc) && tc->rto_boff == 1
&& tc->snd_rxt_ts
&& tcp_opts_tstamp (&tc->rcv_opts)
&& timestamp_lt (tc->rcv_opts.tsecr, tc->snd_rxt_ts));
}
static inline u8
tcp_cc_is_spurious_fast_rxt (tcp_connection_t * tc)
{
return (tcp_in_fastrecovery (tc)
&& tc->cwnd > tc->ssthresh + 3 * tc->snd_mss);
}
static u8
tcp_cc_is_spurious_retransmit (tcp_connection_t * tc)
{
return (tcp_cc_is_spurious_timeout_rxt (tc)
|| tcp_cc_is_spurious_fast_rxt (tc));
}
static int
tcp_cc_recover (tcp_connection_t * tc)
{
ASSERT (tcp_in_cong_recovery (tc));
if (tcp_cc_is_spurious_retransmit (tc))
{
tcp_cc_congestion_undo (tc);
return 1;
}
if (tcp_in_recovery (tc))
tcp_cc_recovery_exit (tc);
else if (tcp_in_fastrecovery (tc))
tcp_cc_fastrecovery_exit (tc);
ASSERT (tc->rto_boff == 0);
ASSERT (!tcp_in_cong_recovery (tc));
ASSERT (tcp_scoreboard_is_sane_post_recovery (tc));
return 0;
}
static void
tcp_cc_update (tcp_connection_t * tc, vlib_buffer_t * b)
{
ASSERT (!tcp_in_cong_recovery (tc) || tcp_is_lost_fin (tc));
/* Congestion avoidance */
tcp_cc_rcv_ack (tc);
/* If a cumulative ack, make sure dupacks is 0 */
tc->rcv_dupacks = 0;
/* When dupacks hits the threshold we only enter fast retransmit if
* cumulative ack covers more than snd_congestion. Should snd_una
* wrap this test may fail under otherwise valid circumstances.
* Therefore, proactively update snd_congestion when wrap detected. */
if (PREDICT_FALSE
(seq_leq (tc->snd_congestion, tc->snd_una - tc->bytes_acked)
&& seq_gt (tc->snd_congestion, tc->snd_una)))
tc->snd_congestion = tc->snd_una - 1;
}
static u8
tcp_should_fastrecover_sack (tcp_connection_t * tc)
{
return (TCP_DUPACK_THRESHOLD - 1) * tc->snd_mss < tc->sack_sb.sacked_bytes;
}
static u8
tcp_should_fastrecover (tcp_connection_t * tc)
{
return (tc->rcv_dupacks == TCP_DUPACK_THRESHOLD
|| tcp_should_fastrecover_sack (tc));
}
void
tcp_program_fastretransmit (tcp_worker_ctx_t * wrk, tcp_connection_t * tc)
{
if (!(tc->flags & TCP_CONN_FRXT_PENDING))
{
vec_add1 (wrk->pending_fast_rxt, tc->c_c_index);
tc->flags |= TCP_CONN_FRXT_PENDING;
}
}
void
tcp_do_fastretransmits (tcp_worker_ctx_t * wrk)
{
u32 *ongoing_fast_rxt, burst_bytes, sent_bytes, thread_index;
u32 max_burst_size, burst_size, n_segs = 0, n_segs_now;
tcp_connection_t *tc;
u64 last_cpu_time;
int i;
if (vec_len (wrk->pending_fast_rxt) == 0
&& vec_len (wrk->postponed_fast_rxt) == 0)
return;
thread_index = wrk->vm->thread_index;
last_cpu_time = wrk->vm->clib_time.last_cpu_time;
ongoing_fast_rxt = wrk->ongoing_fast_rxt;
vec_append (ongoing_fast_rxt, wrk->postponed_fast_rxt);
vec_append (ongoing_fast_rxt, wrk->pending_fast_rxt);
_vec_len (wrk->postponed_fast_rxt) = 0;
_vec_len (wrk->pending_fast_rxt) = 0;
max_burst_size = VLIB_FRAME_SIZE / vec_len (ongoing_fast_rxt);
max_burst_size = clib_max (max_burst_size, 1);
for (i = 0; i < vec_len (ongoing_fast_rxt); i++)
{
if (n_segs >= VLIB_FRAME_SIZE)
{
vec_add1 (wrk->postponed_fast_rxt, ongoing_fast_rxt[i]);
continue;
}
tc = tcp_connection_get (ongoing_fast_rxt[i], thread_index);
tc->flags &= ~TCP_CONN_FRXT_PENDING;
if (!tcp_in_fastrecovery (tc))
continue;
burst_size = clib_min (max_burst_size, VLIB_FRAME_SIZE - n_segs);
burst_bytes = transport_connection_tx_pacer_burst (&tc->connection,
last_cpu_time);
burst_size = clib_min (burst_size, burst_bytes / tc->snd_mss);
if (!burst_size)
{
tcp_program_fastretransmit (wrk, tc);
continue;
}
n_segs_now = tcp_fast_retransmit (wrk, tc, burst_size);
sent_bytes = clib_min (n_segs_now * tc->snd_mss, burst_bytes);
transport_connection_tx_pacer_update_bytes (&tc->connection,
sent_bytes);
n_segs += n_segs_now;
}
_vec_len (ongoing_fast_rxt) = 0;
wrk->ongoing_fast_rxt = ongoing_fast_rxt;
}
/**
* One function to rule them all ... and in the darkness bind them
*/
static void
tcp_cc_handle_event (tcp_connection_t * tc, u32 is_dack)
{
u32 rxt_delivered;
if (tcp_in_fastrecovery (tc) && tcp_opts_sack_permitted (&tc->rcv_opts))
{
if (tc->bytes_acked)
goto partial_ack;
tcp_program_fastretransmit (tcp_get_worker (tc->c_thread_index), tc);
return;
}
/*
* Duplicate ACK. Check if we should enter fast recovery, or if already in
* it account for the bytes that left the network.
*/
else if (is_dack && !tcp_in_recovery (tc))
{
TCP_EVT_DBG (TCP_EVT_DUPACK_RCVD, tc, 1);
ASSERT (tc->snd_una != tc->snd_una_max
|| tc->sack_sb.last_sacked_bytes);
tc->rcv_dupacks++;
/* Pure duplicate ack. If some data got acked, it's handled lower */
if (tc->rcv_dupacks > TCP_DUPACK_THRESHOLD && !tc->bytes_acked)
{
ASSERT (tcp_in_fastrecovery (tc));
tc->cc_algo->rcv_cong_ack (tc, TCP_CC_DUPACK);
return;
}
else if (tcp_should_fastrecover (tc))
{
u32 pacer_wnd;
ASSERT (!tcp_in_fastrecovery (tc));
/* Heuristic to catch potential late dupacks
* after fast retransmit exits */
if (is_dack && tc->snd_una == tc->snd_congestion
&& timestamp_leq (tc->rcv_opts.tsecr, tc->tsecr_last_ack))
{
tc->rcv_dupacks = 0;
return;
}
tcp_cc_init_congestion (tc);
tc->cc_algo->rcv_cong_ack (tc, TCP_CC_DUPACK);
if (tcp_opts_sack_permitted (&tc->rcv_opts))
{
tc->cwnd = tc->ssthresh;
scoreboard_init_high_rxt (&tc->sack_sb, tc->snd_una);
}
else
{
/* Post retransmit update cwnd to ssthresh and account for the
* three segments that have left the network and should've been
* buffered at the receiver XXX */
tc->cwnd = tc->ssthresh + 3 * tc->snd_mss;
}
/* Constrain rate until we get a partial ack */
pacer_wnd = clib_max (0.1 * tc->cwnd, 2 * tc->snd_mss);
tcp_connection_tx_pacer_reset (tc, pacer_wnd,
0 /* start bucket */ );
tcp_program_fastretransmit (tcp_get_worker (tc->c_thread_index),
tc);
return;
}
else if (!tc->bytes_acked
|| (tc->bytes_acked && !tcp_in_cong_recovery (tc)))
{
tc->cc_algo->rcv_cong_ack (tc, TCP_CC_DUPACK);
return;
}
else
goto partial_ack;
}
/* Don't allow entry in fast recovery if still in recovery, for now */
else if (0 && is_dack && tcp_in_recovery (tc))
{
/* If of of the two conditions lower hold, reset dupacks because
* we're probably after timeout (RFC6582 heuristics).
* If Cumulative ack does not cover more than congestion threshold,
* and:
* 1) The following doesn't hold: The congestion window is greater
* than SMSS bytes and the difference between highest_ack
* and prev_highest_ack is at most 4*SMSS bytes
* 2) Echoed timestamp in the last non-dup ack does not equal the
* stored timestamp
*/
if (seq_leq (tc->snd_una, tc->snd_congestion)
&& ((!(tc->cwnd > tc->snd_mss
&& tc->bytes_acked <= 4 * tc->snd_mss))
|| (tc->rcv_opts.tsecr != tc->tsecr_last_ack)))
{
tc->rcv_dupacks = 0;
return;
}
}
if (!tc->bytes_acked)
return;
partial_ack:
TCP_EVT_DBG (TCP_EVT_CC_PACK, tc);
/*
* Legitimate ACK. 1) See if we can exit recovery
*/
/* Update the pacing rate. For the first partial ack we move from
* the artificially constrained rate to the one after congestion */
tcp_connection_tx_pacer_update (tc);
if (seq_geq (tc->snd_una, tc->snd_congestion))
{
tcp_retransmit_timer_update (tc);
/* If spurious return, we've already updated everything */
if (tcp_cc_recover (tc))
{
tc->tsecr_last_ack = tc->rcv_opts.tsecr;
return;
}
tc->snd_nxt = tc->snd_una_max;
/* Treat as congestion avoidance ack */
tcp_cc_rcv_ack (tc);
return;
}
/*
* Legitimate ACK. 2) If PARTIAL ACK try to retransmit
*/
/* XXX limit this only to first partial ack? */
tcp_retransmit_timer_update (tc);
/* RFC6675: If the incoming ACK is a cumulative acknowledgment,
* reset dupacks to 0. Also needed if in congestion recovery */
tc->rcv_dupacks = 0;
/* Post RTO timeout don't try anything fancy */
if (tcp_in_recovery (tc))
{
tcp_cc_rcv_ack (tc);
transport_add_tx_event (&tc->connection);
return;
}
/* Remove retransmitted bytes that have been delivered */
if (tcp_opts_sack_permitted (&tc->rcv_opts))
{
ASSERT (tc->bytes_acked + tc->sack_sb.snd_una_adv
>= tc->sack_sb.last_bytes_delivered
|| (tc->flags & TCP_CONN_FINSNT));
/* If we have sacks and we haven't gotten an ack beyond high_rxt,
* remove sacked bytes delivered */
if (seq_lt (tc->snd_una, tc->sack_sb.high_rxt))
{
rxt_delivered = tc->bytes_acked + tc->sack_sb.snd_una_adv
- tc->sack_sb.last_bytes_delivered;
ASSERT (tc->snd_rxt_bytes >= rxt_delivered);
tc->snd_rxt_bytes -= rxt_delivered;
}
else
{
/* Apparently all retransmitted holes have been acked */
tc->snd_rxt_bytes = 0;
tc->sack_sb.high_rxt = tc->snd_una;
}
}
else
{
tcp_fastrecovery_first_on (tc);
/* Reuse last bytes delivered to track total bytes acked */
tc->sack_sb.last_bytes_delivered += tc->bytes_acked;
if (tc->snd_rxt_bytes > tc->bytes_acked)
tc->snd_rxt_bytes -= tc->bytes_acked;
else
tc->snd_rxt_bytes = 0;
}
tc->cc_algo->rcv_cong_ack (tc, TCP_CC_PARTIALACK);
/*
* Since this was a partial ack, try to retransmit some more data
*/
tcp_program_fastretransmit (tcp_get_worker (tc->c_thread_index), tc);
}
/**
* Process incoming ACK
*/
static int
tcp_rcv_ack (tcp_worker_ctx_t * wrk, tcp_connection_t * tc, vlib_buffer_t * b,
tcp_header_t * th, u32 * error)
{
u32 prev_snd_wnd, prev_snd_una;
u8 is_dack;
TCP_EVT_DBG (TCP_EVT_CC_STAT, tc);
/* If the ACK acks something not yet sent (SEG.ACK > SND.NXT) */
if (PREDICT_FALSE (seq_gt (vnet_buffer (b)->tcp.ack_number, tc->snd_nxt)))
{
/* When we entered recovery, we reset snd_nxt to snd_una. Seems peer
* still has the data so accept the ack */
if (tcp_in_recovery (tc)
&& seq_leq (vnet_buffer (b)->tcp.ack_number, tc->snd_congestion))
{
tc->snd_nxt = vnet_buffer (b)->tcp.ack_number;
if (seq_gt (tc->snd_nxt, tc->snd_una_max))
tc->snd_una_max = tc->snd_nxt;
goto process_ack;
}
/* If we have outstanding data and this is within the window, accept it,
* probably retransmit has timed out. Otherwise ACK segment and then
* drop it */
if (seq_gt (vnet_buffer (b)->tcp.ack_number, tc->snd_una_max))
{
tcp_program_ack (wrk, tc);
*error = TCP_ERROR_ACK_FUTURE;
TCP_EVT_DBG (TCP_EVT_ACK_RCV_ERR, tc, 0,
vnet_buffer (b)->tcp.ack_number);
return -1;
}
TCP_EVT_DBG (TCP_EVT_ACK_RCV_ERR, tc, 2,
vnet_buffer (b)->tcp.ack_number);
tc->snd_nxt = vnet_buffer (b)->tcp.ack_number;
}
/* If old ACK, probably it's an old dupack */
if (PREDICT_FALSE (seq_lt (vnet_buffer (b)->tcp.ack_number, tc->snd_una)))
{
*error = TCP_ERROR_ACK_OLD;
TCP_EVT_DBG (TCP_EVT_ACK_RCV_ERR, tc, 1,
vnet_buffer (b)->tcp.ack_number);
if (tcp_in_fastrecovery (tc) && tc->rcv_dupacks == TCP_DUPACK_THRESHOLD)
tcp_cc_handle_event (tc, 1);
/* Don't drop yet */
return 0;
}
/*
* Looks okay, process feedback
*/
process_ack:
if (tcp_opts_sack_permitted (&tc->rcv_opts))
tcp_rcv_sacks (tc, vnet_buffer (b)->tcp.ack_number);
prev_snd_wnd = tc->snd_wnd;
prev_snd_una = tc->snd_una;
tcp_update_snd_wnd (tc, vnet_buffer (b)->tcp.seq_number,
vnet_buffer (b)->tcp.ack_number,
clib_net_to_host_u16 (th->window) << tc->snd_wscale);
tc->bytes_acked = vnet_buffer (b)->tcp.ack_number - tc->snd_una;
tc->snd_una = vnet_buffer (b)->tcp.ack_number + tc->sack_sb.snd_una_adv;
tcp_validate_txf_size (tc, tc->bytes_acked);
if (tc->bytes_acked)
{
tcp_program_dequeue (wrk, tc);
tcp_update_rtt (tc, vnet_buffer (b)->tcp.ack_number);
}
TCP_EVT_DBG (TCP_EVT_ACK_RCVD, tc);
/*
* Check if we have congestion event
*/
if (tcp_ack_is_cc_event (tc, b, prev_snd_wnd, prev_snd_una, &is_dack))
{
tcp_cc_handle_event (tc, is_dack);
if (!tcp_in_cong_recovery (tc))
return 0;
*error = TCP_ERROR_ACK_DUP;
if (vnet_buffer (b)->tcp.data_len || tcp_is_fin (th))
return 0;
return -1;
}
/*
* Update congestion control (slow start/congestion avoidance)
*/
tcp_cc_update (tc, b);
*error = TCP_ERROR_ACK_OK;
return 0;
}
static void
tcp_program_disconnect (tcp_worker_ctx_t * wrk, tcp_connection_t * tc)
{
if (!tcp_disconnect_pending (tc))
{
vec_add1 (wrk->pending_disconnects, tc->c_c_index);
tcp_disconnect_pending_on (tc);
}
}
static void
tcp_handle_disconnects (tcp_worker_ctx_t * wrk)
{
u32 thread_index, *pending_disconnects;
tcp_connection_t *tc;
int i;
if (!vec_len (wrk->pending_disconnects))
return;
thread_index = wrk->vm->thread_index;
pending_disconnects = wrk->pending_disconnects;
for (i = 0; i < vec_len (pending_disconnects); i++)
{
tc = tcp_connection_get (pending_disconnects[i], thread_index);
tcp_disconnect_pending_off (tc);
stream_session_disconnect_notify (&tc->connection);
}
_vec_len (wrk->pending_disconnects) = 0;
}
static void
tcp_rcv_fin (tcp_worker_ctx_t * wrk, tcp_connection_t * tc, vlib_buffer_t * b,
u32 * error)
{
/* Enter CLOSE-WAIT and notify session. To avoid lingering
* in CLOSE-WAIT, set timer (reuse WAITCLOSE). */
/* Account for the FIN if nothing else was received */
if (vnet_buffer (b)->tcp.data_len == 0)
tc->rcv_nxt += 1;
tcp_program_ack (wrk, tc);
tc->state = TCP_STATE_CLOSE_WAIT;
tcp_program_disconnect (wrk, tc);
tcp_timer_update (tc, TCP_TIMER_WAITCLOSE, TCP_CLOSEWAIT_TIME);
TCP_EVT_DBG (TCP_EVT_FIN_RCVD, tc);
*error = TCP_ERROR_FIN_RCVD;
}
static u8
tcp_sack_vector_is_sane (sack_block_t * sacks)
{
int i;
for (i = 1; i < vec_len (sacks); i++)
{
if (sacks[i - 1].end == sacks[i].start)
return 0;
}
return 1;
}
/**
* Build SACK list as per RFC2018.
*
* Makes sure the first block contains the segment that generated the current
* ACK and the following ones are the ones most recently reported in SACK
* blocks.
*
* @param tc TCP connection for which the SACK list is updated
* @param start Start sequence number of the newest SACK block
* @param end End sequence of the newest SACK block
*/
void
tcp_update_sack_list (tcp_connection_t * tc, u32 start, u32 end)
{
sack_block_t *new_list = 0, *block = 0;
int i;
/* If the first segment is ooo add it to the list. Last write might've moved
* rcv_nxt over the first segment. */
if (seq_lt (tc->rcv_nxt, start))
{
vec_add2 (new_list, block, 1);
block->start = start;
block->end = end;
}
/* Find the blocks still worth keeping. */
for (i = 0; i < vec_len (tc->snd_sacks); i++)
{
/* Discard if rcv_nxt advanced beyond current block */
if (seq_leq (tc->snd_sacks[i].start, tc->rcv_nxt))
continue;
/* Merge or drop if segment overlapped by the new segment */
if (block && (seq_geq (tc->snd_sacks[i].end, new_list[0].start)
&& seq_leq (tc->snd_sacks[i].start, new_list[0].end)))
{
if (seq_lt (tc->snd_sacks[i].start, new_list[0].start))
new_list[0].start = tc->snd_sacks[i].start;
if (seq_lt (new_list[0].end, tc->snd_sacks[i].end))
new_list[0].end = tc->snd_sacks[i].end;
continue;
}
/* Save to new SACK list if we have space. */
if (vec_len (new_list) < TCP_MAX_SACK_BLOCKS)
{
vec_add1 (new_list, tc->snd_sacks[i]);
}
else
{
clib_warning ("sack discarded");
}
}
ASSERT (vec_len (new_list) <= TCP_MAX_SACK_BLOCKS);
/* Replace old vector with new one */
vec_free (tc->snd_sacks);
tc->snd_sacks = new_list;
/* Segments should not 'touch' */
ASSERT (tcp_sack_vector_is_sane (tc->snd_sacks));
}
u32
tcp_sack_list_bytes (tcp_connection_t * tc)
{
u32 bytes = 0, i;
for (i = 0; i < vec_len (tc->snd_sacks); i++)
bytes += tc->snd_sacks[i].end - tc->snd_sacks[i].start;
return bytes;
}
/** Enqueue data for delivery to application */
static int
tcp_session_enqueue_data (tcp_connection_t * tc, vlib_buffer_t * b,
u16 data_len)
{
int written, error = TCP_ERROR_ENQUEUED;
ASSERT (seq_geq (vnet_buffer (b)->tcp.seq_number, tc->rcv_nxt));
ASSERT (data_len);
written = session_enqueue_stream_connection (&tc->connection, b, 0,
1 /* queue event */ , 1);
TCP_EVT_DBG (TCP_EVT_INPUT, tc, 0, data_len, written);
/* Update rcv_nxt */
if (PREDICT_TRUE (written == data_len))
{
tc->rcv_nxt += written;
}
/* If more data written than expected, account for out-of-order bytes. */
else if (written > data_len)
{
tc->rcv_nxt += written;
TCP_EVT_DBG (TCP_EVT_CC_INPUT, tc, data_len, written);
}
else if (written > 0)
{
/* We've written something but FIFO is probably full now */
tc->rcv_nxt += written;
error = TCP_ERROR_PARTIALLY_ENQUEUED;
}
else
{
return TCP_ERROR_FIFO_FULL;
}
/* Update SACK list if need be */
if (tcp_opts_sack_permitted (&tc->rcv_opts))
{
/* Remove SACK blocks that have been delivered */
tcp_update_sack_list (tc, tc->rcv_nxt, tc->rcv_nxt);
}
return error;
}
/** Enqueue out-of-order data */
static int
tcp_session_enqueue_ooo (tcp_connection_t * tc, vlib_buffer_t * b,
u16 data_len)
{
stream_session_t *s0;
int rv, offset;
ASSERT (seq_gt (vnet_buffer (b)->tcp.seq_number, tc->rcv_nxt));
ASSERT (data_len);
/* Enqueue out-of-order data with relative offset */
rv = session_enqueue_stream_connection (&tc->connection, b,
vnet_buffer (b)->tcp.seq_number -
tc->rcv_nxt, 0 /* queue event */ ,
0);
/* Nothing written */
if (rv)
{
TCP_EVT_DBG (TCP_EVT_INPUT, tc, 1, data_len, 0);
return TCP_ERROR_FIFO_FULL;
}
TCP_EVT_DBG (TCP_EVT_INPUT, tc, 1, data_len, data_len);
/* Update SACK list if in use */
if (tcp_opts_sack_permitted (&tc->rcv_opts))
{
ooo_segment_t *newest;
u32 start, end;
s0 = session_get (tc->c_s_index, tc->c_thread_index);
/* Get the newest segment from the fifo */
newest = svm_fifo_newest_ooo_segment (s0->server_rx_fifo);
if (newest)
{
offset = ooo_segment_offset (s0->server_rx_fifo, newest);
ASSERT (offset <= vnet_buffer (b)->tcp.seq_number - tc->rcv_nxt);
start = tc->rcv_nxt + offset;
end = start + ooo_segment_length (s0->server_rx_fifo, newest);
tcp_update_sack_list (tc, start, end);
svm_fifo_newest_ooo_segment_reset (s0->server_rx_fifo);
TCP_EVT_DBG (TCP_EVT_CC_SACKS, tc);
}
}
return TCP_ERROR_ENQUEUED_OOO;
}
/**
* Check if ACK could be delayed. If ack can be delayed, it should return
* true for a full frame. If we're always acking return 0.
*/
always_inline int
tcp_can_delack (tcp_connection_t * tc)
{
/* Send ack if ... */
if (TCP_ALWAYS_ACK
/* just sent a rcv wnd 0 */
|| (tc->flags & TCP_CONN_SENT_RCV_WND0) != 0
/* constrained to send ack */
|| (tc->flags & TCP_CONN_SNDACK) != 0
/* we're almost out of tx wnd */
|| tcp_available_cc_snd_space (tc) < 4 * tc->snd_mss)
return 0;
return 1;
}
static int
tcp_buffer_discard_bytes (vlib_buffer_t * b, u32 n_bytes_to_drop)
{
u32 discard, first = b->current_length;
vlib_main_t *vm = vlib_get_main ();
/* Handle multi-buffer segments */
if (n_bytes_to_drop > b->current_length)
{
if (!(b->flags & VLIB_BUFFER_NEXT_PRESENT))
return -1;
do
{
discard = clib_min (n_bytes_to_drop, b->current_length);
vlib_buffer_advance (b, discard);
b = vlib_get_buffer (vm, b->next_buffer);
n_bytes_to_drop -= discard;
}
while (n_bytes_to_drop);
if (n_bytes_to_drop > first)
b->total_length_not_including_first_buffer -= n_bytes_to_drop - first;
}
else
vlib_buffer_advance (b, n_bytes_to_drop);
vnet_buffer (b)->tcp.data_len -= n_bytes_to_drop;
return 0;
}
/**
* Receive buffer for connection and handle acks
*
* It handles both in order or out-of-order data.
*/
static int
tcp_segment_rcv (tcp_worker_ctx_t * wrk, tcp_connection_t * tc,
vlib_buffer_t * b)
{
u32 error, n_bytes_to_drop, n_data_bytes;
vlib_buffer_advance (b, vnet_buffer (b)->tcp.data_offset);
n_data_bytes = vnet_buffer (b)->tcp.data_len;
ASSERT (n_data_bytes);
/* Handle out-of-order data */
if (PREDICT_FALSE (vnet_buffer (b)->tcp.seq_number != tc->rcv_nxt))
{
/* Old sequence numbers allowed through because they overlapped
* the rx window */
if (seq_lt (vnet_buffer (b)->tcp.seq_number, tc->rcv_nxt))
{
/* Completely in the past (possible retransmit). Ack
* retransmissions since we may not have any data to send */
if (seq_leq (vnet_buffer (b)->tcp.seq_end, tc->rcv_nxt))
{
tcp_program_ack (wrk, tc);
error = TCP_ERROR_SEGMENT_OLD;
goto done;
}
/* Chop off the bytes in the past and see if what is left
* can be enqueued in order */
n_bytes_to_drop = tc->rcv_nxt - vnet_buffer (b)->tcp.seq_number;
n_data_bytes -= n_bytes_to_drop;
vnet_buffer (b)->tcp.seq_number = tc->rcv_nxt;
if (tcp_buffer_discard_bytes (b, n_bytes_to_drop))
{
error = TCP_ERROR_SEGMENT_OLD;
goto done;
}
goto in_order;
}
/* RFC2581: Enqueue and send DUPACK for fast retransmit */
error = tcp_session_enqueue_ooo (tc, b, n_data_bytes);
tcp_program_dupack (wrk, tc);
TCP_EVT_DBG (TCP_EVT_DUPACK_SENT, tc, vnet_buffer (b)->tcp);
goto done;
}
in_order:
/* In order data, enqueue. Fifo figures out by itself if any out-of-order
* segments can be enqueued after fifo tail offset changes. */
error = tcp_session_enqueue_data (tc, b, n_data_bytes);
if (tcp_can_delack (tc))
{
if (!tcp_timer_is_active (tc, TCP_TIMER_DELACK))
tcp_timer_set (tc, TCP_TIMER_DELACK, TCP_DELACK_TIME);
goto done;
}
tcp_program_ack (wrk, tc);
done:
return error;
}
typedef struct
{
tcp_header_t tcp_header;
tcp_connection_t tcp_connection;
} tcp_rx_trace_t;
static u8 *
format_tcp_rx_trace (u8 * s, va_list * args)
{
CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *);
CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *);
tcp_rx_trace_t *t = va_arg (*args, tcp_rx_trace_t *);
u32 indent = format_get_indent (s);
s = format (s, "%U\n%U%U",
format_tcp_header, &t->tcp_header, 128,
format_white_space, indent,
format_tcp_connection, &t->tcp_connection, 1);
return s;
}
static u8 *
format_tcp_rx_trace_short (u8 * s, va_list * args)
{
CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *);
CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *);
tcp_rx_trace_t *t = va_arg (*args, tcp_rx_trace_t *);
s = format (s, "%d -> %d (%U)",
clib_net_to_host_u16 (t->tcp_header.dst_port),
clib_net_to_host_u16 (t->tcp_header.src_port), format_tcp_state,
t->tcp_connection.state);
return s;
}
static void
tcp_set_rx_trace_data (tcp_rx_trace_t * t0, tcp_connection_t * tc0,
tcp_header_t * th0, vlib_buffer_t * b0, u8 is_ip4)
{
if (tc0)
{
clib_memcpy (&t0->tcp_connection, tc0, sizeof (t0->tcp_connection));
}
else
{
th0 = tcp_buffer_hdr (b0);
}
clib_memcpy (&t0->tcp_header, th0, sizeof (t0->tcp_header));
}
static void
tcp_established_trace_frame (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * frame, u8 is_ip4)
{
u32 *from, n_left;
n_left = frame->n_vectors;
from = vlib_frame_vector_args (frame);
while (n_left >= 1)
{
tcp_connection_t *tc0;
tcp_rx_trace_t *t0;
tcp_header_t *th0;
vlib_buffer_t *b0;
u32 bi0;
bi0 = from[0];
b0 = vlib_get_buffer (vm, bi0);
if (b0->flags & VLIB_BUFFER_IS_TRACED)
{
t0 = vlib_add_trace (vm, node, b0, sizeof (*t0));
tc0 = tcp_connection_get (vnet_buffer (b0)->tcp.connection_index,
vm->thread_index);
th0 = tcp_buffer_hdr (b0);
tcp_set_rx_trace_data (t0, tc0, th0, b0, is_ip4);
}
from += 1;
n_left -= 1;
}
}
always_inline void
tcp_node_inc_counter_i (vlib_main_t * vm, u32 tcp4_node, u32 tcp6_node,
u8 is_ip4, u32 evt, u32 val)
{
if (is_ip4)
vlib_node_increment_counter (vm, tcp4_node, evt, val);
else
vlib_node_increment_counter (vm, tcp6_node, evt, val);
}
#define tcp_maybe_inc_counter(node_id, err, count) \
{ \
if (next0 != tcp_next_drop (is_ip4)) \
tcp_node_inc_counter_i (vm, tcp4_##node_id##_node.index, \
tcp6_##node_id##_node.index, is_ip4, err, \
1); \
}
#define tcp_inc_counter(node_id, err, count) \
tcp_node_inc_counter_i (vm, tcp4_##node_id##_node.index, \
tcp6_##node_id##_node.index, is_ip4, \
err, count)
#define tcp_maybe_inc_err_counter(cnts, err) \
{ \
cnts[err] += (next0 != tcp_next_drop (is_ip4)); \
}
#define tcp_inc_err_counter(cnts, err, val) \
{ \
cnts[err] += val; \
}
#define tcp_store_err_counters(node_id, cnts) \
{ \
int i; \
for (i = 0; i < TCP_N_ERROR; i++) \
if (cnts[i]) \
tcp_inc_counter(node_id, i, cnts[i]); \
}
always_inline uword
tcp46_established_inline (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * frame, int is_ip4)
{
u32 thread_index = vm->thread_index, errors = 0;
tcp_worker_ctx_t *wrk = tcp_get_worker (thread_index);
u32 n_left_from, *from, *first_buffer;
u16 err_counters[TCP_N_ERROR] = { 0 };
u8 is_fin = 0;
if (node->flags & VLIB_NODE_FLAG_TRACE)
tcp_established_trace_frame (vm, node, frame, is_ip4);
first_buffer = from = vlib_frame_vector_args (frame);
n_left_from = frame->n_vectors;
while (n_left_from > 0)
{
u32 bi0, error0 = TCP_ERROR_ACK_OK;
vlib_buffer_t *b0;
tcp_header_t *th0 = 0;
tcp_connection_t *tc0;
if (n_left_from > 1)
{
vlib_buffer_t *pb;
pb = vlib_get_buffer (vm, from[1]);
vlib_prefetch_buffer_header (pb, LOAD);
CLIB_PREFETCH (pb->data, 2 * CLIB_CACHE_LINE_BYTES, LOAD);
}
bi0 = from[0];
from += 1;
n_left_from -= 1;
b0 = vlib_get_buffer (vm, bi0);
tc0 = tcp_connection_get (vnet_buffer (b0)->tcp.connection_index,
thread_index);
if (PREDICT_FALSE (tc0 == 0))
{
error0 = TCP_ERROR_INVALID_CONNECTION;
goto done;
}
th0 = tcp_buffer_hdr (b0);
/* N.B. buffer is rewritten if segment is ooo. Thus, th0 becomes a
* dangling reference. */
is_fin = tcp_is_fin (th0);
/* SYNs, FINs and data consume sequence numbers */
vnet_buffer (b0)->tcp.seq_end = vnet_buffer (b0)->tcp.seq_number
+ tcp_is_syn (th0) + is_fin + vnet_buffer (b0)->tcp.data_len;
/* TODO header prediction fast path */
/* 1-4: check SEQ, RST, SYN */
if (PREDICT_FALSE (tcp_segment_validate (wrk, tc0, b0, th0, &error0)))
{
TCP_EVT_DBG (TCP_EVT_SEG_INVALID, tc0, vnet_buffer (b0)->tcp);
goto done;
}
/* 5: check the ACK field */
if (PREDICT_FALSE (tcp_rcv_ack (wrk, tc0, b0, th0, &error0)))
goto done;
/* 6: check the URG bit TODO */
/* 7: process the segment text */
if (vnet_buffer (b0)->tcp.data_len)
error0 = tcp_segment_rcv (wrk, tc0, b0);
/* 8: check the FIN bit */
if (PREDICT_FALSE (is_fin))
tcp_rcv_fin (wrk, tc0, b0, &error0);
done:
tcp_inc_err_counter (err_counters, error0, 1);
}
errors = session_manager_flush_enqueue_events (TRANSPORT_PROTO_TCP,
thread_index);
err_counters[TCP_ERROR_EVENT_FIFO_FULL] = errors;
tcp_store_err_counters (established, err_counters);
tcp_handle_postponed_dequeues (wrk);
tcp_handle_disconnects (wrk);
vlib_buffer_free (vm, first_buffer, frame->n_vectors);
return frame->n_vectors;
}
static uword
tcp4_established (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame)
{
return tcp46_established_inline (vm, node, from_frame, 1 /* is_ip4 */ );
}
static uword
tcp6_established (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame)
{
return tcp46_established_inline (vm, node, from_frame, 0 /* is_ip4 */ );
}
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (tcp4_established_node) =
{
.function = tcp4_established,
.name = "tcp4-established",
/* Takes a vector of packets. */
.vector_size = sizeof (u32),
.n_errors = TCP_N_ERROR,
.error_strings = tcp_error_strings,
.n_next_nodes = TCP_ESTABLISHED_N_NEXT,
.next_nodes =
{
#define _(s,n) [TCP_ESTABLISHED_NEXT_##s] = n,
foreach_tcp_state_next
#undef _
},
.format_trace = format_tcp_rx_trace_short,
};
/* *INDENT-ON* */
VLIB_NODE_FUNCTION_MULTIARCH (tcp4_established_node, tcp4_established);
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (tcp6_established_node) =
{
.function = tcp6_established,
.name = "tcp6-established",
/* Takes a vector of packets. */
.vector_size = sizeof (u32),
.n_errors = TCP_N_ERROR,
.error_strings = tcp_error_strings,
.n_next_nodes = TCP_ESTABLISHED_N_NEXT,
.next_nodes =
{
#define _(s,n) [TCP_ESTABLISHED_NEXT_##s] = n,
foreach_tcp_state_next
#undef _
},
.format_trace = format_tcp_rx_trace_short,
};
/* *INDENT-ON* */
VLIB_NODE_FUNCTION_MULTIARCH (tcp6_established_node, tcp6_established);
vlib_node_registration_t tcp4_syn_sent_node;
vlib_node_registration_t tcp6_syn_sent_node;
static u8
tcp_lookup_is_valid (tcp_connection_t * tc, tcp_header_t * hdr)
{
transport_connection_t *tmp = 0;
u64 handle;
if (!tc)
return 1;
/* Proxy case */
if (tc->c_lcl_port == 0 && tc->state == TCP_STATE_LISTEN)
return 1;
u8 is_valid = (tc->c_lcl_port == hdr->dst_port
&& (tc->state == TCP_STATE_LISTEN
|| tc->c_rmt_port == hdr->src_port));
if (!is_valid)
{
handle = session_lookup_half_open_handle (&tc->connection);
tmp = session_lookup_half_open_connection (handle & 0xFFFFFFFF,
tc->c_proto, tc->c_is_ip4);
if (tmp)
{
if (tmp->lcl_port == hdr->dst_port
&& tmp->rmt_port == hdr->src_port)
{
TCP_DBG ("half-open is valid!");
}
}
}
return is_valid;
}
/**
* Lookup transport connection
*/
static tcp_connection_t *
tcp_lookup_connection (u32 fib_index, vlib_buffer_t * b, u8 thread_index,
u8 is_ip4)
{
tcp_header_t *tcp;
transport_connection_t *tconn;
tcp_connection_t *tc;
u8 is_filtered = 0;
if (is_ip4)
{
ip4_header_t *ip4;
ip4 = vlib_buffer_get_current (b);
tcp = ip4_next_header (ip4);
tconn = session_lookup_connection_wt4 (fib_index,
&ip4->dst_address,
&ip4->src_address,
tcp->dst_port,
tcp->src_port,
TRANSPORT_PROTO_TCP,
thread_index, &is_filtered);
tc = tcp_get_connection_from_transport (tconn);
ASSERT (tcp_lookup_is_valid (tc, tcp));
}
else
{
ip6_header_t *ip6;
ip6 = vlib_buffer_get_current (b);
tcp = ip6_next_header (ip6);
tconn = session_lookup_connection_wt6 (fib_index,
&ip6->dst_address,
&ip6->src_address,
tcp->dst_port,
tcp->src_port,
TRANSPORT_PROTO_TCP,
thread_index, &is_filtered);
tc = tcp_get_connection_from_transport (tconn);
ASSERT (tcp_lookup_is_valid (tc, tcp));
}
return tc;
}
always_inline uword
tcp46_syn_sent_inline (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame, int is_ip4)
{
tcp_main_t *tm = vnet_get_tcp_main ();
u32 n_left_from, *from, *first_buffer, errors = 0;
u32 my_thread_index = vm->thread_index;
tcp_worker_ctx_t *wrk = tcp_get_worker (my_thread_index);
from = first_buffer = vlib_frame_vector_args (from_frame);
n_left_from = from_frame->n_vectors;
while (n_left_from > 0)
{
u32 bi0, ack0, seq0, error0 = TCP_ERROR_NONE;
tcp_connection_t *tc0, *new_tc0;
tcp_header_t *tcp0 = 0;
tcp_rx_trace_t *t0;
vlib_buffer_t *b0;
bi0 = from[0];
from += 1;
n_left_from -= 1;
b0 = vlib_get_buffer (vm, bi0);
tc0 =
tcp_half_open_connection_get (vnet_buffer (b0)->tcp.connection_index);
if (PREDICT_FALSE (tc0 == 0))
{
error0 = TCP_ERROR_INVALID_CONNECTION;
goto drop;
}
/* Half-open completed recently but the connection was't removed
* yet by the owning thread */
if (PREDICT_FALSE (tc0->flags & TCP_CONN_HALF_OPEN_DONE))
{
/* Make sure the connection actually exists */
ASSERT (tcp_lookup_connection (tc0->c_fib_index, b0,
my_thread_index, is_ip4));
goto drop;
}
ack0 = vnet_buffer (b0)->tcp.ack_number;
seq0 = vnet_buffer (b0)->tcp.seq_number;
tcp0 = tcp_buffer_hdr (b0);
/* Crude check to see if the connection handle does not match
* the packet. Probably connection just switched to established */
if (PREDICT_FALSE (tcp0->dst_port != tc0->c_lcl_port
|| tcp0->src_port != tc0->c_rmt_port))
{
error0 = TCP_ERROR_INVALID_CONNECTION;
goto drop;
}
if (PREDICT_FALSE (!tcp_ack (tcp0) && !tcp_rst (tcp0)
&& !tcp_syn (tcp0)))
{
error0 = TCP_ERROR_SEGMENT_INVALID;
goto drop;
}
/* SYNs, FINs and data consume sequence numbers */
vnet_buffer (b0)->tcp.seq_end =
seq0 + tcp_is_syn (tcp0) + tcp_is_fin (tcp0) +
vnet_buffer (b0)->tcp.data_len;
/*
* 1. check the ACK bit
*/
/*
* If the ACK bit is set
* If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset (unless
* the RST bit is set, if so drop the segment and return)
* <SEQ=SEG.ACK><CTL=RST>
* and discard the segment. Return.
* If SND.UNA =< SEG.ACK =< SND.NXT then the ACK is acceptable.
*/
if (tcp_ack (tcp0))
{
if (seq_leq (ack0, tc0->iss) || seq_gt (ack0, tc0->snd_nxt))
{
if (!tcp_rst (tcp0))
tcp_send_reset_w_pkt (tc0, b0, is_ip4);
error0 = TCP_ERROR_RCV_WND;
goto drop;
}
/* Make sure ACK is valid */
if (seq_gt (tc0->snd_una, ack0))
{
error0 = TCP_ERROR_ACK_INVALID;
goto drop;
}
}
/*
* 2. check the RST bit
*/
if (tcp_rst (tcp0))
{
/* If ACK is acceptable, signal client that peer is not
* willing to accept connection and drop connection*/
if (tcp_ack (tcp0))
tcp_connection_reset (tc0);
error0 = TCP_ERROR_RST_RCVD;
goto drop;
}
/*
* 3. check the security and precedence (skipped)
*/
/*
* 4. check the SYN bit
*/
/* No SYN flag. Drop. */
if (!tcp_syn (tcp0))
{
clib_warning ("not synack");
error0 = TCP_ERROR_SEGMENT_INVALID;
goto drop;
}
/* Parse options */
if (tcp_options_parse (tcp0, &tc0->rcv_opts))
{
clib_warning ("options parse fail");
error0 = TCP_ERROR_OPTIONS;
goto drop;
}
/* Valid SYN or SYN-ACK. Move connection from half-open pool to
* current thread pool. */
pool_get (tm->connections[my_thread_index], new_tc0);
clib_memcpy (new_tc0, tc0, sizeof (*new_tc0));
new_tc0->c_c_index = new_tc0 - tm->connections[my_thread_index];
new_tc0->c_thread_index = my_thread_index;
new_tc0->rcv_nxt = vnet_buffer (b0)->tcp.seq_end;
new_tc0->irs = seq0;
new_tc0->timers[TCP_TIMER_ESTABLISH] = TCP_TIMER_HANDLE_INVALID;
new_tc0->timers[TCP_TIMER_RETRANSMIT_SYN] = TCP_TIMER_HANDLE_INVALID;
new_tc0->sw_if_index = vnet_buffer (b0)->sw_if_index[VLIB_RX];
/* If this is not the owning thread, wait for syn retransmit to
* expire and cleanup then */
if (tcp_half_open_connection_cleanup (tc0))
tc0->flags |= TCP_CONN_HALF_OPEN_DONE;
if (tcp_opts_tstamp (&new_tc0->rcv_opts))
{
new_tc0->tsval_recent = new_tc0->rcv_opts.tsval;
new_tc0->tsval_recent_age = tcp_time_now ();
}
if (tcp_opts_wscale (&new_tc0->rcv_opts))
new_tc0->snd_wscale = new_tc0->rcv_opts.wscale;
new_tc0->snd_wnd = clib_net_to_host_u16 (tcp0->window)
<< new_tc0->snd_wscale;
new_tc0->snd_wl1 = seq0;
new_tc0->snd_wl2 = ack0;
tcp_connection_init_vars (new_tc0);
/* SYN-ACK: See if we can switch to ESTABLISHED state */
if (PREDICT_TRUE (tcp_ack (tcp0)))
{
/* Our SYN is ACKed: we have iss < ack = snd_una */
/* TODO Dequeue acknowledged segments if we support Fast Open */
new_tc0->snd_una = ack0;
new_tc0->state = TCP_STATE_ESTABLISHED;
/* Make sure las is initialized for the wnd computation */
new_tc0->rcv_las = new_tc0->rcv_nxt;
/* Notify app that we have connection. If session layer can't
* allocate session send reset */
if (session_stream_connect_notify (&new_tc0->connection, 0))
{
clib_warning ("connect notify fail");
tcp_send_reset_w_pkt (new_tc0, b0, is_ip4);
tcp_connection_cleanup (new_tc0);
goto drop;
}
new_tc0->tx_fifo_size =
transport_tx_fifo_size (&new_tc0->connection);
/* Update rtt with the syn-ack sample */
tcp_estimate_initial_rtt (new_tc0);
TCP_EVT_DBG (TCP_EVT_SYNACK_RCVD, new_tc0);
error0 = TCP_ERROR_SYN_ACKS_RCVD;
}
/* SYN: Simultaneous open. Change state to SYN-RCVD and send SYN-ACK */
else
{
new_tc0->state = TCP_STATE_SYN_RCVD;
/* Notify app that we have connection */
if (session_stream_connect_notify (&new_tc0->connection, 0))
{
tcp_connection_cleanup (new_tc0);
tcp_send_reset_w_pkt (tc0, b0, is_ip4);
TCP_EVT_DBG (TCP_EVT_RST_SENT, tc0);
goto drop;
}
new_tc0->tx_fifo_size =
transport_tx_fifo_size (&new_tc0->connection);
new_tc0->rtt_ts = 0;
tcp_init_snd_vars (new_tc0);
tcp_send_synack (new_tc0);
error0 = TCP_ERROR_SYNS_RCVD;
goto drop;
}
/* Read data, if any */
if (PREDICT_FALSE (vnet_buffer (b0)->tcp.data_len))
{
clib_warning ("rcvd data in syn-sent");
error0 = tcp_segment_rcv (wrk, new_tc0, b0);
if (error0 == TCP_ERROR_ACK_OK)
error0 = TCP_ERROR_SYN_ACKS_RCVD;
}
else
{
tcp_program_ack (wrk, new_tc0);
}
drop:
tcp_inc_counter (syn_sent, error0, 1);
if (PREDICT_FALSE ((b0->flags & VLIB_BUFFER_IS_TRACED) && tcp0 != 0))
{
t0 = vlib_add_trace (vm, node, b0, sizeof (*t0));
clib_memcpy (&t0->tcp_header, tcp0, sizeof (t0->tcp_header));
clib_memcpy (&t0->tcp_connection, tc0, sizeof (t0->tcp_connection));
}
}
errors = session_manager_flush_enqueue_events (TRANSPORT_PROTO_TCP,
my_thread_index);
tcp_inc_counter (syn_sent, TCP_ERROR_EVENT_FIFO_FULL, errors);
vlib_buffer_free (vm, first_buffer, from_frame->n_vectors);
return from_frame->n_vectors;
}
static uword
tcp4_syn_sent (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame)
{
return tcp46_syn_sent_inline (vm, node, from_frame, 1 /* is_ip4 */ );
}
static uword
tcp6_syn_sent_rcv (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame)
{
return tcp46_syn_sent_inline (vm, node, from_frame, 0 /* is_ip4 */ );
}
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (tcp4_syn_sent_node) =
{
.function = tcp4_syn_sent,
.name = "tcp4-syn-sent",
/* Takes a vector of packets. */
.vector_size = sizeof (u32),
.n_errors = TCP_N_ERROR,
.error_strings = tcp_error_strings,
.n_next_nodes = TCP_SYN_SENT_N_NEXT,
.next_nodes =
{
#define _(s,n) [TCP_SYN_SENT_NEXT_##s] = n,
foreach_tcp_state_next
#undef _
},
.format_trace = format_tcp_rx_trace_short,
};
/* *INDENT-ON* */
VLIB_NODE_FUNCTION_MULTIARCH (tcp4_syn_sent_node, tcp4_syn_sent);
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (tcp6_syn_sent_node) =
{
.function = tcp6_syn_sent_rcv,
.name = "tcp6-syn-sent",
/* Takes a vector of packets. */
.vector_size = sizeof (u32),
.n_errors = TCP_N_ERROR,
.error_strings = tcp_error_strings,
.n_next_nodes = TCP_SYN_SENT_N_NEXT,
.next_nodes =
{
#define _(s,n) [TCP_SYN_SENT_NEXT_##s] = n,
foreach_tcp_state_next
#undef _
},
.format_trace = format_tcp_rx_trace_short,
};
/* *INDENT-ON* */
VLIB_NODE_FUNCTION_MULTIARCH (tcp6_syn_sent_node, tcp6_syn_sent_rcv);
vlib_node_registration_t tcp4_rcv_process_node;
vlib_node_registration_t tcp6_rcv_process_node;
/**
* Handles reception for all states except LISTEN, SYN-SENT and ESTABLISHED
* as per RFC793 p. 64
*/
always_inline uword
tcp46_rcv_process_inline (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame, int is_ip4)
{
u32 thread_index = vm->thread_index, errors = 0, *first_buffer;
tcp_worker_ctx_t *wrk = tcp_get_worker (thread_index);
u32 n_left_from, *from;
from = first_buffer = vlib_frame_vector_args (from_frame);
n_left_from = from_frame->n_vectors;
while (n_left_from > 0)
{
u32 bi0, error0 = TCP_ERROR_NONE;
tcp_header_t *tcp0 = 0;
tcp_connection_t *tc0;
vlib_buffer_t *b0;
u8 is_fin0;
bi0 = from[0];
from += 1;
n_left_from -= 1;
b0 = vlib_get_buffer (vm, bi0);
tc0 = tcp_connection_get (vnet_buffer (b0)->tcp.connection_index,
thread_index);
if (PREDICT_FALSE (tc0 == 0))
{
error0 = TCP_ERROR_INVALID_CONNECTION;
goto drop;
}
tcp0 = tcp_buffer_hdr (b0);
is_fin0 = tcp_is_fin (tcp0);
/* SYNs, FINs and data consume sequence numbers */
vnet_buffer (b0)->tcp.seq_end = vnet_buffer (b0)->tcp.seq_number
+ tcp_is_syn (tcp0) + is_fin0 + vnet_buffer (b0)->tcp.data_len;
if (CLIB_DEBUG)
{
tcp_connection_t *tmp;
tmp = tcp_lookup_connection (tc0->c_fib_index, b0, thread_index,
is_ip4);
if (tmp->state != tc0->state)
{
clib_warning ("state changed");
goto drop;
}
}
/*
* Special treatment for CLOSED
*/
if (PREDICT_FALSE (tc0->state == TCP_STATE_CLOSED))
{
error0 = TCP_ERROR_CONNECTION_CLOSED;
goto drop;
}
/*
* For all other states (except LISTEN)
*/
/* 1-4: check SEQ, RST, SYN */
if (PREDICT_FALSE (tcp_segment_validate (wrk, tc0, b0, tcp0, &error0)))
goto drop;
/* 5: check the ACK field */
switch (tc0->state)
{
case TCP_STATE_SYN_RCVD:
/*
* If the segment acknowledgment is not acceptable, form a
* reset segment,
* <SEQ=SEG.ACK><CTL=RST>
* and send it.
*/
if (!tcp_rcv_ack_is_acceptable (tc0, b0))
{
TCP_DBG ("connection not accepted");
tcp_send_reset_w_pkt (tc0, b0, is_ip4);
error0 = TCP_ERROR_ACK_INVALID;
goto drop;
}
/* Update rtt and rto */
tcp_estimate_initial_rtt (tc0);
/* Switch state to ESTABLISHED */
tc0->state = TCP_STATE_ESTABLISHED;
TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0);
/* Initialize session variables */
tc0->snd_una = vnet_buffer (b0)->tcp.ack_number;
tc0->snd_wnd = clib_net_to_host_u16 (tcp0->window)
<< tc0->rcv_opts.wscale;
tc0->snd_wl1 = vnet_buffer (b0)->tcp.seq_number;
tc0->snd_wl2 = vnet_buffer (b0)->tcp.ack_number;
/* Reset SYN-ACK retransmit and SYN_RCV establish timers */
tcp_retransmit_timer_reset (tc0);
tcp_timer_reset (tc0, TCP_TIMER_ESTABLISH);
stream_session_accept_notify (&tc0->connection);
error0 = TCP_ERROR_ACK_OK;
break;
case TCP_STATE_ESTABLISHED:
/* We can get packets in established state here because they
* were enqueued before state change */
if (tcp_rcv_ack (wrk, tc0, b0, tcp0, &error0))
goto drop;
break;
case TCP_STATE_FIN_WAIT_1:
/* In addition to the processing for the ESTABLISHED state, if
* our FIN is now acknowledged then enter FIN-WAIT-2 and
* continue processing in that state. */
if (tcp_rcv_ack (wrk, tc0, b0, tcp0, &error0))
goto drop;
/* Still have to send the FIN */
if (tc0->flags & TCP_CONN_FINPNDG)
{
/* TX fifo finally drained */
if (!session_tx_fifo_max_dequeue (&tc0->connection))
tcp_send_fin (tc0);
}
/* If FIN is ACKed */
else if (tc0->snd_una == tc0->snd_una_max)
{
tc0->state = TCP_STATE_FIN_WAIT_2;
TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0);
/* Stop all retransmit timers because we have nothing more
* to send. Enable waitclose though because we're willing to
* wait for peer's FIN but not indefinitely. */
tcp_connection_timers_reset (tc0);
tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_2MSL_TIME);
/* Don't try to deq the FIN acked */
if (tc0->burst_acked > 1)
stream_session_dequeue_drop (&tc0->connection,
tc0->burst_acked - 1);
tc0->burst_acked = 0;
}
break;
case TCP_STATE_FIN_WAIT_2:
/* In addition to the processing for the ESTABLISHED state, if
* the retransmission queue is empty, the user's CLOSE can be
* acknowledged ("ok") but do not delete the TCB. */
if (tcp_rcv_ack (wrk, tc0, b0, tcp0, &error0))
goto drop;
tc0->burst_acked = 0;
break;
case TCP_STATE_CLOSE_WAIT:
/* Do the same processing as for the ESTABLISHED state. */
if (tcp_rcv_ack (wrk, tc0, b0, tcp0, &error0))
goto drop;
if (tc0->flags & TCP_CONN_FINPNDG)
{
/* TX fifo finally drained */
if (!session_tx_fifo_max_dequeue (&tc0->connection))
{
tcp_send_fin (tc0);
tcp_connection_timers_reset (tc0);
tc0->state = TCP_STATE_LAST_ACK;
tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_2MSL_TIME);
}
}
break;
case TCP_STATE_CLOSING:
/* In addition to the processing for the ESTABLISHED state, if
* the ACK acknowledges our FIN then enter the TIME-WAIT state,
* otherwise ignore the segment. */
if (tcp_rcv_ack (wrk, tc0, b0, tcp0, &error0))
goto drop;
tc0->state = TCP_STATE_TIME_WAIT;
TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0);
tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_TIMEWAIT_TIME);
goto drop;
break;
case TCP_STATE_LAST_ACK:
/* The only thing that [should] arrive in this state is an
* acknowledgment of our FIN. If our FIN is now acknowledged,
* delete the TCB, enter the CLOSED state, and return. */
if (!tcp_rcv_ack_is_acceptable (tc0, b0))
{
error0 = TCP_ERROR_ACK_INVALID;
goto drop;
}
error0 = TCP_ERROR_ACK_OK;
tc0->snd_una = vnet_buffer (b0)->tcp.ack_number;
/* Apparently our ACK for the peer's FIN was lost */
if (is_fin0 && tc0->snd_una != tc0->snd_una_max)
{
tcp_send_fin (tc0);
goto drop;
}
tc0->state = TCP_STATE_CLOSED;
TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0);
/* Don't free the connection from the data path since
* we can't ensure that we have no packets already enqueued
* to output. Rely instead on the waitclose timer */
tcp_connection_timers_reset (tc0);
tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, 1);
goto drop;
break;
case TCP_STATE_TIME_WAIT:
/* The only thing that can arrive in this state is a
* retransmission of the remote FIN. Acknowledge it, and restart
* the 2 MSL timeout. */
if (tcp_rcv_ack (wrk, tc0, b0, tcp0, &error0))
goto drop;
tcp_program_ack (wrk, tc0);
tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_TIMEWAIT_TIME);
goto drop;
break;
default:
ASSERT (0);
}
/* 6: check the URG bit TODO */
/* 7: process the segment text */
switch (tc0->state)
{
case TCP_STATE_ESTABLISHED:
case TCP_STATE_FIN_WAIT_1:
case TCP_STATE_FIN_WAIT_2:
if (vnet_buffer (b0)->tcp.data_len)
error0 = tcp_segment_rcv (wrk, tc0, b0);
else if (is_fin0)
tc0->rcv_nxt += 1;
break;
case TCP_STATE_CLOSE_WAIT:
case TCP_STATE_CLOSING:
case TCP_STATE_LAST_ACK:
case TCP_STATE_TIME_WAIT:
/* This should not occur, since a FIN has been received from the
* remote side. Ignore the segment text. */
break;
}
/* 8: check the FIN bit */
if (!is_fin0)
goto drop;
switch (tc0->state)
{
case TCP_STATE_ESTABLISHED:
case TCP_STATE_SYN_RCVD:
/* Send FIN-ACK notify app and enter CLOSE-WAIT */
tcp_connection_timers_reset (tc0);
tcp_send_fin (tc0);
stream_session_disconnect_notify (&tc0->connection);
tc0->state = TCP_STATE_CLOSE_WAIT;
TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0);
break;
case TCP_STATE_CLOSE_WAIT:
case TCP_STATE_CLOSING:
case TCP_STATE_LAST_ACK:
/* move along .. */
break;
case TCP_STATE_FIN_WAIT_1:
tc0->state = TCP_STATE_CLOSING;
tcp_program_ack (wrk, tc0);
TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0);
/* Wait for ACK but not forever */
tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_2MSL_TIME);
break;
case TCP_STATE_FIN_WAIT_2:
/* Got FIN, send ACK! Be more aggressive with resource cleanup */
tc0->state = TCP_STATE_TIME_WAIT;
tcp_connection_timers_reset (tc0);
tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_TIMEWAIT_TIME);
tcp_program_ack (wrk, tc0);
TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc0);
break;
case TCP_STATE_TIME_WAIT:
/* Remain in the TIME-WAIT state. Restart the time-wait
* timeout.
*/
tcp_timer_update (tc0, TCP_TIMER_WAITCLOSE, TCP_TIMEWAIT_TIME);
break;
}
error0 = TCP_ERROR_FIN_RCVD;
TCP_EVT_DBG (TCP_EVT_FIN_RCVD, tc0);
drop:
tcp_inc_counter (rcv_process, error0, 1);
if (PREDICT_FALSE (b0->flags & VLIB_BUFFER_IS_TRACED))
{
tcp_rx_trace_t *t0 = vlib_add_trace (vm, node, b0, sizeof (*t0));
tcp_set_rx_trace_data (t0, tc0, tcp0, b0, is_ip4);
}
}
errors = session_manager_flush_enqueue_events (TRANSPORT_PROTO_TCP,
thread_index);
tcp_inc_counter (rcv_process, TCP_ERROR_EVENT_FIFO_FULL, errors);
tcp_handle_postponed_dequeues (wrk);
vlib_buffer_free (vm, first_buffer, from_frame->n_vectors);
return from_frame->n_vectors;
}
static uword
tcp4_rcv_process (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame)
{
return tcp46_rcv_process_inline (vm, node, from_frame, 1 /* is_ip4 */ );
}
static uword
tcp6_rcv_process (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame)
{
return tcp46_rcv_process_inline (vm, node, from_frame, 0 /* is_ip4 */ );
}
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (tcp4_rcv_process_node) =
{
.function = tcp4_rcv_process,
.name = "tcp4-rcv-process",
/* Takes a vector of packets. */
.vector_size = sizeof (u32),
.n_errors = TCP_N_ERROR,
.error_strings = tcp_error_strings,
.n_next_nodes = TCP_RCV_PROCESS_N_NEXT,
.next_nodes =
{
#define _(s,n) [TCP_RCV_PROCESS_NEXT_##s] = n,
foreach_tcp_state_next
#undef _
},
.format_trace = format_tcp_rx_trace_short,
};
/* *INDENT-ON* */
VLIB_NODE_FUNCTION_MULTIARCH (tcp4_rcv_process_node, tcp4_rcv_process);
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (tcp6_rcv_process_node) =
{
.function = tcp6_rcv_process,
.name = "tcp6-rcv-process",
/* Takes a vector of packets. */
.vector_size = sizeof (u32),
.n_errors = TCP_N_ERROR,
.error_strings = tcp_error_strings,
.n_next_nodes = TCP_RCV_PROCESS_N_NEXT,
.next_nodes =
{
#define _(s,n) [TCP_RCV_PROCESS_NEXT_##s] = n,
foreach_tcp_state_next
#undef _
},
.format_trace = format_tcp_rx_trace_short,
};
/* *INDENT-ON* */
VLIB_NODE_FUNCTION_MULTIARCH (tcp6_rcv_process_node, tcp6_rcv_process);
vlib_node_registration_t tcp4_listen_node;
vlib_node_registration_t tcp6_listen_node;
/**
* LISTEN state processing as per RFC 793 p. 65
*/
always_inline uword
tcp46_listen_inline (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame, int is_ip4)
{
u32 n_left_from, *from, n_syns = 0, *first_buffer;
u32 my_thread_index = vm->thread_index;
from = first_buffer = vlib_frame_vector_args (from_frame);
n_left_from = from_frame->n_vectors;
while (n_left_from > 0)
{
u32 bi0;
vlib_buffer_t *b0;
tcp_rx_trace_t *t0;
tcp_header_t *th0 = 0;
tcp_connection_t *lc0;
ip4_header_t *ip40;
ip6_header_t *ip60;
tcp_connection_t *child0;
u32 error0 = TCP_ERROR_NONE;
bi0 = from[0];
from += 1;
n_left_from -= 1;
b0 = vlib_get_buffer (vm, bi0);
lc0 = tcp_listener_get (vnet_buffer (b0)->tcp.connection_index);
if (is_ip4)
{
ip40 = vlib_buffer_get_current (b0);
th0 = ip4_next_header (ip40);
}
else
{
ip60 = vlib_buffer_get_current (b0);
th0 = ip6_next_header (ip60);
}
/* Create child session. For syn-flood protection use filter */
/* 1. first check for an RST: handled in dispatch */
/* if (tcp_rst (th0))
goto drop;
*/
/* 2. second check for an ACK: handled in dispatch */
/* if (tcp_ack (th0))
{
tcp_send_reset (b0, is_ip4);
goto drop;
}
*/
/* 3. check for a SYN (did that already) */
/* Make sure connection wasn't just created */
child0 = tcp_lookup_connection (lc0->c_fib_index, b0, my_thread_index,
is_ip4);
if (PREDICT_FALSE (child0->state != TCP_STATE_LISTEN))
{
error0 = TCP_ERROR_CREATE_EXISTS;
goto drop;
}
/* Create child session and send SYN-ACK */
child0 = tcp_connection_new (my_thread_index);
child0->c_lcl_port = th0->dst_port;
child0->c_rmt_port = th0->src_port;
child0->c_is_ip4 = is_ip4;
child0->state = TCP_STATE_SYN_RCVD;
child0->c_fib_index = lc0->c_fib_index;
if (is_ip4)
{
child0->c_lcl_ip4.as_u32 = ip40->dst_address.as_u32;
child0->c_rmt_ip4.as_u32 = ip40->src_address.as_u32;
}
else
{
clib_memcpy (&child0->c_lcl_ip6, &ip60->dst_address,
sizeof (ip6_address_t));
clib_memcpy (&child0->c_rmt_ip6, &ip60->src_address,
sizeof (ip6_address_t));
}
if (tcp_options_parse (th0, &child0->rcv_opts))
{
clib_warning ("options parse fail");
goto drop;
}
child0->irs = vnet_buffer (b0)->tcp.seq_number;
child0->rcv_nxt = vnet_buffer (b0)->tcp.seq_number + 1;
child0->rcv_las = child0->rcv_nxt;
child0->sw_if_index = vnet_buffer (b0)->sw_if_index[VLIB_RX];
/* RFC1323: TSval timestamps sent on {SYN} and {SYN,ACK}
* segments are used to initialize PAWS. */
if (tcp_opts_tstamp (&child0->rcv_opts))
{
child0->tsval_recent = child0->rcv_opts.tsval;
child0->tsval_recent_age = tcp_time_now ();
}
if (tcp_opts_wscale (&child0->rcv_opts))
child0->snd_wscale = child0->rcv_opts.wscale;
child0->snd_wnd = clib_net_to_host_u16 (th0->window)
<< child0->snd_wscale;
child0->snd_wl1 = vnet_buffer (b0)->tcp.seq_number;
child0->snd_wl2 = vnet_buffer (b0)->tcp.ack_number;
tcp_connection_init_vars (child0);
TCP_EVT_DBG (TCP_EVT_SYN_RCVD, child0, 1);
if (stream_session_accept (&child0->connection, lc0->c_s_index,
0 /* notify */ ))
{
clib_warning ("session accept fail");
tcp_connection_cleanup (child0);
error0 = TCP_ERROR_CREATE_SESSION_FAIL;
goto drop;
}
child0->tx_fifo_size = transport_tx_fifo_size (&child0->connection);
tcp_send_synack (child0);
tcp_timer_set (child0, TCP_TIMER_ESTABLISH, TCP_SYN_RCVD_TIME);
drop:
if (PREDICT_FALSE (b0->flags & VLIB_BUFFER_IS_TRACED))
{
t0 = vlib_add_trace (vm, node, b0, sizeof (*t0));
clib_memcpy (&t0->tcp_header, th0, sizeof (t0->tcp_header));
clib_memcpy (&t0->tcp_connection, lc0, sizeof (t0->tcp_connection));
}
n_syns += (error0 == TCP_ERROR_NONE);
}
tcp_inc_counter (listen, TCP_ERROR_SYNS_RCVD, n_syns);
vlib_buffer_free (vm, first_buffer, from_frame->n_vectors);
return from_frame->n_vectors;
}
static uword
tcp4_listen (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame)
{
return tcp46_listen_inline (vm, node, from_frame, 1 /* is_ip4 */ );
}
static uword
tcp6_listen (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame)
{
return tcp46_listen_inline (vm, node, from_frame, 0 /* is_ip4 */ );
}
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (tcp4_listen_node) =
{
.function = tcp4_listen,
.name = "tcp4-listen",
/* Takes a vector of packets. */
.vector_size = sizeof (u32),
.n_errors = TCP_N_ERROR,
.error_strings = tcp_error_strings,
.n_next_nodes = TCP_LISTEN_N_NEXT,
.next_nodes =
{
#define _(s,n) [TCP_LISTEN_NEXT_##s] = n,
foreach_tcp_state_next
#undef _
},
.format_trace = format_tcp_rx_trace_short,
};
/* *INDENT-ON* */
VLIB_NODE_FUNCTION_MULTIARCH (tcp4_listen_node, tcp4_listen);
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (tcp6_listen_node) =
{
.function = tcp6_listen,
.name = "tcp6-listen",
/* Takes a vector of packets. */
.vector_size = sizeof (u32),
.n_errors = TCP_N_ERROR,
.error_strings = tcp_error_strings,
.n_next_nodes = TCP_LISTEN_N_NEXT,
.next_nodes =
{
#define _(s,n) [TCP_LISTEN_NEXT_##s] = n,
foreach_tcp_state_next
#undef _
},
.format_trace = format_tcp_rx_trace_short,
};
/* *INDENT-ON* */
VLIB_NODE_FUNCTION_MULTIARCH (tcp6_listen_node, tcp6_listen);
vlib_node_registration_t tcp4_input_node;
vlib_node_registration_t tcp6_input_node;
typedef enum _tcp_input_next
{
TCP_INPUT_NEXT_DROP,
TCP_INPUT_NEXT_LISTEN,
TCP_INPUT_NEXT_RCV_PROCESS,
TCP_INPUT_NEXT_SYN_SENT,
TCP_INPUT_NEXT_ESTABLISHED,
TCP_INPUT_NEXT_RESET,
TCP_INPUT_NEXT_PUNT,
TCP_INPUT_N_NEXT
} tcp_input_next_t;
#define foreach_tcp4_input_next \
_ (DROP, "ip4-drop") \
_ (LISTEN, "tcp4-listen") \
_ (RCV_PROCESS, "tcp4-rcv-process") \
_ (SYN_SENT, "tcp4-syn-sent") \
_ (ESTABLISHED, "tcp4-established") \
_ (RESET, "tcp4-reset") \
_ (PUNT, "ip4-punt")
#define foreach_tcp6_input_next \
_ (DROP, "ip6-drop") \
_ (LISTEN, "tcp6-listen") \
_ (RCV_PROCESS, "tcp6-rcv-process") \
_ (SYN_SENT, "tcp6-syn-sent") \
_ (ESTABLISHED, "tcp6-established") \
_ (RESET, "tcp6-reset") \
_ (PUNT, "ip6-punt")
#define filter_flags (TCP_FLAG_SYN|TCP_FLAG_ACK|TCP_FLAG_RST|TCP_FLAG_FIN)
static void
tcp_input_trace_frame (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_buffer_t ** bs, u32 n_bufs, u8 is_ip4)
{
tcp_connection_t *tc;
tcp_header_t *tcp;
tcp_rx_trace_t *t;
int i;
for (i = 0; i < n_bufs; i++)
{
if (bs[i]->flags & VLIB_BUFFER_IS_TRACED)
{
t = vlib_add_trace (vm, node, bs[i], sizeof (*t));
tc = tcp_connection_get (vnet_buffer (bs[i])->tcp.connection_index,
vm->thread_index);
tcp = vlib_buffer_get_current (bs[i]);
tcp_set_rx_trace_data (t, tc, tcp, bs[i], is_ip4);
}
}
}
static void
tcp_input_set_error_next (tcp_main_t * tm, u16 * next, u32 * error, u8 is_ip4)
{
if (*error == TCP_ERROR_FILTERED)
{
*next = TCP_INPUT_NEXT_DROP;
}
else if ((is_ip4 && tm->punt_unknown4) || (!is_ip4 && tm->punt_unknown6))
{
*next = TCP_INPUT_NEXT_PUNT;
*error = TCP_ERROR_PUNT;
}
else
{
*next = TCP_INPUT_NEXT_RESET;
*error = TCP_ERROR_NO_LISTENER;
}
}
static inline tcp_connection_t *
tcp_input_lookup_buffer (vlib_buffer_t * b, u8 thread_index, u32 * error,
u8 is_ip4)
{
u32 fib_index = vnet_buffer (b)->ip.fib_index;
int n_advance_bytes, n_data_bytes;
transport_connection_t *tc;
tcp_header_t *tcp;
u8 is_filtered = 0;
if (is_ip4)
{
ip4_header_t *ip4 = vlib_buffer_get_current (b);
tcp = ip4_next_header (ip4);
vnet_buffer (b)->tcp.hdr_offset = (u8 *) tcp - (u8 *) ip4;
n_advance_bytes = (ip4_header_bytes (ip4) + tcp_header_bytes (tcp));
n_data_bytes = clib_net_to_host_u16 (ip4->length) - n_advance_bytes;
/* Length check. Checksum computed by ipx_local no need to compute again */
if (PREDICT_FALSE (n_advance_bytes < 0))
{
*error = TCP_ERROR_LENGTH;
return 0;
}
tc = session_lookup_connection_wt4 (fib_index, &ip4->dst_address,
&ip4->src_address, tcp->dst_port,
tcp->src_port, TRANSPORT_PROTO_TCP,
thread_index, &is_filtered);
}
else
{
ip6_header_t *ip6 = vlib_buffer_get_current (b);
tcp = ip6_next_header (ip6);
vnet_buffer (b)->tcp.hdr_offset = (u8 *) tcp - (u8 *) ip6;
n_advance_bytes = tcp_header_bytes (tcp);
n_data_bytes = clib_net_to_host_u16 (ip6->payload_length)
- n_advance_bytes;
n_advance_bytes += sizeof (ip6[0]);
if (PREDICT_FALSE (n_advance_bytes < 0))
{
*error = TCP_ERROR_LENGTH;
return 0;
}
tc = session_lookup_connection_wt6 (fib_index, &ip6->dst_address,
&ip6->src_address, tcp->dst_port,
tcp->src_port, TRANSPORT_PROTO_TCP,
thread_index, &is_filtered);
}
vnet_buffer (b)->tcp.seq_number = clib_net_to_host_u32 (tcp->seq_number);
vnet_buffer (b)->tcp.ack_number = clib_net_to_host_u32 (tcp->ack_number);
vnet_buffer (b)->tcp.data_offset = n_advance_bytes;
vnet_buffer (b)->tcp.data_len = n_data_bytes;
vnet_buffer (b)->tcp.flags = 0;
*error = is_filtered ? TCP_ERROR_FILTERED : *error;
return tcp_get_connection_from_transport (tc);
}
static inline void
tcp_input_dispatch_buffer (tcp_main_t * tm, tcp_connection_t * tc,
vlib_buffer_t * b, u16 * next, u32 * error)
{
tcp_header_t *tcp;
u8 flags;
tcp = tcp_buffer_hdr (b);
flags = tcp->flags & filter_flags;
*next = tm->dispatch_table[tc->state][flags].next;
*error = tm->dispatch_table[tc->state][flags].error;
if (PREDICT_FALSE (*error == TCP_ERROR_DISPATCH
|| *next == TCP_INPUT_NEXT_RESET))
{
/* Overload tcp flags to store state */
tcp_state_t state = tc->state;
vnet_buffer (b)->tcp.flags = tc->state;
if (*error == TCP_ERROR_DISPATCH)
clib_warning ("disp error state %U flags %U", format_tcp_state,
state, format_tcp_flags, (int) flags);
}
}
always_inline uword
tcp46_input_inline (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * frame, int is_ip4)
{
u32 n_left_from, *from, thread_index = vm->thread_index;
tcp_main_t *tm = vnet_get_tcp_main ();
vlib_buffer_t *bufs[VLIB_FRAME_SIZE], **b;
u16 nexts[VLIB_FRAME_SIZE], *next;
tcp_set_time_now (tcp_get_worker (thread_index));
from = vlib_frame_vector_args (frame);
n_left_from = frame->n_vectors;
vlib_get_buffers (vm, from, bufs, n_left_from);
b = bufs;
next = nexts;
while (n_left_from >= 4)
{
u32 error0 = TCP_ERROR_NO_LISTENER, error1 = TCP_ERROR_NO_LISTENER;
tcp_connection_t *tc0, *tc1;
{
vlib_prefetch_buffer_header (b[2], STORE);
CLIB_PREFETCH (b[2]->data, 2 * CLIB_CACHE_LINE_BYTES, LOAD);
vlib_prefetch_buffer_header (b[3], STORE);
CLIB_PREFETCH (b[3]->data, 2 * CLIB_CACHE_LINE_BYTES, LOAD);
}
next[0] = next[1] = TCP_INPUT_NEXT_DROP;
tc0 = tcp_input_lookup_buffer (b[0], thread_index, &error0, is_ip4);
tc1 = tcp_input_lookup_buffer (b[1], thread_index, &error1, is_ip4);
if (PREDICT_TRUE (!tc0 + !tc1 == 0))
{
ASSERT (tcp_lookup_is_valid (tc0, tcp_buffer_hdr (b[0])));
ASSERT (tcp_lookup_is_valid (tc1, tcp_buffer_hdr (b[1])));
vnet_buffer (b[0])->tcp.connection_index = tc0->c_c_index;
vnet_buffer (b[1])->tcp.connection_index = tc1->c_c_index;
tcp_input_dispatch_buffer (tm, tc0, b[0], &next[0], &error0);
tcp_input_dispatch_buffer (tm, tc1, b[1], &next[1], &error1);
}
else
{
if (PREDICT_TRUE (tc0 != 0))
{
ASSERT (tcp_lookup_is_valid (tc0, tcp_buffer_hdr (b[0])));
vnet_buffer (b[0])->tcp.connection_index = tc0->c_c_index;
tcp_input_dispatch_buffer (tm, tc0, b[0], &next[0], &error0);
}
else
tcp_input_set_error_next (tm, &next[0], &error0, is_ip4);
if (PREDICT_TRUE (tc1 != 0))
{
ASSERT (tcp_lookup_is_valid (tc1, tcp_buffer_hdr (b[1])));
vnet_buffer (b[1])->tcp.connection_index = tc1->c_c_index;
tcp_input_dispatch_buffer (tm, tc1, b[1], &next[1], &error1);
}
else
tcp_input_set_error_next (tm, &next[1], &error1, is_ip4);
}
b += 2;
next += 2;
n_left_from -= 2;
}
while (n_left_from > 0)
{
tcp_connection_t *tc0;
u32 error0 = TCP_ERROR_NO_LISTENER;
if (n_left_from > 1)
{
vlib_prefetch_buffer_header (b[1], STORE);
CLIB_PREFETCH (b[1]->data, 2 * CLIB_CACHE_LINE_BYTES, LOAD);
}
next[0] = TCP_INPUT_NEXT_DROP;
tc0 = tcp_input_lookup_buffer (b[0], thread_index, &error0, is_ip4);
if (PREDICT_TRUE (tc0 != 0))
{
ASSERT (tcp_lookup_is_valid (tc0, tcp_buffer_hdr (b[0])));
vnet_buffer (b[0])->tcp.connection_index = tc0->c_c_index;
tcp_input_dispatch_buffer (tm, tc0, b[0], &next[0], &error0);
}
else
tcp_input_set_error_next (tm, &next[0], &error0, is_ip4);
b += 1;
next += 1;
n_left_from -= 1;
}
if (PREDICT_FALSE (node->flags & VLIB_NODE_FLAG_TRACE))
tcp_input_trace_frame (vm, node, bufs, frame->n_vectors, is_ip4);
vlib_buffer_enqueue_to_next (vm, node, from, nexts, frame->n_vectors);
return frame->n_vectors;
}
static uword
tcp4_input (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame)
{
return tcp46_input_inline (vm, node, from_frame, 1 /* is_ip4 */ );
}
static uword
tcp6_input (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * from_frame)
{
return tcp46_input_inline (vm, node, from_frame, 0 /* is_ip4 */ );
}
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (tcp4_input_node) =
{
.function = tcp4_input,
.name = "tcp4-input",
/* Takes a vector of packets. */
.vector_size = sizeof (u32),
.n_errors = TCP_N_ERROR,
.error_strings = tcp_error_strings,
.n_next_nodes = TCP_INPUT_N_NEXT,
.next_nodes =
{
#define _(s,n) [TCP_INPUT_NEXT_##s] = n,
foreach_tcp4_input_next
#undef _
},
.format_buffer = format_tcp_header,
.format_trace = format_tcp_rx_trace,
};
/* *INDENT-ON* */
VLIB_NODE_FUNCTION_MULTIARCH (tcp4_input_node, tcp4_input);
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (tcp6_input_node) =
{
.function = tcp6_input,
.name = "tcp6-input",
/* Takes a vector of packets. */
.vector_size = sizeof (u32),
.n_errors = TCP_N_ERROR,
.error_strings = tcp_error_strings,
.n_next_nodes = TCP_INPUT_N_NEXT,
.next_nodes =
{
#define _(s,n) [TCP_INPUT_NEXT_##s] = n,
foreach_tcp6_input_next
#undef _
},
.format_buffer = format_tcp_header,
.format_trace = format_tcp_rx_trace,
};
/* *INDENT-ON* */
VLIB_NODE_FUNCTION_MULTIARCH (tcp6_input_node, tcp6_input);
static void
tcp_dispatch_table_init (tcp_main_t * tm)
{
int i, j;
for (i = 0; i < ARRAY_LEN (tm->dispatch_table); i++)
for (j = 0; j < ARRAY_LEN (tm->dispatch_table[i]); j++)
{
tm->dispatch_table[i][j].next = TCP_INPUT_NEXT_DROP;
tm->dispatch_table[i][j].error = TCP_ERROR_DISPATCH;
}
#define _(t,f,n,e) \
do { \
tm->dispatch_table[TCP_STATE_##t][f].next = (n); \
tm->dispatch_table[TCP_STATE_##t][f].error = (e); \
} while (0)
/* SYNs for new connections -> tcp-listen. */
_(LISTEN, TCP_FLAG_SYN, TCP_INPUT_NEXT_LISTEN, TCP_ERROR_NONE);
_(LISTEN, TCP_FLAG_ACK, TCP_INPUT_NEXT_RESET, TCP_ERROR_NONE);
_(LISTEN, TCP_FLAG_RST, TCP_INPUT_NEXT_DROP, TCP_ERROR_RST_RCVD);
_(LISTEN, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RESET,
TCP_ERROR_NONE);
/* ACK for for a SYN-ACK -> tcp-rcv-process. */
_(SYN_RCVD, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(SYN_RCVD, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(SYN_RCVD, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS,
TCP_ERROR_NONE);
_(SYN_RCVD, TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(SYN_RCVD, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS,
TCP_ERROR_NONE);
/* SYN-ACK for a SYN */
_(SYN_SENT, TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_SYN_SENT,
TCP_ERROR_NONE);
_(SYN_SENT, TCP_FLAG_ACK, TCP_INPUT_NEXT_SYN_SENT, TCP_ERROR_NONE);
_(SYN_SENT, TCP_FLAG_RST, TCP_INPUT_NEXT_SYN_SENT, TCP_ERROR_NONE);
_(SYN_SENT, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_SYN_SENT,
TCP_ERROR_NONE);
/* ACK for for established connection -> tcp-established. */
_(ESTABLISHED, TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE);
/* FIN for for established connection -> tcp-established. */
_(ESTABLISHED, TCP_FLAG_FIN, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE);
_(ESTABLISHED, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED,
TCP_ERROR_NONE);
_(ESTABLISHED, TCP_FLAG_RST, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE);
_(ESTABLISHED, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED,
TCP_ERROR_NONE);
_(ESTABLISHED, TCP_FLAG_SYN, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE);
_(ESTABLISHED, TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED,
TCP_ERROR_NONE);
/* ACK or FIN-ACK to our FIN */
_(FIN_WAIT_1, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(FIN_WAIT_1, TCP_FLAG_ACK | TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS,
TCP_ERROR_NONE);
/* FIN in reply to our FIN from the other side */
_(FIN_WAIT_1, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(FIN_WAIT_1, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(CLOSING, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
/* FIN confirming that the peer (app) has closed */
_(FIN_WAIT_2, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(FIN_WAIT_2, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(FIN_WAIT_2, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS,
TCP_ERROR_NONE);
_(CLOSE_WAIT, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(CLOSE_WAIT, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS,
TCP_ERROR_NONE);
_(LAST_ACK, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(LAST_ACK, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(LAST_ACK, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS,
TCP_ERROR_NONE);
_(LAST_ACK, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(LAST_ACK, TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(TIME_WAIT, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(TIME_WAIT, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS,
TCP_ERROR_NONE);
_(TIME_WAIT, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(TIME_WAIT, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE);
_(CLOSED, TCP_FLAG_ACK, TCP_INPUT_NEXT_DROP, TCP_ERROR_CONNECTION_CLOSED);
_(CLOSED, TCP_FLAG_RST, TCP_INPUT_NEXT_DROP, TCP_ERROR_CONNECTION_CLOSED);
_(CLOSED, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_DROP,
TCP_ERROR_CONNECTION_CLOSED);
#undef _
}
static clib_error_t *
tcp_input_init (vlib_main_t * vm)
{
clib_error_t *error = 0;
tcp_main_t *tm = vnet_get_tcp_main ();
if ((error = vlib_call_init_function (vm, tcp_init)))
return error;
/* Initialize dispatch table. */
tcp_dispatch_table_init (tm);
return error;
}
VLIB_INIT_FUNCTION (tcp_input_init);
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/