blob: 02ce12a5ff9a99fe0422668ab2fcb4149fde55b9 [file] [log] [blame]
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* ip/ip4_fib.h: ip4 mtrie fib
*
* Copyright (c) 2012 Eliot Dresselhaus
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <vnet/ip/ip.h>
#include <vnet/ip/ip4_mtrie.h>
#include <vnet/fib/ip4_fib.h>
/**
* Global pool of IPv4 8bit PLYs
*/
ip4_fib_mtrie_8_ply_t *ip4_ply_pool;
always_inline u32
ip4_fib_mtrie_leaf_is_non_empty (ip4_fib_mtrie_8_ply_t * p, u8 dst_byte)
{
/*
* It's 'non-empty' if the length of the leaf stored is greater than the
* length of a leaf in the covering ply. i.e. the leaf is more specific
* than it's would be cover in the covering ply
*/
if (p->dst_address_bits_of_leaves[dst_byte] > p->dst_address_bits_base)
return (1);
return (0);
}
always_inline ip4_fib_mtrie_leaf_t
ip4_fib_mtrie_leaf_set_adj_index (u32 adj_index)
{
ip4_fib_mtrie_leaf_t l;
l = 1 + 2 * adj_index;
ASSERT (ip4_fib_mtrie_leaf_get_adj_index (l) == adj_index);
return l;
}
always_inline u32
ip4_fib_mtrie_leaf_is_next_ply (ip4_fib_mtrie_leaf_t n)
{
return (n & 1) == 0;
}
always_inline u32
ip4_fib_mtrie_leaf_get_next_ply_index (ip4_fib_mtrie_leaf_t n)
{
ASSERT (ip4_fib_mtrie_leaf_is_next_ply (n));
return n >> 1;
}
always_inline ip4_fib_mtrie_leaf_t
ip4_fib_mtrie_leaf_set_next_ply_index (u32 i)
{
ip4_fib_mtrie_leaf_t l;
l = 0 + 2 * i;
ASSERT (ip4_fib_mtrie_leaf_get_next_ply_index (l) == i);
return l;
}
#ifndef __ALTIVEC__
#define PLY_X4_SPLAT_INIT(init_x4, init) \
init_x4 = u32x4_splat (init);
#else
#define PLY_X4_SPLAT_INIT(init_x4, init) \
{ \
u32x4_union_t y; \
y.as_u32[0] = init; \
y.as_u32[1] = init; \
y.as_u32[2] = init; \
y.as_u32[3] = init; \
init_x4 = y.as_u32x4; \
}
#endif
#ifdef CLIB_HAVE_VEC128
#define PLY_INIT_LEAVES(p) \
{ \
u32x4 *l, init_x4; \
\
PLY_X4_SPLAT_INIT(init_x4, init); \
for (l = p->leaves_as_u32x4; \
l < p->leaves_as_u32x4 + ARRAY_LEN (p->leaves_as_u32x4); \
l += 4) \
{ \
l[0] = init_x4; \
l[1] = init_x4; \
l[2] = init_x4; \
l[3] = init_x4; \
} \
}
#else
#define PLY_INIT_LEAVES(p) \
{ \
u32 *l; \
\
for (l = p->leaves; l < p->leaves + ARRAY_LEN (p->leaves); l += 4) \
{ \
l[0] = init; \
l[1] = init; \
l[2] = init; \
l[3] = init; \
} \
}
#endif
#define PLY_INIT(p, init, prefix_len, ply_base_len) \
{ \
/* \
* A leaf is 'empty' if it represents a leaf from the covering PLY \
* i.e. if the prefix length of the leaf is less than or equal to \
* the prefix length of the PLY \
*/ \
p->n_non_empty_leafs = (prefix_len > ply_base_len ? \
ARRAY_LEN (p->leaves) : 0); \
clib_memset (p->dst_address_bits_of_leaves, prefix_len, \
sizeof (p->dst_address_bits_of_leaves)); \
p->dst_address_bits_base = ply_base_len; \
\
/* Initialize leaves. */ \
PLY_INIT_LEAVES(p); \
}
static void
ply_8_init (ip4_fib_mtrie_8_ply_t * p,
ip4_fib_mtrie_leaf_t init, uword prefix_len, u32 ply_base_len)
{
PLY_INIT (p, init, prefix_len, ply_base_len);
}
static void
ply_16_init (ip4_fib_mtrie_16_ply_t * p,
ip4_fib_mtrie_leaf_t init, uword prefix_len)
{
clib_memset (p->dst_address_bits_of_leaves, prefix_len,
sizeof (p->dst_address_bits_of_leaves));
PLY_INIT_LEAVES (p);
}
static ip4_fib_mtrie_leaf_t
ply_create (ip4_fib_mtrie_t * m,
ip4_fib_mtrie_leaf_t init_leaf,
u32 leaf_prefix_len, u32 ply_base_len)
{
ip4_fib_mtrie_8_ply_t *p;
void *old_heap;
/* Get cache aligned ply. */
old_heap = clib_mem_set_heap (ip4_main.mtrie_mheap);
pool_get_aligned (ip4_ply_pool, p, CLIB_CACHE_LINE_BYTES);
clib_mem_set_heap (old_heap);
ply_8_init (p, init_leaf, leaf_prefix_len, ply_base_len);
return ip4_fib_mtrie_leaf_set_next_ply_index (p - ip4_ply_pool);
}
always_inline ip4_fib_mtrie_8_ply_t *
get_next_ply_for_leaf (ip4_fib_mtrie_t * m, ip4_fib_mtrie_leaf_t l)
{
uword n = ip4_fib_mtrie_leaf_get_next_ply_index (l);
return pool_elt_at_index (ip4_ply_pool, n);
}
void
ip4_mtrie_free (ip4_fib_mtrie_t * m)
{
/* the root ply is embedded so the is nothing to do,
* the assumption being that the IP4 FIB table has emptied the trie
* before deletion.
*/
#if CLIB_DEBUG > 0
int i;
for (i = 0; i < ARRAY_LEN (m->root_ply.leaves); i++)
{
ASSERT (!ip4_fib_mtrie_leaf_is_next_ply (m->root_ply.leaves[i]));
}
#endif
}
void
ip4_mtrie_init (ip4_fib_mtrie_t * m)
{
ply_16_init (&m->root_ply, IP4_FIB_MTRIE_LEAF_EMPTY, 0);
}
typedef struct
{
ip4_address_t dst_address;
u32 dst_address_length;
u32 adj_index;
u32 cover_address_length;
u32 cover_adj_index;
} ip4_fib_mtrie_set_unset_leaf_args_t;
static void
set_ply_with_more_specific_leaf (ip4_fib_mtrie_t * m,
ip4_fib_mtrie_8_ply_t * ply,
ip4_fib_mtrie_leaf_t new_leaf,
uword new_leaf_dst_address_bits)
{
ip4_fib_mtrie_leaf_t old_leaf;
uword i;
ASSERT (ip4_fib_mtrie_leaf_is_terminal (new_leaf));
for (i = 0; i < ARRAY_LEN (ply->leaves); i++)
{
old_leaf = ply->leaves[i];
/* Recurse into sub plies. */
if (!ip4_fib_mtrie_leaf_is_terminal (old_leaf))
{
ip4_fib_mtrie_8_ply_t *sub_ply =
get_next_ply_for_leaf (m, old_leaf);
set_ply_with_more_specific_leaf (m, sub_ply, new_leaf,
new_leaf_dst_address_bits);
}
/* Replace less specific terminal leaves with new leaf. */
else if (new_leaf_dst_address_bits >=
ply->dst_address_bits_of_leaves[i])
{
clib_atomic_cmp_and_swap (&ply->leaves[i], old_leaf, new_leaf);
ASSERT (ply->leaves[i] == new_leaf);
ply->dst_address_bits_of_leaves[i] = new_leaf_dst_address_bits;
ply->n_non_empty_leafs += ip4_fib_mtrie_leaf_is_non_empty (ply, i);
}
}
}
static void
set_leaf (ip4_fib_mtrie_t * m,
const ip4_fib_mtrie_set_unset_leaf_args_t * a,
u32 old_ply_index, u32 dst_address_byte_index)
{
ip4_fib_mtrie_leaf_t old_leaf, new_leaf;
i32 n_dst_bits_next_plies;
u8 dst_byte;
ip4_fib_mtrie_8_ply_t *old_ply;
old_ply = pool_elt_at_index (ip4_ply_pool, old_ply_index);
ASSERT (a->dst_address_length <= 32);
ASSERT (dst_address_byte_index < ARRAY_LEN (a->dst_address.as_u8));
/* how many bits of the destination address are in the next PLY */
n_dst_bits_next_plies =
a->dst_address_length - BITS (u8) * (dst_address_byte_index + 1);
dst_byte = a->dst_address.as_u8[dst_address_byte_index];
/* Number of bits next plies <= 0 => insert leaves this ply. */
if (n_dst_bits_next_plies <= 0)
{
/* The mask length of the address to insert maps to this ply */
uword old_leaf_is_terminal;
u32 i, n_dst_bits_this_ply;
/* The number of bits, and hence slots/buckets, we will fill */
n_dst_bits_this_ply = clib_min (8, -n_dst_bits_next_plies);
ASSERT ((a->dst_address.as_u8[dst_address_byte_index] &
pow2_mask (n_dst_bits_this_ply)) == 0);
/* Starting at the value of the byte at this section of the v4 address
* fill the buckets/slots of the ply */
for (i = dst_byte; i < dst_byte + (1 << n_dst_bits_this_ply); i++)
{
ip4_fib_mtrie_8_ply_t *new_ply;
old_leaf = old_ply->leaves[i];
old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);
if (a->dst_address_length >= old_ply->dst_address_bits_of_leaves[i])
{
/* The new leaf is more or equally specific than the one currently
* occupying the slot */
new_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index);
if (old_leaf_is_terminal)
{
/* The current leaf is terminal, we can replace it with
* the new one */
old_ply->n_non_empty_leafs -=
ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);
old_ply->dst_address_bits_of_leaves[i] =
a->dst_address_length;
clib_atomic_cmp_and_swap (&old_ply->leaves[i], old_leaf,
new_leaf);
ASSERT (old_ply->leaves[i] == new_leaf);
old_ply->n_non_empty_leafs +=
ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);
ASSERT (old_ply->n_non_empty_leafs <=
ARRAY_LEN (old_ply->leaves));
}
else
{
/* Existing leaf points to another ply. We need to place
* new_leaf into all more specific slots. */
new_ply = get_next_ply_for_leaf (m, old_leaf);
set_ply_with_more_specific_leaf (m, new_ply, new_leaf,
a->dst_address_length);
}
}
else if (!old_leaf_is_terminal)
{
/* The current leaf is less specific and not termial (i.e. a ply),
* recurse on down the trie */
new_ply = get_next_ply_for_leaf (m, old_leaf);
set_leaf (m, a, new_ply - ip4_ply_pool,
dst_address_byte_index + 1);
}
/*
* else
* the route we are adding is less specific than the leaf currently
* occupying this slot. leave it there
*/
}
}
else
{
/* The address to insert requires us to move down at a lower level of
* the trie - recurse on down */
ip4_fib_mtrie_8_ply_t *new_ply;
u8 ply_base_len;
ply_base_len = 8 * (dst_address_byte_index + 1);
old_leaf = old_ply->leaves[dst_byte];
if (ip4_fib_mtrie_leaf_is_terminal (old_leaf))
{
/* There is a leaf occupying the slot. Replace it with a new ply */
old_ply->n_non_empty_leafs -=
ip4_fib_mtrie_leaf_is_non_empty (old_ply, dst_byte);
new_leaf =
ply_create (m, old_leaf,
old_ply->dst_address_bits_of_leaves[dst_byte],
ply_base_len);
new_ply = get_next_ply_for_leaf (m, new_leaf);
/* Refetch since ply_create may move pool. */
old_ply = pool_elt_at_index (ip4_ply_pool, old_ply_index);
clib_atomic_cmp_and_swap (&old_ply->leaves[dst_byte], old_leaf,
new_leaf);
ASSERT (old_ply->leaves[dst_byte] == new_leaf);
old_ply->dst_address_bits_of_leaves[dst_byte] = ply_base_len;
old_ply->n_non_empty_leafs +=
ip4_fib_mtrie_leaf_is_non_empty (old_ply, dst_byte);
ASSERT (old_ply->n_non_empty_leafs >= 0);
}
else
new_ply = get_next_ply_for_leaf (m, old_leaf);
set_leaf (m, a, new_ply - ip4_ply_pool, dst_address_byte_index + 1);
}
}
static void
set_root_leaf (ip4_fib_mtrie_t * m,
const ip4_fib_mtrie_set_unset_leaf_args_t * a)
{
ip4_fib_mtrie_leaf_t old_leaf, new_leaf;
ip4_fib_mtrie_16_ply_t *old_ply;
i32 n_dst_bits_next_plies;
u16 dst_byte;
old_ply = &m->root_ply;
ASSERT (a->dst_address_length <= 32);
/* how many bits of the destination address are in the next PLY */
n_dst_bits_next_plies = a->dst_address_length - BITS (u16);
dst_byte = a->dst_address.as_u16[0];
/* Number of bits next plies <= 0 => insert leaves this ply. */
if (n_dst_bits_next_plies <= 0)
{
/* The mask length of the address to insert maps to this ply */
uword old_leaf_is_terminal;
u32 i, n_dst_bits_this_ply;
/* The number of bits, and hence slots/buckets, we will fill */
n_dst_bits_this_ply = 16 - a->dst_address_length;
ASSERT ((clib_host_to_net_u16 (a->dst_address.as_u16[0]) &
pow2_mask (n_dst_bits_this_ply)) == 0);
/* Starting at the value of the byte at this section of the v4 address
* fill the buckets/slots of the ply */
for (i = 0; i < (1 << n_dst_bits_this_ply); i++)
{
ip4_fib_mtrie_8_ply_t *new_ply;
u16 slot;
slot = clib_net_to_host_u16 (dst_byte);
slot += i;
slot = clib_host_to_net_u16 (slot);
old_leaf = old_ply->leaves[slot];
old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);
if (a->dst_address_length >=
old_ply->dst_address_bits_of_leaves[slot])
{
/* The new leaf is more or equally specific than the one currently
* occupying the slot */
new_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index);
if (old_leaf_is_terminal)
{
/* The current leaf is terminal, we can replace it with
* the new one */
old_ply->dst_address_bits_of_leaves[slot] =
a->dst_address_length;
clib_atomic_cmp_and_swap (&old_ply->leaves[slot],
old_leaf, new_leaf);
ASSERT (old_ply->leaves[slot] == new_leaf);
}
else
{
/* Existing leaf points to another ply. We need to place
* new_leaf into all more specific slots. */
new_ply = get_next_ply_for_leaf (m, old_leaf);
set_ply_with_more_specific_leaf (m, new_ply, new_leaf,
a->dst_address_length);
}
}
else if (!old_leaf_is_terminal)
{
/* The current leaf is less specific and not termial (i.e. a ply),
* recurse on down the trie */
new_ply = get_next_ply_for_leaf (m, old_leaf);
set_leaf (m, a, new_ply - ip4_ply_pool, 2);
}
/*
* else
* the route we are adding is less specific than the leaf currently
* occupying this slot. leave it there
*/
}
}
else
{
/* The address to insert requires us to move down at a lower level of
* the trie - recurse on down */
ip4_fib_mtrie_8_ply_t *new_ply;
u8 ply_base_len;
ply_base_len = 16;
old_leaf = old_ply->leaves[dst_byte];
if (ip4_fib_mtrie_leaf_is_terminal (old_leaf))
{
/* There is a leaf occupying the slot. Replace it with a new ply */
new_leaf =
ply_create (m, old_leaf,
old_ply->dst_address_bits_of_leaves[dst_byte],
ply_base_len);
new_ply = get_next_ply_for_leaf (m, new_leaf);
clib_atomic_cmp_and_swap (&old_ply->leaves[dst_byte], old_leaf,
new_leaf);
ASSERT (old_ply->leaves[dst_byte] == new_leaf);
old_ply->dst_address_bits_of_leaves[dst_byte] = ply_base_len;
}
else
new_ply = get_next_ply_for_leaf (m, old_leaf);
set_leaf (m, a, new_ply - ip4_ply_pool, 2);
}
}
static uword
unset_leaf (ip4_fib_mtrie_t * m,
const ip4_fib_mtrie_set_unset_leaf_args_t * a,
ip4_fib_mtrie_8_ply_t * old_ply, u32 dst_address_byte_index)
{
ip4_fib_mtrie_leaf_t old_leaf, del_leaf;
i32 n_dst_bits_next_plies;
i32 i, n_dst_bits_this_ply, old_leaf_is_terminal;
u8 dst_byte;
ASSERT (a->dst_address_length <= 32);
ASSERT (dst_address_byte_index < ARRAY_LEN (a->dst_address.as_u8));
n_dst_bits_next_plies =
a->dst_address_length - BITS (u8) * (dst_address_byte_index + 1);
dst_byte = a->dst_address.as_u8[dst_address_byte_index];
if (n_dst_bits_next_plies < 0)
dst_byte &= ~pow2_mask (-n_dst_bits_next_plies);
n_dst_bits_this_ply =
n_dst_bits_next_plies <= 0 ? -n_dst_bits_next_plies : 0;
n_dst_bits_this_ply = clib_min (8, n_dst_bits_this_ply);
del_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index);
for (i = dst_byte; i < dst_byte + (1 << n_dst_bits_this_ply); i++)
{
old_leaf = old_ply->leaves[i];
old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);
if (old_leaf == del_leaf
|| (!old_leaf_is_terminal
&& unset_leaf (m, a, get_next_ply_for_leaf (m, old_leaf),
dst_address_byte_index + 1)))
{
old_ply->n_non_empty_leafs -=
ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);
old_ply->leaves[i] =
ip4_fib_mtrie_leaf_set_adj_index (a->cover_adj_index);
old_ply->dst_address_bits_of_leaves[i] = a->cover_address_length;
old_ply->n_non_empty_leafs +=
ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);
ASSERT (old_ply->n_non_empty_leafs >= 0);
if (old_ply->n_non_empty_leafs == 0 && dst_address_byte_index > 0)
{
pool_put (ip4_ply_pool, old_ply);
/* Old ply was deleted. */
return 1;
}
#if CLIB_DEBUG > 0
else if (dst_address_byte_index)
{
int ii, count = 0;
for (ii = 0; ii < ARRAY_LEN (old_ply->leaves); ii++)
{
count += ip4_fib_mtrie_leaf_is_non_empty (old_ply, ii);
}
ASSERT (count);
}
#endif
}
}
/* Old ply was not deleted. */
return 0;
}
static void
unset_root_leaf (ip4_fib_mtrie_t * m,
const ip4_fib_mtrie_set_unset_leaf_args_t * a)
{
ip4_fib_mtrie_leaf_t old_leaf, del_leaf;
i32 n_dst_bits_next_plies;
i32 i, n_dst_bits_this_ply, old_leaf_is_terminal;
u16 dst_byte;
ip4_fib_mtrie_16_ply_t *old_ply;
ASSERT (a->dst_address_length <= 32);
old_ply = &m->root_ply;
n_dst_bits_next_plies = a->dst_address_length - BITS (u16);
dst_byte = a->dst_address.as_u16[0];
n_dst_bits_this_ply = (n_dst_bits_next_plies <= 0 ?
(16 - a->dst_address_length) : 0);
del_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index);
/* Starting at the value of the byte at this section of the v4 address
* fill the buckets/slots of the ply */
for (i = 0; i < (1 << n_dst_bits_this_ply); i++)
{
u16 slot;
slot = clib_net_to_host_u16 (dst_byte);
slot += i;
slot = clib_host_to_net_u16 (slot);
old_leaf = old_ply->leaves[slot];
old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);
if (old_leaf == del_leaf
|| (!old_leaf_is_terminal
&& unset_leaf (m, a, get_next_ply_for_leaf (m, old_leaf), 2)))
{
old_ply->leaves[slot] =
ip4_fib_mtrie_leaf_set_adj_index (a->cover_adj_index);
old_ply->dst_address_bits_of_leaves[slot] = a->cover_address_length;
}
}
}
void
ip4_fib_mtrie_route_add (ip4_fib_mtrie_t * m,
const ip4_address_t * dst_address,
u32 dst_address_length, u32 adj_index)
{
ip4_fib_mtrie_set_unset_leaf_args_t a;
ip4_main_t *im = &ip4_main;
/* Honor dst_address_length. Fib masks are in network byte order */
a.dst_address.as_u32 = (dst_address->as_u32 &
im->fib_masks[dst_address_length]);
a.dst_address_length = dst_address_length;
a.adj_index = adj_index;
set_root_leaf (m, &a);
}
void
ip4_fib_mtrie_route_del (ip4_fib_mtrie_t * m,
const ip4_address_t * dst_address,
u32 dst_address_length,
u32 adj_index,
u32 cover_address_length, u32 cover_adj_index)
{
ip4_fib_mtrie_set_unset_leaf_args_t a;
ip4_main_t *im = &ip4_main;
/* Honor dst_address_length. Fib masks are in network byte order */
a.dst_address.as_u32 = (dst_address->as_u32 &
im->fib_masks[dst_address_length]);
a.dst_address_length = dst_address_length;
a.adj_index = adj_index;
a.cover_adj_index = cover_adj_index;
a.cover_address_length = cover_address_length;
/* the top level ply is never removed */
unset_root_leaf (m, &a);
}
/* Returns number of bytes of memory used by mtrie. */
static uword
mtrie_ply_memory_usage (ip4_fib_mtrie_t * m, ip4_fib_mtrie_8_ply_t * p)
{
uword bytes, i;
bytes = sizeof (p[0]);
for (i = 0; i < ARRAY_LEN (p->leaves); i++)
{
ip4_fib_mtrie_leaf_t l = p->leaves[i];
if (ip4_fib_mtrie_leaf_is_next_ply (l))
bytes += mtrie_ply_memory_usage (m, get_next_ply_for_leaf (m, l));
}
return bytes;
}
/* Returns number of bytes of memory used by mtrie. */
uword
ip4_fib_mtrie_memory_usage (ip4_fib_mtrie_t * m)
{
uword bytes, i;
bytes = sizeof (*m);
for (i = 0; i < ARRAY_LEN (m->root_ply.leaves); i++)
{
ip4_fib_mtrie_leaf_t l = m->root_ply.leaves[i];
if (ip4_fib_mtrie_leaf_is_next_ply (l))
bytes += mtrie_ply_memory_usage (m, get_next_ply_for_leaf (m, l));
}
return bytes;
}
static u8 *
format_ip4_fib_mtrie_leaf (u8 * s, va_list * va)
{
ip4_fib_mtrie_leaf_t l = va_arg (*va, ip4_fib_mtrie_leaf_t);
if (ip4_fib_mtrie_leaf_is_terminal (l))
s = format (s, "lb-index %d", ip4_fib_mtrie_leaf_get_adj_index (l));
else
s = format (s, "next ply %d", ip4_fib_mtrie_leaf_get_next_ply_index (l));
return s;
}
#define FORMAT_PLY(s, _p, _a, _i, _base_address, _ply_max_len, _indent) \
({ \
u32 a, ia_length; \
ip4_address_t ia; \
ip4_fib_mtrie_leaf_t _l = p->leaves[(_i)]; \
\
a = (_base_address) + ((_a) << (32 - (_ply_max_len))); \
ia.as_u32 = clib_host_to_net_u32 (a); \
ia_length = (_p)->dst_address_bits_of_leaves[(_i)]; \
s = format (s, "\n%U%U %U", \
format_white_space, (_indent) + 4, \
format_ip4_address_and_length, &ia, ia_length, \
format_ip4_fib_mtrie_leaf, _l); \
\
if (ip4_fib_mtrie_leaf_is_next_ply (_l)) \
s = format (s, "\n%U", \
format_ip4_fib_mtrie_ply, m, a, (_indent) + 8, \
ip4_fib_mtrie_leaf_get_next_ply_index (_l)); \
s; \
})
static u8 *
format_ip4_fib_mtrie_ply (u8 * s, va_list * va)
{
ip4_fib_mtrie_t *m = va_arg (*va, ip4_fib_mtrie_t *);
u32 base_address = va_arg (*va, u32);
u32 indent = va_arg (*va, u32);
u32 ply_index = va_arg (*va, u32);
ip4_fib_mtrie_8_ply_t *p;
int i;
p = pool_elt_at_index (ip4_ply_pool, ply_index);
s = format (s, "%Uply index %d, %d non-empty leaves",
format_white_space, indent, ply_index, p->n_non_empty_leafs);
for (i = 0; i < ARRAY_LEN (p->leaves); i++)
{
if (ip4_fib_mtrie_leaf_is_non_empty (p, i))
{
s = FORMAT_PLY (s, p, i, i, base_address,
p->dst_address_bits_base + 8, indent);
}
}
return s;
}
u8 *
format_ip4_fib_mtrie (u8 * s, va_list * va)
{
ip4_fib_mtrie_t *m = va_arg (*va, ip4_fib_mtrie_t *);
int verbose = va_arg (*va, int);
ip4_fib_mtrie_16_ply_t *p;
u32 base_address = 0;
int i;
s = format (s, "%d plies, memory usage %U\n",
pool_elts (ip4_ply_pool),
format_memory_size, ip4_fib_mtrie_memory_usage (m));
s = format (s, "root-ply");
p = &m->root_ply;
if (verbose)
{
s = format (s, "root-ply");
p = &m->root_ply;
for (i = 0; i < ARRAY_LEN (p->leaves); i++)
{
u16 slot;
slot = clib_host_to_net_u16 (i);
if (p->dst_address_bits_of_leaves[slot] > 0)
{
s = FORMAT_PLY (s, p, i, slot, base_address, 16, 0);
}
}
}
return s;
}
/** Default heap size for the IPv4 mtries */
#define IP4_FIB_DEFAULT_MTRIE_HEAP_SIZE (32<<20)
static clib_error_t *
ip4_mtrie_module_init (vlib_main_t * vm)
{
CLIB_UNUSED (ip4_fib_mtrie_8_ply_t * p);
ip4_main_t *im = &ip4_main;
clib_error_t *error = NULL;
uword *old_heap;
if (0 == im->mtrie_heap_size)
im->mtrie_heap_size = IP4_FIB_DEFAULT_MTRIE_HEAP_SIZE;
#if USE_DLMALLOC == 0
im->mtrie_mheap = mheap_alloc (0, im->mtrie_heap_size);
#else
im->mtrie_mheap = create_mspace (im->mtrie_heap_size, 1 /* locked */ );
#endif
/* Burn one ply so index 0 is taken */
old_heap = clib_mem_set_heap (ip4_main.mtrie_mheap);
pool_get (ip4_ply_pool, p);
clib_mem_set_heap (old_heap);
return (error);
}
VLIB_INIT_FUNCTION (ip4_mtrie_module_init);
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/