blob: a4b29c8ce35f2edc8f4faeef6ca001f2156b3a5b [file] [log] [blame]
/*
* Copyright (c) 2016 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vnet/adj/adj_nbr.h>
#include <vnet/adj/adj_internal.h>
#include <vnet/adj/adj_l2.h>
#include <vnet/adj/adj_nsh.h>
#include <vnet/adj/adj_midchain.h>
#include <vnet/ethernet/arp_packet.h>
#include <vnet/dpo/drop_dpo.h>
#include <vnet/dpo/load_balance.h>
#include <vnet/fib/fib_walk.h>
#include <vnet/fib/fib_entry.h>
/**
* The two midchain tx feature node indices
*/
static u32 adj_midchain_tx_feature_node[VNET_LINK_NUM];
static u32 adj_midchain_tx_no_count_feature_node[VNET_LINK_NUM];
/**
* @brief Trace data for packets traversing the midchain tx node
*/
typedef struct adj_midchain_tx_trace_t_
{
/**
* @brief the midchain adj we are traversing
*/
adj_index_t ai;
} adj_midchain_tx_trace_t;
always_inline uword
adj_midchain_tx_inline (vlib_main_t * vm,
vlib_node_runtime_t * node,
vlib_frame_t * frame,
int interface_count)
{
u32 * from, * to_next, n_left_from, n_left_to_next;
u32 next_index;
vnet_main_t *vnm = vnet_get_main ();
vnet_interface_main_t *im = &vnm->interface_main;
u32 thread_index = vm->thread_index;
/* Vector of buffer / pkt indices we're supposed to process */
from = vlib_frame_vector_args (frame);
/* Number of buffers / pkts */
n_left_from = frame->n_vectors;
/* Speculatively send the first buffer to the last disposition we used */
next_index = node->cached_next_index;
while (n_left_from > 0)
{
/* set up to enqueue to our disposition with index = next_index */
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
while (n_left_from >= 8 && n_left_to_next > 4)
{
u32 bi0, adj_index0, next0;
const ip_adjacency_t * adj0;
const dpo_id_t *dpo0;
vlib_buffer_t * b0;
u32 bi1, adj_index1, next1;
const ip_adjacency_t * adj1;
const dpo_id_t *dpo1;
vlib_buffer_t * b1;
u32 bi2, adj_index2, next2;
const ip_adjacency_t * adj2;
const dpo_id_t *dpo2;
vlib_buffer_t * b2;
u32 bi3, adj_index3, next3;
const ip_adjacency_t * adj3;
const dpo_id_t *dpo3;
vlib_buffer_t * b3;
/* Prefetch next iteration. */
{
vlib_buffer_t * p4, * p5;
vlib_buffer_t * p6, * p7;
p4 = vlib_get_buffer (vm, from[4]);
p5 = vlib_get_buffer (vm, from[5]);
p6 = vlib_get_buffer (vm, from[6]);
p7 = vlib_get_buffer (vm, from[7]);
vlib_prefetch_buffer_header (p4, LOAD);
vlib_prefetch_buffer_header (p5, LOAD);
vlib_prefetch_buffer_header (p6, LOAD);
vlib_prefetch_buffer_header (p7, LOAD);
}
bi0 = from[0];
to_next[0] = bi0;
bi1 = from[1];
to_next[1] = bi1;
bi2 = from[2];
to_next[2] = bi2;
bi3 = from[3];
to_next[3] = bi3;
from += 4;
to_next += 4;
n_left_from -= 4;
n_left_to_next -= 4;
b0 = vlib_get_buffer(vm, bi0);
b1 = vlib_get_buffer(vm, bi1);
b2 = vlib_get_buffer(vm, bi2);
b3 = vlib_get_buffer(vm, bi3);
/* Follow the DPO on which the midchain is stacked */
adj_index0 = vnet_buffer(b0)->ip.adj_index[VLIB_TX];
adj_index1 = vnet_buffer(b1)->ip.adj_index[VLIB_TX];
adj_index2 = vnet_buffer(b2)->ip.adj_index[VLIB_TX];
adj_index3 = vnet_buffer(b3)->ip.adj_index[VLIB_TX];
adj0 = adj_get(adj_index0);
adj1 = adj_get(adj_index1);
adj2 = adj_get(adj_index2);
adj3 = adj_get(adj_index3);
dpo0 = &adj0->sub_type.midchain.next_dpo;
dpo1 = &adj1->sub_type.midchain.next_dpo;
dpo2 = &adj2->sub_type.midchain.next_dpo;
dpo3 = &adj3->sub_type.midchain.next_dpo;
next0 = dpo0->dpoi_next_node;
next1 = dpo1->dpoi_next_node;
next2 = dpo2->dpoi_next_node;
next3 = dpo3->dpoi_next_node;
vnet_buffer(b1)->ip.adj_index[VLIB_TX] = dpo1->dpoi_index;
vnet_buffer(b0)->ip.adj_index[VLIB_TX] = dpo0->dpoi_index;
vnet_buffer(b2)->ip.adj_index[VLIB_TX] = dpo2->dpoi_index;
vnet_buffer(b3)->ip.adj_index[VLIB_TX] = dpo3->dpoi_index;
if (interface_count)
{
vlib_increment_combined_counter (im->combined_sw_if_counters
+ VNET_INTERFACE_COUNTER_TX,
thread_index,
adj0->rewrite_header.sw_if_index,
1,
vlib_buffer_length_in_chain (vm, b0));
vlib_increment_combined_counter (im->combined_sw_if_counters
+ VNET_INTERFACE_COUNTER_TX,
thread_index,
adj1->rewrite_header.sw_if_index,
1,
vlib_buffer_length_in_chain (vm, b1));
vlib_increment_combined_counter (im->combined_sw_if_counters
+ VNET_INTERFACE_COUNTER_TX,
thread_index,
adj2->rewrite_header.sw_if_index,
1,
vlib_buffer_length_in_chain (vm, b2));
vlib_increment_combined_counter (im->combined_sw_if_counters
+ VNET_INTERFACE_COUNTER_TX,
thread_index,
adj3->rewrite_header.sw_if_index,
1,
vlib_buffer_length_in_chain (vm, b3));
}
if (PREDICT_FALSE(b0->flags & VLIB_BUFFER_IS_TRACED))
{
adj_midchain_tx_trace_t *tr = vlib_add_trace (vm, node,
b0, sizeof (*tr));
tr->ai = adj_index0;
}
if (PREDICT_FALSE(b1->flags & VLIB_BUFFER_IS_TRACED))
{
adj_midchain_tx_trace_t *tr = vlib_add_trace (vm, node,
b1, sizeof (*tr));
tr->ai = adj_index1;
}
if (PREDICT_FALSE(b2->flags & VLIB_BUFFER_IS_TRACED))
{
adj_midchain_tx_trace_t *tr = vlib_add_trace (vm, node,
b2, sizeof (*tr));
tr->ai = adj_index2;
}
if (PREDICT_FALSE(b3->flags & VLIB_BUFFER_IS_TRACED))
{
adj_midchain_tx_trace_t *tr = vlib_add_trace (vm, node,
b3, sizeof (*tr));
tr->ai = adj_index3;
}
vlib_validate_buffer_enqueue_x4 (vm, node, next_index,
to_next, n_left_to_next,
bi0, bi1, bi2, bi3,
next0, next1, next2, next3);
}
while (n_left_from > 0 && n_left_to_next > 0)
{
u32 bi0, adj_index0, next0;
const ip_adjacency_t * adj0;
const dpo_id_t *dpo0;
vlib_buffer_t * b0;
bi0 = from[0];
to_next[0] = bi0;
from += 1;
to_next += 1;
n_left_from -= 1;
n_left_to_next -= 1;
b0 = vlib_get_buffer(vm, bi0);
/* Follow the DPO on which the midchain is stacked */
adj_index0 = vnet_buffer(b0)->ip.adj_index[VLIB_TX];
adj0 = adj_get(adj_index0);
dpo0 = &adj0->sub_type.midchain.next_dpo;
next0 = dpo0->dpoi_next_node;
vnet_buffer(b0)->ip.adj_index[VLIB_TX] = dpo0->dpoi_index;
if (interface_count)
{
vlib_increment_combined_counter (im->combined_sw_if_counters
+ VNET_INTERFACE_COUNTER_TX,
thread_index,
adj0->rewrite_header.sw_if_index,
1,
vlib_buffer_length_in_chain (vm, b0));
}
if (PREDICT_FALSE(b0->flags & VLIB_BUFFER_IS_TRACED))
{
adj_midchain_tx_trace_t *tr = vlib_add_trace (vm, node,
b0, sizeof (*tr));
tr->ai = adj_index0;
}
vlib_validate_buffer_enqueue_x1 (vm, node, next_index,
to_next, n_left_to_next,
bi0, next0);
}
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
return frame->n_vectors;
}
static u8 *
format_adj_midchain_tx_trace (u8 * s, va_list * args)
{
CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *);
CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *);
adj_midchain_tx_trace_t *tr = va_arg (*args, adj_midchain_tx_trace_t*);
s = format(s, "adj-midchain:[%d]:%U", tr->ai,
format_ip_adjacency, tr->ai,
FORMAT_IP_ADJACENCY_NONE);
return (s);
}
static uword
adj_midchain_tx (vlib_main_t * vm,
vlib_node_runtime_t * node,
vlib_frame_t * frame)
{
return (adj_midchain_tx_inline(vm, node, frame, 1));
}
VLIB_REGISTER_NODE (adj_midchain_tx_node, static) = {
.function = adj_midchain_tx,
.name = "adj-midchain-tx",
.vector_size = sizeof (u32),
.format_trace = format_adj_midchain_tx_trace,
.n_next_nodes = 1,
.next_nodes = {
[0] = "error-drop",
},
};
static uword
adj_midchain_tx_no_count (vlib_main_t * vm,
vlib_node_runtime_t * node,
vlib_frame_t * frame)
{
return (adj_midchain_tx_inline(vm, node, frame, 0));
}
VLIB_REGISTER_NODE (adj_midchain_tx_no_count_node, static) = {
.function = adj_midchain_tx_no_count,
.name = "adj-midchain-tx-no-count",
.vector_size = sizeof (u32),
.format_trace = format_adj_midchain_tx_trace,
.n_next_nodes = 1,
.next_nodes = {
[0] = "error-drop",
},
};
VNET_FEATURE_INIT (adj_midchain_tx_ip4, static) = {
.arc_name = "ip4-output",
.node_name = "adj-midchain-tx",
.runs_before = VNET_FEATURES ("interface-output"),
.feature_index_ptr = &adj_midchain_tx_feature_node[VNET_LINK_IP4],
};
VNET_FEATURE_INIT (adj_midchain_tx_no_count_ip4, static) = {
.arc_name = "ip4-output",
.node_name = "adj-midchain-tx-no-count",
.runs_before = VNET_FEATURES ("interface-output"),
.feature_index_ptr = &adj_midchain_tx_no_count_feature_node[VNET_LINK_IP4],
};
VNET_FEATURE_INIT (adj_midchain_tx_ip6, static) = {
.arc_name = "ip6-output",
.node_name = "adj-midchain-tx",
.runs_before = VNET_FEATURES ("interface-output"),
.feature_index_ptr = &adj_midchain_tx_feature_node[VNET_LINK_IP6],
};
VNET_FEATURE_INIT (adj_midchain_tx_no_count_ip6, static) = {
.arc_name = "ip6-output",
.node_name = "adj-midchain-tx-no-count",
.runs_before = VNET_FEATURES ("interface-output"),
.feature_index_ptr = &adj_midchain_tx_no_count_feature_node[VNET_LINK_IP6],
};
VNET_FEATURE_INIT (adj_midchain_tx_mpls, static) = {
.arc_name = "mpls-output",
.node_name = "adj-midchain-tx",
.runs_before = VNET_FEATURES ("interface-output"),
.feature_index_ptr = &adj_midchain_tx_feature_node[VNET_LINK_MPLS],
};
VNET_FEATURE_INIT (adj_midchain_tx_no_count_mpls, static) = {
.arc_name = "mpls-output",
.node_name = "adj-midchain-tx-no-count",
.runs_before = VNET_FEATURES ("interface-output"),
.feature_index_ptr = &adj_midchain_tx_no_count_feature_node[VNET_LINK_MPLS],
};
VNET_FEATURE_INIT (adj_midchain_tx_ethernet, static) = {
.arc_name = "ethernet-output",
.node_name = "adj-midchain-tx",
.runs_before = VNET_FEATURES ("error-drop"),
.feature_index_ptr = &adj_midchain_tx_feature_node[VNET_LINK_ETHERNET],
};
VNET_FEATURE_INIT (adj_midchain_tx_no_count_ethernet, static) = {
.arc_name = "ethernet-output",
.node_name = "adj-midchain-tx-no-count",
.runs_before = VNET_FEATURES ("error-drop"),
.feature_index_ptr = &adj_midchain_tx_no_count_feature_node[VNET_LINK_ETHERNET],
};
VNET_FEATURE_INIT (adj_midchain_tx_nsh, static) = {
.arc_name = "nsh-output",
.node_name = "adj-midchain-tx",
.runs_before = VNET_FEATURES ("error-drop"),
.feature_index_ptr = &adj_midchain_tx_feature_node[VNET_LINK_NSH],
};
VNET_FEATURE_INIT (adj_midchain_tx_no_count_nsh, static) = {
.arc_name = "nsh-output",
.node_name = "adj-midchain-tx-no-count",
.runs_before = VNET_FEATURES ("error-drop"),
.feature_index_ptr = &adj_midchain_tx_no_count_feature_node[VNET_LINK_NSH],
};
static inline u32
adj_get_midchain_node (vnet_link_t link)
{
switch (link) {
case VNET_LINK_IP4:
return (ip4_midchain_node.index);
case VNET_LINK_IP6:
return (ip6_midchain_node.index);
case VNET_LINK_MPLS:
return (mpls_midchain_node.index);
case VNET_LINK_ETHERNET:
return (adj_l2_midchain_node.index);
case VNET_LINK_NSH:
return (adj_nsh_midchain_node.index);
case VNET_LINK_ARP:
break;
}
ASSERT(0);
return (0);
}
static u8
adj_midchain_get_feature_arc_index_for_link_type (const ip_adjacency_t *adj)
{
u8 arc = (u8) ~0;
switch (adj->ia_link)
{
case VNET_LINK_IP4:
{
arc = ip4_main.lookup_main.output_feature_arc_index;
break;
}
case VNET_LINK_IP6:
{
arc = ip6_main.lookup_main.output_feature_arc_index;
break;
}
case VNET_LINK_MPLS:
{
arc = mpls_main.output_feature_arc_index;
break;
}
case VNET_LINK_ETHERNET:
{
arc = ethernet_main.output_feature_arc_index;
break;
}
case VNET_LINK_NSH:
{
arc = nsh_main_dummy.output_feature_arc_index;
break;
}
case VNET_LINK_ARP:
ASSERT(0);
break;
}
ASSERT (arc != (u8) ~0);
return (arc);
}
static u32
adj_nbr_midchain_get_tx_node (ip_adjacency_t *adj)
{
return ((adj->ia_flags & ADJ_FLAG_MIDCHAIN_NO_COUNT) ?
adj_midchain_tx_no_count_node.index :
adj_midchain_tx_node.index);
}
static u32
adj_nbr_midchain_get_feature_node (ip_adjacency_t *adj)
{
if (adj->ia_flags & ADJ_FLAG_MIDCHAIN_NO_COUNT)
{
return (adj_midchain_tx_no_count_feature_node[adj->ia_link]);
}
return (adj_midchain_tx_feature_node[adj->ia_link]);
}
/**
* adj_midchain_setup
*
* Setup the adj as a mid-chain
*/
void
adj_midchain_setup (adj_index_t adj_index,
adj_midchain_fixup_t fixup,
const void *data,
adj_flags_t flags)
{
u32 feature_index, tx_node;
ip_adjacency_t *adj;
u8 arc_index;
ASSERT(ADJ_INDEX_INVALID != adj_index);
adj = adj_get(adj_index);
adj->sub_type.midchain.fixup_func = fixup;
adj->sub_type.midchain.fixup_data = data;
adj->sub_type.midchain.fei = FIB_NODE_INDEX_INVALID;
adj->ia_flags |= flags;
arc_index = adj_midchain_get_feature_arc_index_for_link_type (adj);
feature_index = adj_nbr_midchain_get_feature_node(adj);
tx_node = adj_nbr_midchain_get_tx_node(adj);
vnet_feature_enable_disable_with_index (arc_index, feature_index,
adj->rewrite_header.sw_if_index,
1 /* enable */, 0, 0);
/*
* stack the midchain on the drop so it's ready to forward in the adj-midchain-tx.
* The graph arc used/created here is from the midchain-tx node to the
* child's registered node. This is because post adj processing the next
* node are any output features, then the midchain-tx. from there we
* need to get to the stacked child's node.
*/
dpo_stack_from_node(tx_node,
&adj->sub_type.midchain.next_dpo,
drop_dpo_get(vnet_link_to_dpo_proto(adj->ia_link)));
}
/**
* adj_nbr_midchain_update_rewrite
*
* Update the adjacency's rewrite string. A NULL string implies the
* rewrite is reset (i.e. when ARP/ND etnry is gone).
* NB: the adj being updated may be handling traffic in the DP.
*/
void
adj_nbr_midchain_update_rewrite (adj_index_t adj_index,
adj_midchain_fixup_t fixup,
const void *fixup_data,
adj_flags_t flags,
u8 *rewrite)
{
ip_adjacency_t *adj;
ASSERT(ADJ_INDEX_INVALID != adj_index);
adj = adj_get(adj_index);
/*
* one time only update. since we don't support chainging the tunnel
* src,dst, this is all we need.
*/
ASSERT((adj->lookup_next_index == IP_LOOKUP_NEXT_ARP) ||
(adj->lookup_next_index == IP_LOOKUP_NEXT_GLEAN) ||
(adj->lookup_next_index == IP_LOOKUP_NEXT_BCAST));
/*
* tunnels can always provide a rewrite.
*/
ASSERT(NULL != rewrite);
adj_midchain_setup(adj_index, fixup, fixup_data, flags);
/*
* update the rewirte with the workers paused.
*/
adj_nbr_update_rewrite_internal(adj,
IP_LOOKUP_NEXT_MIDCHAIN,
adj_get_midchain_node(adj->ia_link),
adj_nbr_midchain_get_tx_node(adj),
rewrite);
}
/**
* adj_nbr_midchain_unstack
*
* Unstack the adj. stack it on drop
*/
void
adj_nbr_midchain_unstack (adj_index_t adj_index)
{
fib_node_index_t *entry_indicies, tmp;
ip_adjacency_t *adj;
ASSERT(ADJ_INDEX_INVALID != adj_index);
adj = adj_get (adj_index);
/*
* check to see if this unstacking breaks a recursion loop
*/
entry_indicies = NULL;
tmp = adj->sub_type.midchain.fei;
adj->sub_type.midchain.fei = FIB_NODE_INDEX_INVALID;
if (FIB_NODE_INDEX_INVALID != tmp)
{
fib_entry_recursive_loop_detect(tmp, &entry_indicies);
vec_free(entry_indicies);
}
/*
* stack on the drop
*/
dpo_stack(DPO_ADJACENCY_MIDCHAIN,
vnet_link_to_dpo_proto(adj->ia_link),
&adj->sub_type.midchain.next_dpo,
drop_dpo_get(vnet_link_to_dpo_proto(adj->ia_link)));
CLIB_MEMORY_BARRIER();
}
void
adj_nbr_midchain_stack_on_fib_entry (adj_index_t ai,
fib_node_index_t fei,
fib_forward_chain_type_t fct)
{
fib_node_index_t *entry_indicies;
dpo_id_t tmp = DPO_INVALID;
ip_adjacency_t *adj;
adj = adj_get (ai);
/*
* check to see if this stacking will form a recursion loop
*/
entry_indicies = NULL;
adj->sub_type.midchain.fei = fei;
if (fib_entry_recursive_loop_detect(adj->sub_type.midchain.fei, &entry_indicies))
{
/*
* loop formed, stack on the drop.
*/
dpo_copy(&tmp, drop_dpo_get(fib_forw_chain_type_to_dpo_proto(fct)));
}
else
{
fib_entry_contribute_forwarding (fei, fct, &tmp);
if ((adj->ia_flags & ADJ_FLAG_MIDCHAIN_IP_STACK) &&
(DPO_LOAD_BALANCE == tmp.dpoi_type))
{
/*
* do that hash now and stack on the choice.
* If the choice is an incomplete adj then we will need a poke when
* it becomes complete. This happens since the adj update walk propagates
* as far a recursive paths.
*/
const dpo_id_t *choice;
load_balance_t *lb;
int hash;
lb = load_balance_get (tmp.dpoi_index);
if (FIB_FORW_CHAIN_TYPE_UNICAST_IP4 == fct)
{
hash = ip4_compute_flow_hash ((ip4_header_t *) adj_get_rewrite (ai),
lb->lb_hash_config);
}
else if (FIB_FORW_CHAIN_TYPE_UNICAST_IP6 == fct)
{
hash = ip6_compute_flow_hash ((ip6_header_t *) adj_get_rewrite (ai),
lb->lb_hash_config);
}
else
{
hash = 0;
ASSERT(0);
}
choice = load_balance_get_bucket_i (lb, hash & lb->lb_n_buckets_minus_1);
dpo_copy (&tmp, choice);
}
}
adj_nbr_midchain_stack (ai, &tmp);
dpo_reset(&tmp);
vec_free(entry_indicies);
}
/**
* adj_nbr_midchain_stack
*/
void
adj_nbr_midchain_stack (adj_index_t adj_index,
const dpo_id_t *next)
{
ip_adjacency_t *adj;
ASSERT(ADJ_INDEX_INVALID != adj_index);
adj = adj_get(adj_index);
ASSERT((IP_LOOKUP_NEXT_MIDCHAIN == adj->lookup_next_index) ||
(IP_LOOKUP_NEXT_MCAST_MIDCHAIN == adj->lookup_next_index));
dpo_stack_from_node(adj_nbr_midchain_get_tx_node(adj),
&adj->sub_type.midchain.next_dpo,
next);
}
int
adj_ndr_midchain_recursive_loop_detect (adj_index_t ai,
fib_node_index_t **entry_indicies)
{
fib_node_index_t *entry_index, *entries;
ip_adjacency_t * adj;
adj = adj_get(ai);
entries = *entry_indicies;
vec_foreach(entry_index, entries)
{
if (*entry_index == adj->sub_type.midchain.fei)
{
/*
* The entry this midchain links to is already in the set
* of visisted entries, this is a loop
*/
adj->ia_flags |= ADJ_FLAG_MIDCHAIN_LOOPED;
return (1);
}
}
adj->ia_flags &= ~ADJ_FLAG_MIDCHAIN_LOOPED;
return (0);
}
u8*
format_adj_midchain (u8* s, va_list *ap)
{
index_t index = va_arg(*ap, index_t);
u32 indent = va_arg(*ap, u32);
ip_adjacency_t * adj = adj_get(index);
s = format (s, "%U", format_vnet_link, adj->ia_link);
s = format (s, " via %U",
format_ip46_address, &adj->sub_type.nbr.next_hop,
adj_proto_to_46(adj->ia_nh_proto));
s = format (s, " %U",
format_vnet_rewrite,
&adj->rewrite_header, sizeof (adj->rewrite_data), indent);
s = format (s, "\n%Ustacked-on",
format_white_space, indent);
if (FIB_NODE_INDEX_INVALID != adj->sub_type.midchain.fei)
{
s = format (s, " entry:%d", adj->sub_type.midchain.fei);
}
s = format (s, ":\n%U%U",
format_white_space, indent+2,
format_dpo_id, &adj->sub_type.midchain.next_dpo, indent+2);
return (s);
}
static void
adj_dpo_lock (dpo_id_t *dpo)
{
adj_lock(dpo->dpoi_index);
}
static void
adj_dpo_unlock (dpo_id_t *dpo)
{
adj_unlock(dpo->dpoi_index);
}
const static dpo_vft_t adj_midchain_dpo_vft = {
.dv_lock = adj_dpo_lock,
.dv_unlock = adj_dpo_unlock,
.dv_format = format_adj_midchain,
.dv_get_urpf = adj_dpo_get_urpf,
};
/**
* @brief The per-protocol VLIB graph nodes that are assigned to a midchain
* object.
*
* this means that these graph nodes are ones from which a midchain is the
* parent object in the DPO-graph.
*/
const static char* const midchain_ip4_nodes[] =
{
"ip4-midchain",
NULL,
};
const static char* const midchain_ip6_nodes[] =
{
"ip6-midchain",
NULL,
};
const static char* const midchain_mpls_nodes[] =
{
"mpls-midchain",
NULL,
};
const static char* const midchain_ethernet_nodes[] =
{
"adj-l2-midchain",
NULL,
};
const static char* const midchain_nsh_nodes[] =
{
"adj-nsh-midchain",
NULL,
};
const static char* const * const midchain_nodes[DPO_PROTO_NUM] =
{
[DPO_PROTO_IP4] = midchain_ip4_nodes,
[DPO_PROTO_IP6] = midchain_ip6_nodes,
[DPO_PROTO_MPLS] = midchain_mpls_nodes,
[DPO_PROTO_ETHERNET] = midchain_ethernet_nodes,
[DPO_PROTO_NSH] = midchain_nsh_nodes,
};
void
adj_midchain_module_init (void)
{
dpo_register(DPO_ADJACENCY_MIDCHAIN, &adj_midchain_dpo_vft, midchain_nodes);
}