| /* |
| * Copyright (c) 2016 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <vnet/adj/adj_nbr.h> |
| #include <vnet/adj/adj_internal.h> |
| #include <vnet/ethernet/arp_packet.h> |
| #include <vnet/fib/fib_walk.h> |
| |
| /* |
| * Vector Hash tables of neighbour (traditional) adjacencies |
| * Key: interface(for the vector index), address (and its proto), |
| * link-type/ether-type. |
| */ |
| static BVT(clib_bihash) **adj_nbr_tables[FIB_PROTOCOL_MAX]; |
| |
| // FIXME SIZE APPROPRIATELY. ASK DAVEB. |
| #define ADJ_NBR_DEFAULT_HASH_NUM_BUCKETS (64 * 64) |
| #define ADJ_NBR_DEFAULT_HASH_MEMORY_SIZE (32<<20) |
| |
| |
| #define ADJ_NBR_SET_KEY(_key, _lt, _nh) \ |
| { \ |
| _key.key[0] = (_nh)->as_u64[0]; \ |
| _key.key[1] = (_nh)->as_u64[1]; \ |
| _key.key[2] = (_lt); \ |
| } |
| |
| #define ADJ_NBR_ITF_OK(_proto, _itf) \ |
| (((_itf) < vec_len(adj_nbr_tables[_proto])) && \ |
| (NULL != adj_nbr_tables[_proto][sw_if_index])) |
| |
| static void |
| adj_nbr_insert (fib_protocol_t nh_proto, |
| vnet_link_t link_type, |
| const ip46_address_t *nh_addr, |
| u32 sw_if_index, |
| adj_index_t adj_index) |
| { |
| BVT(clib_bihash_kv) kv; |
| |
| if (sw_if_index >= vec_len(adj_nbr_tables[nh_proto])) |
| { |
| vec_validate(adj_nbr_tables[nh_proto], sw_if_index); |
| } |
| if (NULL == adj_nbr_tables[nh_proto][sw_if_index]) |
| { |
| adj_nbr_tables[nh_proto][sw_if_index] = |
| clib_mem_alloc_aligned(sizeof(BVT(clib_bihash)), |
| CLIB_CACHE_LINE_BYTES); |
| memset(adj_nbr_tables[nh_proto][sw_if_index], |
| 0, |
| sizeof(BVT(clib_bihash))); |
| |
| BV(clib_bihash_init) (adj_nbr_tables[nh_proto][sw_if_index], |
| "Adjacency Neighbour table", |
| ADJ_NBR_DEFAULT_HASH_NUM_BUCKETS, |
| ADJ_NBR_DEFAULT_HASH_MEMORY_SIZE); |
| } |
| |
| ADJ_NBR_SET_KEY(kv, link_type, nh_addr); |
| kv.value = adj_index; |
| |
| BV(clib_bihash_add_del) (adj_nbr_tables[nh_proto][sw_if_index], &kv, 1); |
| } |
| |
| void |
| adj_nbr_remove (adj_index_t ai, |
| fib_protocol_t nh_proto, |
| vnet_link_t link_type, |
| const ip46_address_t *nh_addr, |
| u32 sw_if_index) |
| { |
| BVT(clib_bihash_kv) kv; |
| |
| if (!ADJ_NBR_ITF_OK(nh_proto, sw_if_index)) |
| return; |
| |
| ADJ_NBR_SET_KEY(kv, link_type, nh_addr); |
| kv.value = ai; |
| |
| BV(clib_bihash_add_del) (adj_nbr_tables[nh_proto][sw_if_index], &kv, 0); |
| } |
| |
| static adj_index_t |
| adj_nbr_find (fib_protocol_t nh_proto, |
| vnet_link_t link_type, |
| const ip46_address_t *nh_addr, |
| u32 sw_if_index) |
| { |
| BVT(clib_bihash_kv) kv; |
| |
| ADJ_NBR_SET_KEY(kv, link_type, nh_addr); |
| |
| if (!ADJ_NBR_ITF_OK(nh_proto, sw_if_index)) |
| return (ADJ_INDEX_INVALID); |
| |
| if (BV(clib_bihash_search)(adj_nbr_tables[nh_proto][sw_if_index], |
| &kv, &kv) < 0) |
| { |
| return (ADJ_INDEX_INVALID); |
| } |
| else |
| { |
| return (kv.value); |
| } |
| } |
| |
| static inline u32 |
| adj_get_nd_node (fib_protocol_t proto) |
| { |
| switch (proto) { |
| case FIB_PROTOCOL_IP4: |
| return (ip4_arp_node.index); |
| case FIB_PROTOCOL_IP6: |
| return (ip6_discover_neighbor_node.index); |
| case FIB_PROTOCOL_MPLS: |
| break; |
| } |
| ASSERT(0); |
| return (ip4_arp_node.index); |
| } |
| |
| static ip_adjacency_t* |
| adj_nbr_alloc (fib_protocol_t nh_proto, |
| vnet_link_t link_type, |
| const ip46_address_t *nh_addr, |
| u32 sw_if_index) |
| { |
| ip_adjacency_t *adj; |
| |
| adj = adj_alloc(nh_proto); |
| |
| adj_nbr_insert(nh_proto, link_type, nh_addr, |
| sw_if_index, |
| adj_get_index(adj)); |
| |
| /* |
| * since we just added the ADJ we have no rewrite string for it, |
| * so its for ARP |
| */ |
| adj->lookup_next_index = IP_LOOKUP_NEXT_ARP; |
| adj->sub_type.nbr.next_hop = *nh_addr; |
| adj->ia_link = link_type; |
| adj->ia_nh_proto = nh_proto; |
| adj->rewrite_header.sw_if_index = sw_if_index; |
| memset(&adj->sub_type.midchain.next_dpo, 0, |
| sizeof(adj->sub_type.midchain.next_dpo)); |
| |
| return (adj); |
| } |
| |
| /* |
| * adj_add_for_nbr |
| * |
| * Add an adjacency for the neighbour requested. |
| * |
| * The key for an adj is: |
| * - the Next-hops protocol (i.e. v4 or v6) |
| * - the address of the next-hop |
| * - the interface the next-hop is reachable through |
| */ |
| adj_index_t |
| adj_nbr_add_or_lock (fib_protocol_t nh_proto, |
| vnet_link_t link_type, |
| const ip46_address_t *nh_addr, |
| u32 sw_if_index) |
| { |
| adj_index_t adj_index; |
| ip_adjacency_t *adj; |
| |
| adj_index = adj_nbr_find(nh_proto, link_type, nh_addr, sw_if_index); |
| |
| if (ADJ_INDEX_INVALID == adj_index) |
| { |
| vnet_main_t *vnm; |
| |
| vnm = vnet_get_main(); |
| adj = adj_nbr_alloc(nh_proto, link_type, nh_addr, sw_if_index); |
| adj_index = adj_get_index(adj); |
| adj_lock(adj_index); |
| |
| vnet_rewrite_init(vnm, sw_if_index, |
| adj_get_nd_node(nh_proto), |
| vnet_tx_node_index_for_sw_interface(vnm, sw_if_index), |
| &adj->rewrite_header); |
| |
| /* |
| * we need a rewrite where the destination IP address is converted |
| * to the appropriate link-layer address. This is interface specific. |
| * So ask the interface to do it. |
| */ |
| vnet_update_adjacency_for_sw_interface(vnm, sw_if_index, adj_index); |
| } |
| else |
| { |
| adj_lock(adj_index); |
| } |
| |
| return (adj_index); |
| } |
| |
| adj_index_t |
| adj_nbr_add_or_lock_w_rewrite (fib_protocol_t nh_proto, |
| vnet_link_t link_type, |
| const ip46_address_t *nh_addr, |
| u32 sw_if_index, |
| u8 *rewrite) |
| { |
| adj_index_t adj_index; |
| ip_adjacency_t *adj; |
| |
| adj_index = adj_nbr_find(nh_proto, link_type, nh_addr, sw_if_index); |
| |
| if (ADJ_INDEX_INVALID == adj_index) |
| { |
| adj = adj_nbr_alloc(nh_proto, link_type, nh_addr, sw_if_index); |
| adj->rewrite_header.sw_if_index = sw_if_index; |
| } |
| else |
| { |
| adj = adj_get(adj_index); |
| } |
| |
| adj_lock(adj_get_index(adj)); |
| adj_nbr_update_rewrite(adj_get_index(adj), |
| ADJ_NBR_REWRITE_FLAG_COMPLETE, |
| rewrite); |
| |
| return (adj_get_index(adj)); |
| } |
| |
| /** |
| * adj_nbr_update_rewrite |
| * |
| * Update the adjacency's rewrite string. A NULL string implies the |
| * rewirte is reset (i.e. when ARP/ND etnry is gone). |
| * NB: the adj being updated may be handling traffic in the DP. |
| */ |
| void |
| adj_nbr_update_rewrite (adj_index_t adj_index, |
| adj_nbr_rewrite_flag_t flags, |
| u8 *rewrite) |
| { |
| ip_adjacency_t *adj; |
| |
| ASSERT(ADJ_INDEX_INVALID != adj_index); |
| |
| adj = adj_get(adj_index); |
| |
| if (flags & ADJ_NBR_REWRITE_FLAG_COMPLETE) |
| { |
| /* |
| * update the adj's rewrite string and build the arc |
| * from the rewrite node to the interface's TX node |
| */ |
| adj_nbr_update_rewrite_internal(adj, IP_LOOKUP_NEXT_REWRITE, |
| adj_get_rewrite_node(adj->ia_link), |
| vnet_tx_node_index_for_sw_interface( |
| vnet_get_main(), |
| adj->rewrite_header.sw_if_index), |
| rewrite); |
| } |
| else |
| { |
| adj_nbr_update_rewrite_internal(adj, IP_LOOKUP_NEXT_ARP, |
| adj_get_nd_node(adj->ia_nh_proto), |
| vnet_tx_node_index_for_sw_interface( |
| vnet_get_main(), |
| adj->rewrite_header.sw_if_index), |
| rewrite); |
| } |
| } |
| |
| /** |
| * adj_nbr_update_rewrite_internal |
| * |
| * Update the adjacency's rewrite string. A NULL string implies the |
| * rewirte is reset (i.e. when ARP/ND etnry is gone). |
| * NB: the adj being updated may be handling traffic in the DP. |
| */ |
| void |
| adj_nbr_update_rewrite_internal (ip_adjacency_t *adj, |
| u32 adj_next_index, |
| u32 this_node, |
| u32 next_node, |
| u8 *rewrite) |
| { |
| ip_adjacency_t *walk_adj; |
| adj_index_t walk_ai; |
| vlib_main_t * vm; |
| u32 old_next; |
| int do_walk; |
| |
| vm = vlib_get_main(); |
| old_next = adj->lookup_next_index; |
| |
| walk_ai = adj_get_index(adj); |
| if (VNET_LINK_MPLS == adj->ia_link) |
| { |
| /* |
| * The link type MPLS has no children in the control plane graph, it only |
| * has children in the data-palne graph. The backwalk is up the former. |
| * So we need to walk from its IP cousin. |
| */ |
| walk_ai = adj_nbr_find(adj->ia_nh_proto, |
| fib_proto_to_link(adj->ia_nh_proto), |
| &adj->sub_type.nbr.next_hop, |
| adj->rewrite_header.sw_if_index); |
| } |
| |
| /* |
| * Don't call the walk re-entrantly |
| */ |
| if (ADJ_INDEX_INVALID != walk_ai) |
| { |
| walk_adj = adj_get(walk_ai); |
| if (IP_ADJ_SYNC_WALK_ACTIVE & walk_adj->ia_flags) |
| { |
| do_walk = 0; |
| } |
| else |
| { |
| /* |
| * Prevent re-entrant walk of the same adj |
| */ |
| walk_adj->ia_flags |= IP_ADJ_SYNC_WALK_ACTIVE; |
| do_walk = 1; |
| } |
| } |
| else |
| { |
| do_walk = 0; |
| } |
| |
| /* |
| * lock the adjacencies that are affected by updates this walk will provoke. |
| * Since the aim of the walk is to update children to link to a different |
| * DPO, this adj will no longer be in use and its lock count will drop to 0. |
| * We don't want it to be deleted as part of this endevour. |
| */ |
| adj_lock(adj_get_index(adj)); |
| adj_lock(walk_ai); |
| |
| /* |
| * Updating a rewrite string is not atomic; |
| * - the rewrite string is too long to write in one instruction |
| * - when swapping from incomplete to complete, we also need to update |
| * the VLIB graph next-index of the adj. |
| * ideally we would only want to suspend forwarding via this adj whilst we |
| * do this, but we do not have that level of granularity - it's suspend all |
| * worker threads or nothing. |
| * The other chioces are: |
| * - to mark the adj down and back walk so child load-balances drop this adj |
| * from the set. |
| * - update the next_node index of this adj to point to error-drop |
| * both of which will mean for MAC change we will drop for this adj |
| * which is not acceptable. However, when the adj changes type (from |
| * complete to incomplete and vice-versa) the child DPOs, which have the |
| * VLIB graph next node index, will be sending packets to the wrong graph |
| * node. So from the options above, updating the next_node of the adj to |
| * be drop will work, but it relies on each graph node v4/v6/mpls, rewrite/ |
| * arp/midchain always be valid w.r.t. a mis-match of adj type and node type |
| * (i.e. a rewrite adj in the arp node). This is not enforcable. Getting it |
| * wrong will lead to hard to find bugs since its a race condition. So we |
| * choose the more reliable method of updating the children to use the drop, |
| * then switching adj's type, then updating the children again. Did I mention |
| * that this doesn't happen often... |
| * So we need to distinguish between the two cases: |
| * 1 - mac change |
| * 2 - adj type change |
| */ |
| if (do_walk && |
| old_next != adj_next_index && |
| ADJ_INDEX_INVALID != walk_ai) |
| { |
| /* |
| * the adj is changing type. we need to fix all children so that they |
| * stack momentarily on a drop, while the adj changes. If we don't do |
| * this the children will send packets to a VLIB graph node that does |
| * not correspond to the adj's type - and it goes downhill from there. |
| */ |
| fib_node_back_walk_ctx_t bw_ctx = { |
| .fnbw_reason = FIB_NODE_BW_REASON_FLAG_ADJ_DOWN, |
| /* |
| * force this walk to be synchrous. if we don't and a node in the graph |
| * (a heavily shared path-list) chooses to back-ground the walk (make it |
| * async) then it will pause and we will do the adj update below, before |
| * all the children are updated. not good. |
| */ |
| .fnbw_flags = FIB_NODE_BW_FLAG_FORCE_SYNC, |
| }; |
| |
| fib_walk_sync(FIB_NODE_TYPE_ADJ, walk_ai, &bw_ctx); |
| } |
| |
| /* |
| * If we are just updating the MAC string of the adj (which we also can't |
| * do atomically), then we need to stop packets switching through the adj. |
| * We can't do that on a per-adj basis, so it's all the packets. |
| * If we are updating the type, and we walked back to the children above, |
| * then this barrier serves to flush the queues/frames. |
| */ |
| vlib_worker_thread_barrier_sync(vm); |
| |
| adj->lookup_next_index = adj_next_index; |
| |
| if (NULL != rewrite) |
| { |
| /* |
| * new rewrite provided. |
| * fill in the adj's rewrite string, and build the VLIB graph arc. |
| */ |
| vnet_rewrite_set_data_internal(&adj->rewrite_header, |
| sizeof(adj->rewrite_data), |
| rewrite, |
| vec_len(rewrite)); |
| vec_free(rewrite); |
| } |
| else |
| { |
| vnet_rewrite_clear_data_internal(&adj->rewrite_header, |
| sizeof(adj->rewrite_data)); |
| } |
| adj->rewrite_header.node_index = this_node; |
| adj->rewrite_header.next_index = vlib_node_add_next(vlib_get_main(), |
| this_node, |
| next_node); |
| |
| /* |
| * done with the rewirte update - let the workers loose. |
| */ |
| vlib_worker_thread_barrier_release(vm); |
| |
| if (do_walk && |
| (old_next != adj->lookup_next_index) && |
| (ADJ_INDEX_INVALID != walk_ai)) |
| { |
| /* |
| * backwalk to the children so they can stack on the now updated |
| * adjacency |
| */ |
| fib_node_back_walk_ctx_t bw_ctx = { |
| .fnbw_reason = FIB_NODE_BW_REASON_FLAG_ADJ_UPDATE, |
| }; |
| |
| fib_walk_sync(FIB_NODE_TYPE_ADJ, walk_ai, &bw_ctx); |
| } |
| /* |
| * Prevent re-entrant walk of the same adj |
| */ |
| if (do_walk) |
| { |
| walk_adj->ia_flags &= ~IP_ADJ_SYNC_WALK_ACTIVE; |
| } |
| |
| adj_unlock(adj_get_index(adj)); |
| adj_unlock(walk_ai); |
| } |
| |
| typedef struct adj_db_count_ctx_t_ { |
| u64 count; |
| } adj_db_count_ctx_t; |
| |
| static void |
| adj_db_count (BVT(clib_bihash_kv) * kvp, |
| void *arg) |
| { |
| adj_db_count_ctx_t * ctx = arg; |
| ctx->count++; |
| } |
| |
| u32 |
| adj_nbr_db_size (void) |
| { |
| adj_db_count_ctx_t ctx = { |
| .count = 0, |
| }; |
| fib_protocol_t proto; |
| u32 sw_if_index = 0; |
| |
| for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) |
| { |
| vec_foreach_index(sw_if_index, adj_nbr_tables[proto]) |
| { |
| if (NULL != adj_nbr_tables[proto][sw_if_index]) |
| { |
| BV(clib_bihash_foreach_key_value_pair) ( |
| adj_nbr_tables[proto][sw_if_index], |
| adj_db_count, |
| &ctx); |
| } |
| } |
| } |
| return (ctx.count); |
| } |
| |
| /** |
| * @brief Context for a walk of the adjacency neighbour DB |
| */ |
| typedef struct adj_walk_ctx_t_ |
| { |
| adj_walk_cb_t awc_cb; |
| void *awc_ctx; |
| } adj_walk_ctx_t; |
| |
| static void |
| adj_nbr_walk_cb (BVT(clib_bihash_kv) * kvp, |
| void *arg) |
| { |
| adj_walk_ctx_t *ctx = arg; |
| |
| // FIXME: can't stop early... |
| ctx->awc_cb(kvp->value, ctx->awc_ctx); |
| } |
| |
| void |
| adj_nbr_walk (u32 sw_if_index, |
| fib_protocol_t adj_nh_proto, |
| adj_walk_cb_t cb, |
| void *ctx) |
| { |
| if (!ADJ_NBR_ITF_OK(adj_nh_proto, sw_if_index)) |
| return; |
| |
| adj_walk_ctx_t awc = { |
| .awc_ctx = ctx, |
| .awc_cb = cb, |
| }; |
| |
| BV(clib_bihash_foreach_key_value_pair) ( |
| adj_nbr_tables[adj_nh_proto][sw_if_index], |
| adj_nbr_walk_cb, |
| &awc); |
| } |
| |
| /** |
| * @brief Context for a walk of the adjacency neighbour DB |
| */ |
| typedef struct adj_walk_nh_ctx_t_ |
| { |
| adj_walk_cb_t awc_cb; |
| void *awc_ctx; |
| const ip46_address_t *awc_nh; |
| } adj_walk_nh_ctx_t; |
| |
| static void |
| adj_nbr_walk_nh_cb (BVT(clib_bihash_kv) * kvp, |
| void *arg) |
| { |
| ip_adjacency_t *adj; |
| adj_walk_nh_ctx_t *ctx = arg; |
| |
| adj = adj_get(kvp->value); |
| |
| if (!ip46_address_cmp(&adj->sub_type.nbr.next_hop, ctx->awc_nh)) |
| ctx->awc_cb(kvp->value, ctx->awc_ctx); |
| } |
| |
| /** |
| * @brief Walk adjacencies on a link with a given v4 next-hop. |
| * that is visit the adjacencies with different link types. |
| */ |
| void |
| adj_nbr_walk_nh4 (u32 sw_if_index, |
| const ip4_address_t *addr, |
| adj_walk_cb_t cb, |
| void *ctx) |
| { |
| if (!ADJ_NBR_ITF_OK(FIB_PROTOCOL_IP4, sw_if_index)) |
| return; |
| |
| ip46_address_t nh = { |
| .ip4 = *addr, |
| }; |
| |
| adj_walk_nh_ctx_t awc = { |
| .awc_ctx = ctx, |
| .awc_cb = cb, |
| .awc_nh = &nh, |
| }; |
| |
| BV(clib_bihash_foreach_key_value_pair) ( |
| adj_nbr_tables[FIB_PROTOCOL_IP4][sw_if_index], |
| adj_nbr_walk_nh_cb, |
| &awc); |
| } |
| |
| /** |
| * @brief Walk adjacencies on a link with a given v6 next-hop. |
| * that is visit the adjacencies with different link types. |
| */ |
| void |
| adj_nbr_walk_nh6 (u32 sw_if_index, |
| const ip6_address_t *addr, |
| adj_walk_cb_t cb, |
| void *ctx) |
| { |
| if (!ADJ_NBR_ITF_OK(FIB_PROTOCOL_IP6, sw_if_index)) |
| return; |
| |
| ip46_address_t nh = { |
| .ip6 = *addr, |
| }; |
| |
| adj_walk_nh_ctx_t awc = { |
| .awc_ctx = ctx, |
| .awc_cb = cb, |
| .awc_nh = &nh, |
| }; |
| |
| BV(clib_bihash_foreach_key_value_pair) ( |
| adj_nbr_tables[FIB_PROTOCOL_IP6][sw_if_index], |
| adj_nbr_walk_nh_cb, |
| &awc); |
| } |
| |
| /** |
| * @brief Walk adjacencies on a link with a given next-hop. |
| * that is visit the adjacencies with different link types. |
| */ |
| void |
| adj_nbr_walk_nh (u32 sw_if_index, |
| fib_protocol_t adj_nh_proto, |
| const ip46_address_t *nh, |
| adj_walk_cb_t cb, |
| void *ctx) |
| { |
| if (!ADJ_NBR_ITF_OK(adj_nh_proto, sw_if_index)) |
| return; |
| |
| adj_walk_nh_ctx_t awc = { |
| .awc_ctx = ctx, |
| .awc_cb = cb, |
| .awc_nh = nh, |
| }; |
| |
| BV(clib_bihash_foreach_key_value_pair) ( |
| adj_nbr_tables[adj_nh_proto][sw_if_index], |
| adj_nbr_walk_nh_cb, |
| &awc); |
| } |
| |
| /** |
| * Flags associated with the interface state walks |
| */ |
| typedef enum adj_nbr_interface_flags_t_ |
| { |
| ADJ_NBR_INTERFACE_UP = (1 << 0), |
| } adj_nbr_interface_flags_t; |
| |
| /** |
| * Context for the state change walk of the DB |
| */ |
| typedef struct adj_nbr_interface_state_change_ctx_t_ |
| { |
| /** |
| * Flags on the interface |
| */ |
| adj_nbr_interface_flags_t flags; |
| } adj_nbr_interface_state_change_ctx_t; |
| |
| static adj_walk_rc_t |
| adj_nbr_interface_state_change_one (adj_index_t ai, |
| void *arg) |
| { |
| /* |
| * Back walk the graph to inform the forwarding entries |
| * that this interface state has changed. Do this synchronously |
| * since this is the walk that provides convergence |
| */ |
| adj_nbr_interface_state_change_ctx_t *ctx = arg; |
| |
| fib_node_back_walk_ctx_t bw_ctx = { |
| .fnbw_reason = ((ctx->flags & ADJ_NBR_INTERFACE_UP) ? |
| FIB_NODE_BW_REASON_FLAG_INTERFACE_UP : |
| FIB_NODE_BW_REASON_FLAG_INTERFACE_DOWN), |
| /* |
| * the force sync applies only as far as the first fib_entry. |
| * And it's the fib_entry's we need to converge away from |
| * the adjacencies on the now down link |
| */ |
| .fnbw_flags = (!(ctx->flags & ADJ_NBR_INTERFACE_UP) ? |
| FIB_NODE_BW_FLAG_FORCE_SYNC : |
| 0), |
| }; |
| |
| fib_walk_sync(FIB_NODE_TYPE_ADJ, ai, &bw_ctx); |
| |
| return (ADJ_WALK_RC_CONTINUE); |
| } |
| |
| /** |
| * @brief Registered function for SW interface state changes |
| */ |
| static clib_error_t * |
| adj_nbr_sw_interface_state_change (vnet_main_t * vnm, |
| u32 sw_if_index, |
| u32 flags) |
| { |
| fib_protocol_t proto; |
| |
| /* |
| * walk each adj on the interface and trigger a walk from that adj |
| */ |
| for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) |
| { |
| adj_nbr_interface_state_change_ctx_t ctx = { |
| .flags = ((flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP) ? |
| ADJ_NBR_INTERFACE_UP : |
| 0), |
| }; |
| |
| adj_nbr_walk(sw_if_index, proto, |
| adj_nbr_interface_state_change_one, |
| &ctx); |
| } |
| |
| return (NULL); |
| } |
| |
| VNET_SW_INTERFACE_ADMIN_UP_DOWN_FUNCTION_PRIO( |
| adj_nbr_sw_interface_state_change, |
| VNET_ITF_FUNC_PRIORITY_HIGH); |
| |
| /** |
| * @brief Invoked on each SW interface of a HW interface when the |
| * HW interface state changes |
| */ |
| static void |
| adj_nbr_hw_sw_interface_state_change (vnet_main_t * vnm, |
| u32 sw_if_index, |
| void *arg) |
| { |
| adj_nbr_interface_state_change_ctx_t *ctx = arg; |
| fib_protocol_t proto; |
| |
| /* |
| * walk each adj on the interface and trigger a walk from that adj |
| */ |
| for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) |
| { |
| adj_nbr_walk(sw_if_index, proto, |
| adj_nbr_interface_state_change_one, |
| ctx); |
| } |
| } |
| |
| /** |
| * @brief Registered callback for HW interface state changes |
| */ |
| static clib_error_t * |
| adj_nbr_hw_interface_state_change (vnet_main_t * vnm, |
| u32 hw_if_index, |
| u32 flags) |
| { |
| /* |
| * walk SW interface on the HW |
| */ |
| adj_nbr_interface_state_change_ctx_t ctx = { |
| .flags = ((flags & VNET_HW_INTERFACE_FLAG_LINK_UP) ? |
| ADJ_NBR_INTERFACE_UP : |
| 0), |
| }; |
| |
| vnet_hw_interface_walk_sw(vnm, hw_if_index, |
| adj_nbr_hw_sw_interface_state_change, |
| &ctx); |
| |
| return (NULL); |
| } |
| |
| VNET_HW_INTERFACE_LINK_UP_DOWN_FUNCTION_PRIO( |
| adj_nbr_hw_interface_state_change, |
| VNET_ITF_FUNC_PRIORITY_HIGH); |
| |
| static adj_walk_rc_t |
| adj_nbr_interface_delete_one (adj_index_t ai, |
| void *arg) |
| { |
| /* |
| * Back walk the graph to inform the forwarding entries |
| * that this interface has been deleted. |
| */ |
| fib_node_back_walk_ctx_t bw_ctx = { |
| .fnbw_reason = FIB_NODE_BW_REASON_FLAG_INTERFACE_DELETE, |
| }; |
| |
| fib_walk_sync(FIB_NODE_TYPE_ADJ, ai, &bw_ctx); |
| |
| return (ADJ_WALK_RC_CONTINUE); |
| } |
| |
| /** |
| * adj_nbr_interface_add_del |
| * |
| * Registered to receive interface Add and delete notifications |
| */ |
| static clib_error_t * |
| adj_nbr_interface_add_del (vnet_main_t * vnm, |
| u32 sw_if_index, |
| u32 is_add) |
| { |
| fib_protocol_t proto; |
| |
| if (is_add) |
| { |
| /* |
| * not interested in interface additions. we will not back walk |
| * to resolve paths through newly added interfaces. Why? The control |
| * plane should have the brains to add interfaces first, then routes. |
| * So the case where there are paths with a interface that matches |
| * one just created is the case where the path resolved through an |
| * interface that was deleted, and still has not been removed. The |
| * new interface added, is NO GUARANTEE that the interface being |
| * added now, even though it may have the same sw_if_index, is the |
| * same interface that the path needs. So tough! |
| * If the control plane wants these routes to resolve it needs to |
| * remove and add them again. |
| */ |
| return (NULL); |
| } |
| |
| for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) |
| { |
| adj_nbr_walk(sw_if_index, proto, |
| adj_nbr_interface_delete_one, |
| NULL); |
| } |
| |
| return (NULL); |
| |
| } |
| |
| VNET_SW_INTERFACE_ADD_DEL_FUNCTION(adj_nbr_interface_add_del); |
| |
| |
| static adj_walk_rc_t |
| adj_nbr_show_one (adj_index_t ai, |
| void *arg) |
| { |
| vlib_cli_output (arg, "[@%d] %U", |
| ai, |
| format_ip_adjacency, ai, |
| FORMAT_IP_ADJACENCY_NONE); |
| |
| return (ADJ_WALK_RC_CONTINUE); |
| } |
| |
| static clib_error_t * |
| adj_nbr_show (vlib_main_t * vm, |
| unformat_input_t * input, |
| vlib_cli_command_t * cmd) |
| { |
| adj_index_t ai = ADJ_INDEX_INVALID; |
| u32 sw_if_index = ~0; |
| |
| while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT) |
| { |
| if (unformat (input, "%d", &ai)) |
| ; |
| else if (unformat (input, "%U", |
| unformat_vnet_sw_interface, vnet_get_main(), |
| &sw_if_index)) |
| ; |
| else |
| break; |
| } |
| |
| if (ADJ_INDEX_INVALID != ai) |
| { |
| vlib_cli_output (vm, "[@%d] %U", |
| ai, |
| format_ip_adjacency, ai, |
| FORMAT_IP_ADJACENCY_DETAIL); |
| } |
| else if (~0 != sw_if_index) |
| { |
| fib_protocol_t proto; |
| |
| for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) |
| { |
| adj_nbr_walk(sw_if_index, proto, |
| adj_nbr_show_one, |
| vm); |
| } |
| } |
| else |
| { |
| fib_protocol_t proto; |
| |
| for (proto = FIB_PROTOCOL_IP4; proto <= FIB_PROTOCOL_IP6; proto++) |
| { |
| vec_foreach_index(sw_if_index, adj_nbr_tables[proto]) |
| { |
| adj_nbr_walk(sw_if_index, proto, |
| adj_nbr_show_one, |
| vm); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /*? |
| * Show all neighbour adjacencies. |
| * @cliexpar |
| * @cliexstart{sh adj nbr} |
| * [@2] ipv4 via 1.0.0.2 loop0: IP4: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc |
| * [@3] mpls via 1.0.0.2 loop0: MPLS_UNICAST: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc |
| * [@4] ipv4 via 1.0.0.3 loop0: IP4: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc |
| * [@5] mpls via 1.0.0.3 loop0: MPLS_UNICAST: 00:00:22:aa:bb:cc -> 00:00:11:aa:bb:cc |
| * @cliexend |
| ?*/ |
| VLIB_CLI_COMMAND (ip4_show_fib_command, static) = { |
| .path = "show adj nbr", |
| .short_help = "show adj nbr [<adj_index>] [interface]", |
| .function = adj_nbr_show, |
| }; |
| |
| static ip46_type_t |
| adj_proto_to_46 (fib_protocol_t proto) |
| { |
| switch (proto) |
| { |
| case FIB_PROTOCOL_IP4: |
| return (IP46_TYPE_IP4); |
| case FIB_PROTOCOL_IP6: |
| return (IP46_TYPE_IP6); |
| default: |
| return (IP46_TYPE_IP4); |
| } |
| return (IP46_TYPE_IP4); |
| } |
| |
| u8* |
| format_adj_nbr_incomplete (u8* s, va_list *ap) |
| { |
| index_t index = va_arg(*ap, index_t); |
| CLIB_UNUSED(u32 indent) = va_arg(*ap, u32); |
| vnet_main_t * vnm = vnet_get_main(); |
| ip_adjacency_t * adj = adj_get(index); |
| |
| s = format (s, "arp-%U", format_vnet_link, adj->ia_link); |
| s = format (s, ": via %U", |
| format_ip46_address, &adj->sub_type.nbr.next_hop, |
| adj_proto_to_46(adj->ia_nh_proto)); |
| s = format (s, " %U", |
| format_vnet_sw_interface_name, |
| vnm, |
| vnet_get_sw_interface(vnm, |
| adj->rewrite_header.sw_if_index)); |
| |
| return (s); |
| } |
| |
| u8* |
| format_adj_nbr (u8* s, va_list *ap) |
| { |
| index_t index = va_arg(*ap, index_t); |
| CLIB_UNUSED(u32 indent) = va_arg(*ap, u32); |
| vnet_main_t * vnm = vnet_get_main(); |
| ip_adjacency_t * adj = adj_get(index); |
| |
| s = format (s, "%U", format_vnet_link, adj->ia_link); |
| s = format (s, " via %U ", |
| format_ip46_address, &adj->sub_type.nbr.next_hop, |
| adj_proto_to_46(adj->ia_nh_proto)); |
| s = format (s, "%U", |
| format_vnet_rewrite, |
| vnm->vlib_main, &adj->rewrite_header, sizeof (adj->rewrite_data), 0); |
| |
| return (s); |
| } |
| |
| static void |
| adj_dpo_lock (dpo_id_t *dpo) |
| { |
| adj_lock(dpo->dpoi_index); |
| } |
| static void |
| adj_dpo_unlock (dpo_id_t *dpo) |
| { |
| adj_unlock(dpo->dpoi_index); |
| } |
| |
| static void |
| adj_mem_show (void) |
| { |
| fib_show_memory_usage("Adjacency", |
| pool_elts(adj_pool), |
| pool_len(adj_pool), |
| sizeof(ip_adjacency_t)); |
| } |
| |
| const static dpo_vft_t adj_nbr_dpo_vft = { |
| .dv_lock = adj_dpo_lock, |
| .dv_unlock = adj_dpo_unlock, |
| .dv_format = format_adj_nbr, |
| .dv_mem_show = adj_mem_show, |
| }; |
| const static dpo_vft_t adj_nbr_incompl_dpo_vft = { |
| .dv_lock = adj_dpo_lock, |
| .dv_unlock = adj_dpo_unlock, |
| .dv_format = format_adj_nbr_incomplete, |
| }; |
| |
| /** |
| * @brief The per-protocol VLIB graph nodes that are assigned to an adjacency |
| * object. |
| * |
| * this means that these graph nodes are ones from which a nbr is the |
| * parent object in the DPO-graph. |
| */ |
| const static char* const nbr_ip4_nodes[] = |
| { |
| "ip4-rewrite", |
| NULL, |
| }; |
| const static char* const nbr_ip6_nodes[] = |
| { |
| "ip6-rewrite", |
| NULL, |
| }; |
| const static char* const nbr_mpls_nodes[] = |
| { |
| "mpls-output", |
| NULL, |
| }; |
| const static char* const nbr_ethernet_nodes[] = |
| { |
| "adj-l2-rewrite", |
| NULL, |
| }; |
| const static char* const * const nbr_nodes[DPO_PROTO_NUM] = |
| { |
| [DPO_PROTO_IP4] = nbr_ip4_nodes, |
| [DPO_PROTO_IP6] = nbr_ip6_nodes, |
| [DPO_PROTO_MPLS] = nbr_mpls_nodes, |
| [DPO_PROTO_ETHERNET] = nbr_ethernet_nodes, |
| }; |
| |
| const static char* const nbr_incomplete_ip4_nodes[] = |
| { |
| "ip4-arp", |
| NULL, |
| }; |
| const static char* const nbr_incomplete_ip6_nodes[] = |
| { |
| "ip6-discover-neighbor", |
| NULL, |
| }; |
| const static char* const nbr_incomplete_mpls_nodes[] = |
| { |
| "mpls-adj-incomplete", |
| NULL, |
| }; |
| |
| const static char* const * const nbr_incomplete_nodes[DPO_PROTO_NUM] = |
| { |
| [DPO_PROTO_IP4] = nbr_incomplete_ip4_nodes, |
| [DPO_PROTO_IP6] = nbr_incomplete_ip6_nodes, |
| [DPO_PROTO_MPLS] = nbr_incomplete_mpls_nodes, |
| }; |
| |
| void |
| adj_nbr_module_init (void) |
| { |
| dpo_register(DPO_ADJACENCY, |
| &adj_nbr_dpo_vft, |
| nbr_nodes); |
| dpo_register(DPO_ADJACENCY_INCOMPLETE, |
| &adj_nbr_incompl_dpo_vft, |
| nbr_incomplete_nodes); |
| } |