blob: 44db3a8a6cb44e517449655065be52a5811224b3 [file] [log] [blame]
/*
----------------------------------------------------------------
Notice that the following BSD-style license applies to this one
file (memcheck.h) only. The rest of Valgrind is licensed under the
terms of the GNU General Public License, version 2, unless
otherwise indicated. See the COPYING file in the source
distribution for details.
----------------------------------------------------------------
This file is part of MemCheck, a heavyweight Valgrind tool for
detecting memory errors.
Copyright (C) 2000-2009 Julian Seward. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
3. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
4. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------
Notice that the above BSD-style license applies to this one file
(memcheck.h) only. The entire rest of Valgrind is licensed under
the terms of the GNU General Public License, version 2. See the
COPYING file in the source distribution for details.
----------------------------------------------------------------
*/
#ifndef __MEMCHECK_H
#define __MEMCHECK_H
/* This file is for inclusion into client (your!) code.
You can use these macros to manipulate and query memory permissions
inside your own programs.
See comment near the top of valgrind.h on how to use them.
*/
#include "valgrind.h"
/* !! ABIWARNING !! ABIWARNING !! ABIWARNING !! ABIWARNING !!
This enum comprises an ABI exported by Valgrind to programs
which use client requests. DO NOT CHANGE THE ORDER OF THESE
ENTRIES, NOR DELETE ANY -- add new ones at the end. */
typedef enum
{
VG_USERREQ__MAKE_MEM_NOACCESS = VG_USERREQ_TOOL_BASE ('M', 'C'),
VG_USERREQ__MAKE_MEM_UNDEFINED,
VG_USERREQ__MAKE_MEM_DEFINED,
VG_USERREQ__DISCARD,
VG_USERREQ__CHECK_MEM_IS_ADDRESSABLE,
VG_USERREQ__CHECK_MEM_IS_DEFINED,
VG_USERREQ__DO_LEAK_CHECK,
VG_USERREQ__COUNT_LEAKS,
VG_USERREQ__GET_VBITS,
VG_USERREQ__SET_VBITS,
VG_USERREQ__CREATE_BLOCK,
VG_USERREQ__MAKE_MEM_DEFINED_IF_ADDRESSABLE,
/* Not next to VG_USERREQ__COUNT_LEAKS because it was added later. */
VG_USERREQ__COUNT_LEAK_BLOCKS,
/* This is just for memcheck's internal use - don't use it */
_VG_USERREQ__MEMCHECK_RECORD_OVERLAP_ERROR
= VG_USERREQ_TOOL_BASE ('M', 'C') + 256
} Vg_MemCheckClientRequest;
/* Client-code macros to manipulate the state of memory. */
/* Mark memory at _qzz_addr as unaddressable for _qzz_len bytes. */
#define VALGRIND_MAKE_MEM_NOACCESS(_qzz_addr,_qzz_len) \
(__extension__({unsigned long _qzz_res; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0 /* default return */, \
VG_USERREQ__MAKE_MEM_NOACCESS, \
_qzz_addr, _qzz_len, 0, 0, 0); \
_qzz_res; \
}))
/* Similarly, mark memory at _qzz_addr as addressable but undefined
for _qzz_len bytes. */
#define VALGRIND_MAKE_MEM_UNDEFINED(_qzz_addr,_qzz_len) \
(__extension__({unsigned long _qzz_res; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0 /* default return */, \
VG_USERREQ__MAKE_MEM_UNDEFINED, \
_qzz_addr, _qzz_len, 0, 0, 0); \
_qzz_res; \
}))
/* Similarly, mark memory at _qzz_addr as addressable and defined
for _qzz_len bytes. */
#define VALGRIND_MAKE_MEM_DEFINED(_qzz_addr,_qzz_len) \
(__extension__({unsigned long _qzz_res; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0 /* default return */, \
VG_USERREQ__MAKE_MEM_DEFINED, \
_qzz_addr, _qzz_len, 0, 0, 0); \
_qzz_res; \
}))
/* Similar to VALGRIND_MAKE_MEM_DEFINED except that addressability is
not altered: bytes which are addressable are marked as defined,
but those which are not addressable are left unchanged. */
#define VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(_qzz_addr,_qzz_len) \
(__extension__({unsigned long _qzz_res; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0 /* default return */, \
VG_USERREQ__MAKE_MEM_DEFINED_IF_ADDRESSABLE, \
_qzz_addr, _qzz_len, 0, 0, 0); \
_qzz_res; \
}))
/* Create a block-description handle. The description is an ascii
string which is included in any messages pertaining to addresses
within the specified memory range. Has no other effect on the
properties of the memory range. */
#define VALGRIND_CREATE_BLOCK(_qzz_addr,_qzz_len, _qzz_desc) \
(__extension__({unsigned long _qzz_res; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0 /* default return */, \
VG_USERREQ__CREATE_BLOCK, \
_qzz_addr, _qzz_len, _qzz_desc, \
0, 0); \
_qzz_res; \
}))
/* Discard a block-description-handle. Returns 1 for an
invalid handle, 0 for a valid handle. */
#define VALGRIND_DISCARD(_qzz_blkindex) \
(__extension__ ({unsigned long _qzz_res; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0 /* default return */, \
VG_USERREQ__DISCARD, \
0, _qzz_blkindex, 0, 0, 0); \
_qzz_res; \
}))
/* Client-code macros to check the state of memory. */
/* Check that memory at _qzz_addr is addressable for _qzz_len bytes.
If suitable addressibility is not established, Valgrind prints an
error message and returns the address of the first offending byte.
Otherwise it returns zero. */
#define VALGRIND_CHECK_MEM_IS_ADDRESSABLE(_qzz_addr,_qzz_len) \
(__extension__({unsigned long _qzz_res; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, \
VG_USERREQ__CHECK_MEM_IS_ADDRESSABLE,\
_qzz_addr, _qzz_len, 0, 0, 0); \
_qzz_res; \
}))
/* Check that memory at _qzz_addr is addressable and defined for
_qzz_len bytes. If suitable addressibility and definedness are not
established, Valgrind prints an error message and returns the
address of the first offending byte. Otherwise it returns zero. */
#define VALGRIND_CHECK_MEM_IS_DEFINED(_qzz_addr,_qzz_len) \
(__extension__({unsigned long _qzz_res; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, \
VG_USERREQ__CHECK_MEM_IS_DEFINED, \
_qzz_addr, _qzz_len, 0, 0, 0); \
_qzz_res; \
}))
/* Use this macro to force the definedness and addressibility of an
lvalue to be checked. If suitable addressibility and definedness
are not established, Valgrind prints an error message and returns
the address of the first offending byte. Otherwise it returns
zero. */
#define VALGRIND_CHECK_VALUE_IS_DEFINED(__lvalue) \
VALGRIND_CHECK_MEM_IS_DEFINED( \
(volatile unsigned char *)&(__lvalue), \
(unsigned long)(sizeof (__lvalue)))
/* Do a full memory leak check (like --leak-check=full) mid-execution. */
#define VALGRIND_DO_LEAK_CHECK \
{unsigned long _qzz_res; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, \
VG_USERREQ__DO_LEAK_CHECK, \
0, 0, 0, 0, 0); \
}
/* Do a summary memory leak check (like --leak-check=summary) mid-execution. */
#define VALGRIND_DO_QUICK_LEAK_CHECK \
{unsigned long _qzz_res; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, \
VG_USERREQ__DO_LEAK_CHECK, \
1, 0, 0, 0, 0); \
}
/* Return number of leaked, dubious, reachable and suppressed bytes found by
all previous leak checks. They must be lvalues. */
#define VALGRIND_COUNT_LEAKS(leaked, dubious, reachable, suppressed) \
/* For safety on 64-bit platforms we assign the results to private
unsigned long variables, then assign these to the lvalues the user
specified, which works no matter what type 'leaked', 'dubious', etc
are. We also initialise '_qzz_leaked', etc because
VG_USERREQ__COUNT_LEAKS doesn't mark the values returned as
defined. */ \
{unsigned long _qzz_res; \
unsigned long _qzz_leaked = 0, _qzz_dubious = 0; \
unsigned long _qzz_reachable = 0, _qzz_suppressed = 0; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, \
VG_USERREQ__COUNT_LEAKS, \
&_qzz_leaked, &_qzz_dubious, \
&_qzz_reachable, &_qzz_suppressed, 0); \
leaked = _qzz_leaked; \
dubious = _qzz_dubious; \
reachable = _qzz_reachable; \
suppressed = _qzz_suppressed; \
}
/* Return number of leaked, dubious, reachable and suppressed bytes found by
all previous leak checks. They must be lvalues. */
#define VALGRIND_COUNT_LEAK_BLOCKS(leaked, dubious, reachable, suppressed) \
/* For safety on 64-bit platforms we assign the results to private
unsigned long variables, then assign these to the lvalues the user
specified, which works no matter what type 'leaked', 'dubious', etc
are. We also initialise '_qzz_leaked', etc because
VG_USERREQ__COUNT_LEAKS doesn't mark the values returned as
defined. */ \
{unsigned long _qzz_res; \
unsigned long _qzz_leaked = 0, _qzz_dubious = 0; \
unsigned long _qzz_reachable = 0, _qzz_suppressed = 0; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, \
VG_USERREQ__COUNT_LEAK_BLOCKS, \
&_qzz_leaked, &_qzz_dubious, \
&_qzz_reachable, &_qzz_suppressed, 0); \
leaked = _qzz_leaked; \
dubious = _qzz_dubious; \
reachable = _qzz_reachable; \
suppressed = _qzz_suppressed; \
}
/* Get the validity data for addresses [zza..zza+zznbytes-1] and copy it
into the provided zzvbits array. Return values:
0 if not running on valgrind
1 success
2 [previously indicated unaligned arrays; these are now allowed]
3 if any parts of zzsrc/zzvbits are not addressable.
The metadata is not copied in cases 0, 2 or 3 so it should be
impossible to segfault your system by using this call.
*/
#define VALGRIND_GET_VBITS(zza,zzvbits,zznbytes) \
(__extension__({unsigned long _qzz_res; \
char* czza = (char*)zza; \
char* czzvbits = (char*)zzvbits; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, \
VG_USERREQ__GET_VBITS, \
czza, czzvbits, zznbytes, 0, 0 ); \
_qzz_res; \
}))
/* Set the validity data for addresses [zza..zza+zznbytes-1], copying it
from the provided zzvbits array. Return values:
0 if not running on valgrind
1 success
2 [previously indicated unaligned arrays; these are now allowed]
3 if any parts of zza/zzvbits are not addressable.
The metadata is not copied in cases 0, 2 or 3 so it should be
impossible to segfault your system by using this call.
*/
#define VALGRIND_SET_VBITS(zza,zzvbits,zznbytes) \
(__extension__({unsigned int _qzz_res; \
char* czza = (char*)zza; \
char* czzvbits = (char*)zzvbits; \
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, \
VG_USERREQ__SET_VBITS, \
czza, czzvbits, zznbytes, 0, 0 ); \
_qzz_res; \
}))
#endif
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/