blob: 51006151365725252150744b1a45422cde2820e1 [file] [log] [blame]
/*
* Copyright (c) 2019 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef included_sha2_h
#define included_sha2_h
#include <vppinfra/clib.h>
#include <vppinfra/vector.h>
#define SHA224_DIGEST_SIZE 28
#define SHA224_BLOCK_SIZE 64
#define SHA256_DIGEST_SIZE 32
#define SHA256_BLOCK_SIZE 64
#define SHA256_ROTR(x, y) ((x >> y) | (x << (32 - y)))
#define SHA256_CH(a, b, c) ((a & b) ^ (~a & c))
#define SHA256_MAJ(a, b, c) ((a & b) ^ (a & c) ^ (b & c))
#define SHA256_CSIGMA0(x) \
(SHA256_ROTR (x, 2) ^ SHA256_ROTR (x, 13) ^ SHA256_ROTR (x, 22));
#define SHA256_CSIGMA1(x) \
(SHA256_ROTR (x, 6) ^ SHA256_ROTR (x, 11) ^ SHA256_ROTR (x, 25));
#define SHA256_SSIGMA0(x) (SHA256_ROTR (x, 7) ^ SHA256_ROTR (x, 18) ^ (x >> 3))
#define SHA256_SSIGMA1(x) \
(SHA256_ROTR (x, 17) ^ SHA256_ROTR (x, 19) ^ (x >> 10))
#define SHA256_MSG_SCHED(w, j) \
{ \
w[j] = w[j - 7] + w[j - 16]; \
w[j] += SHA256_SSIGMA0 (w[j - 15]); \
w[j] += SHA256_SSIGMA1 (w[j - 2]); \
}
#define SHA256_TRANSFORM(s, w, i, k) \
{ \
__typeof__ (s[0]) t1, t2; \
t1 = k + w[i] + s[7]; \
t1 += SHA256_CSIGMA1 (s[4]); \
t1 += SHA256_CH (s[4], s[5], s[6]); \
t2 = SHA256_CSIGMA0 (s[0]); \
t2 += SHA256_MAJ (s[0], s[1], s[2]); \
s[7] = s[6]; \
s[6] = s[5]; \
s[5] = s[4]; \
s[4] = s[3] + t1; \
s[3] = s[2]; \
s[2] = s[1]; \
s[1] = s[0]; \
s[0] = t1 + t2; \
}
#define SHA512_224_DIGEST_SIZE 28
#define SHA512_224_BLOCK_SIZE 128
#define SHA512_256_DIGEST_SIZE 32
#define SHA512_256_BLOCK_SIZE 128
#define SHA384_DIGEST_SIZE 48
#define SHA384_BLOCK_SIZE 128
#define SHA512_DIGEST_SIZE 64
#define SHA512_BLOCK_SIZE 128
#define SHA512_ROTR(x, y) ((x >> y) | (x << (64 - y)))
#define SHA512_CH(a, b, c) ((a & b) ^ (~a & c))
#define SHA512_MAJ(a, b, c) ((a & b) ^ (a & c) ^ (b & c))
#define SHA512_CSIGMA0(x) \
(SHA512_ROTR (x, 28) ^ SHA512_ROTR (x, 34) ^ SHA512_ROTR (x, 39))
#define SHA512_CSIGMA1(x) \
(SHA512_ROTR (x, 14) ^ SHA512_ROTR (x, 18) ^ SHA512_ROTR (x, 41))
#define SHA512_SSIGMA0(x) (SHA512_ROTR (x, 1) ^ SHA512_ROTR (x, 8) ^ (x >> 7))
#define SHA512_SSIGMA1(x) \
(SHA512_ROTR (x, 19) ^ SHA512_ROTR (x, 61) ^ (x >> 6))
#define SHA512_MSG_SCHED(w, j) \
{ \
w[j] = w[j - 7] + w[j - 16]; \
w[j] += SHA512_SSIGMA0 (w[j - 15]); \
w[j] += SHA512_SSIGMA1 (w[j - 2]); \
}
#define SHA512_TRANSFORM(s, w, i, k) \
{ \
__typeof__ (s[0]) t1, t2; \
t1 = k + w[i] + s[7]; \
t1 += SHA512_CSIGMA1 (s[4]); \
t1 += SHA512_CH (s[4], s[5], s[6]); \
t2 = SHA512_CSIGMA0 (s[0]); \
t2 += SHA512_MAJ (s[0], s[1], s[2]); \
s[7] = s[6]; \
s[6] = s[5]; \
s[5] = s[4]; \
s[4] = s[3] + t1; \
s[3] = s[2]; \
s[2] = s[1]; \
s[1] = s[0]; \
s[0] = t1 + t2; \
}
#if defined(__SHA__) && defined(__x86_64__)
#define CLIB_SHA256_ISA_INTEL
#define CLIB_SHA256_ISA
#endif
#ifdef __ARM_FEATURE_SHA2
#define CLIB_SHA256_ISA_ARM
#define CLIB_SHA256_ISA
#endif
static const u32 sha224_h[8] = { 0xc1059ed8, 0x367cd507, 0x3070dd17,
0xf70e5939, 0xffc00b31, 0x68581511,
0x64f98fa7, 0xbefa4fa4 };
static const u32 sha256_h[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372,
0xa54ff53a, 0x510e527f, 0x9b05688c,
0x1f83d9ab, 0x5be0cd19 };
static const u32 sha256_k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
static const u64 sha384_h[8] = { 0xcbbb9d5dc1059ed8, 0x629a292a367cd507,
0x9159015a3070dd17, 0x152fecd8f70e5939,
0x67332667ffc00b31, 0x8eb44a8768581511,
0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4 };
static const u64 sha512_h[8] = { 0x6a09e667f3bcc908, 0xbb67ae8584caa73b,
0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f,
0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 };
static const u64 sha512_224_h[8] = { 0x8c3d37c819544da2, 0x73e1996689dcd4d6,
0x1dfab7ae32ff9c82, 0x679dd514582f9fcf,
0x0f6d2b697bd44da8, 0x77e36f7304c48942,
0x3f9d85a86a1d36c8, 0x1112e6ad91d692a1 };
static const u64 sha512_256_h[8] = { 0x22312194fc2bf72c, 0x9f555fa3c84c64c2,
0x2393b86b6f53b151, 0x963877195940eabd,
0x96283ee2a88effe3, 0xbe5e1e2553863992,
0x2b0199fc2c85b8aa, 0x0eb72ddc81c52ca2 };
static const u64 sha512_k[80] = {
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f,
0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019,
0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242,
0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,
0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275,
0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f,
0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc,
0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6,
0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001,
0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99,
0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,
0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc,
0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915,
0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207,
0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba,
0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,
0x5fcb6fab3ad6faec, 0x6c44198c4a475817
};
typedef enum
{
CLIB_SHA2_224,
CLIB_SHA2_256,
CLIB_SHA2_384,
CLIB_SHA2_512,
CLIB_SHA2_512_224,
CLIB_SHA2_512_256,
} clib_sha2_type_t;
#define SHA2_MAX_BLOCK_SIZE SHA512_BLOCK_SIZE
#define SHA2_MAX_DIGEST_SIZE SHA512_DIGEST_SIZE
typedef struct
{
u64 total_bytes;
u16 n_pending;
u8 block_size;
u8 digest_size;
union
{
u32 h32[8];
u64 h64[8];
#ifdef CLIB_SHA256_ISA
u32x4 h32x4[2];
#endif
};
union
{
u8 as_u8[SHA2_MAX_BLOCK_SIZE];
u64 as_u64[SHA2_MAX_BLOCK_SIZE / sizeof (u64)];
uword as_uword[SHA2_MAX_BLOCK_SIZE / sizeof (uword)];
} pending;
} clib_sha2_ctx_t;
static_always_inline void
clib_sha2_init (clib_sha2_ctx_t *ctx, clib_sha2_type_t type)
{
const u32 *h32 = 0;
const u64 *h64 = 0;
ctx->total_bytes = 0;
ctx->n_pending = 0;
switch (type)
{
case CLIB_SHA2_224:
h32 = sha224_h;
ctx->block_size = SHA224_BLOCK_SIZE;
ctx->digest_size = SHA224_DIGEST_SIZE;
break;
case CLIB_SHA2_256:
h32 = sha256_h;
ctx->block_size = SHA256_BLOCK_SIZE;
ctx->digest_size = SHA256_DIGEST_SIZE;
break;
case CLIB_SHA2_384:
h64 = sha384_h;
ctx->block_size = SHA384_BLOCK_SIZE;
ctx->digest_size = SHA384_DIGEST_SIZE;
break;
case CLIB_SHA2_512:
h64 = sha512_h;
ctx->block_size = SHA512_BLOCK_SIZE;
ctx->digest_size = SHA512_DIGEST_SIZE;
break;
case CLIB_SHA2_512_224:
h64 = sha512_224_h;
ctx->block_size = SHA512_224_BLOCK_SIZE;
ctx->digest_size = SHA512_224_DIGEST_SIZE;
break;
case CLIB_SHA2_512_256:
h64 = sha512_256_h;
ctx->block_size = SHA512_256_BLOCK_SIZE;
ctx->digest_size = SHA512_256_DIGEST_SIZE;
break;
}
if (h32)
for (int i = 0; i < 8; i++)
ctx->h32[i] = h32[i];
if (h64)
for (int i = 0; i < 8; i++)
ctx->h64[i] = h64[i];
}
#ifdef CLIB_SHA256_ISA
static inline void
clib_sha256_vec_cycle_w (u32x4 w[], u8 i)
{
u8 j = (i + 1) % 4;
u8 k = (i + 2) % 4;
u8 l = (i + 3) % 4;
#ifdef CLIB_SHA256_ISA_INTEL
w[i] = (u32x4) _mm_sha256msg1_epu32 ((__m128i) w[i], (__m128i) w[j]);
w[i] += (u32x4) _mm_alignr_epi8 ((__m128i) w[l], (__m128i) w[k], 4);
w[i] = (u32x4) _mm_sha256msg2_epu32 ((__m128i) w[i], (__m128i) w[l]);
#elif defined(CLIB_SHA256_ISA_ARM)
w[i] = vsha256su1q_u32 (vsha256su0q_u32 (w[i], w[j]), w[k], w[l]);
#endif
}
static inline void
clib_sha256_vec_4_rounds (u32x4 w, u8 n, u32x4 s[])
{
#ifdef CLIB_SHA256_ISA_INTEL
u32x4 r = *(u32x4 *) (sha256_k + 4 * n) + w;
s[0] = (u32x4) _mm_sha256rnds2_epu32 ((__m128i) s[0], (__m128i) s[1],
(__m128i) r);
r = (u32x4) u64x2_interleave_hi ((u64x2) r, (u64x2) r);
s[1] = (u32x4) _mm_sha256rnds2_epu32 ((__m128i) s[1], (__m128i) s[0],
(__m128i) r);
#elif defined(CLIB_SHA256_ISA_ARM)
u32x4 r0, s0;
const u32x4u *k = (u32x4u *) sha256_k;
r0 = w + k[n];
s0 = s[0];
s[0] = vsha256hq_u32 (s[0], s[1], r0);
s[1] = vsha256h2q_u32 (s[1], s0, r0);
#endif
}
#endif
#if defined(CLIB_SHA256_ISA)
static inline u32x4
clib_sha256_vec_load (u32x4 r)
{
#if defined(CLIB_SHA256_ISA_INTEL)
return u32x4_byte_swap (r);
#elif defined(CLIB_SHA256_ISA_ARM)
return vreinterpretq_u32_u8 (vrev32q_u8 (vreinterpretq_u8_u32 (r)));
#endif
}
static inline void
clib_sha256_vec_shuffle (u32x4 d[2])
{
#if defined(CLIB_SHA256_ISA_INTEL)
/* {0, 1, 2, 3}, {4, 5, 6, 7} -> {7, 6, 3, 2}, {5, 4, 1, 0} */
u32x4 r;
r = (u32x4) _mm_shuffle_ps ((__m128) d[1], (__m128) d[0], 0xbb);
d[1] = (u32x4) _mm_shuffle_ps ((__m128) d[1], (__m128) d[0], 0x11);
d[0] = r;
#endif
}
#endif
static inline void
clib_sha256_block (clib_sha2_ctx_t *ctx, const u8 *msg, uword n_blocks)
{
#if defined(CLIB_SHA256_ISA)
u32x4 h[2];
u32x4u *m = (u32x4u *) msg;
h[0] = ctx->h32x4[0];
h[1] = ctx->h32x4[1];
clib_sha256_vec_shuffle (h);
for (; n_blocks; m += 4, n_blocks--)
{
u32x4 s[2], w[4];
s[0] = h[0];
s[1] = h[1];
w[0] = clib_sha256_vec_load (m[0]);
w[1] = clib_sha256_vec_load (m[1]);
w[2] = clib_sha256_vec_load (m[2]);
w[3] = clib_sha256_vec_load (m[3]);
clib_sha256_vec_4_rounds (w[0], 0, s);
clib_sha256_vec_4_rounds (w[1], 1, s);
clib_sha256_vec_4_rounds (w[2], 2, s);
clib_sha256_vec_4_rounds (w[3], 3, s);
clib_sha256_vec_cycle_w (w, 0);
clib_sha256_vec_4_rounds (w[0], 4, s);
clib_sha256_vec_cycle_w (w, 1);
clib_sha256_vec_4_rounds (w[1], 5, s);
clib_sha256_vec_cycle_w (w, 2);
clib_sha256_vec_4_rounds (w[2], 6, s);
clib_sha256_vec_cycle_w (w, 3);
clib_sha256_vec_4_rounds (w[3], 7, s);
clib_sha256_vec_cycle_w (w, 0);
clib_sha256_vec_4_rounds (w[0], 8, s);
clib_sha256_vec_cycle_w (w, 1);
clib_sha256_vec_4_rounds (w[1], 9, s);
clib_sha256_vec_cycle_w (w, 2);
clib_sha256_vec_4_rounds (w[2], 10, s);
clib_sha256_vec_cycle_w (w, 3);
clib_sha256_vec_4_rounds (w[3], 11, s);
clib_sha256_vec_cycle_w (w, 0);
clib_sha256_vec_4_rounds (w[0], 12, s);
clib_sha256_vec_cycle_w (w, 1);
clib_sha256_vec_4_rounds (w[1], 13, s);
clib_sha256_vec_cycle_w (w, 2);
clib_sha256_vec_4_rounds (w[2], 14, s);
clib_sha256_vec_cycle_w (w, 3);
clib_sha256_vec_4_rounds (w[3], 15, s);
h[0] += s[0];
h[1] += s[1];
}
clib_sha256_vec_shuffle (h);
ctx->h32x4[0] = h[0];
ctx->h32x4[1] = h[1];
#else
u32 w[64], s[8], i;
while (n_blocks)
{
for (i = 0; i < 8; i++)
s[i] = ctx->h32[i];
for (i = 0; i < 16; i++)
{
w[i] = clib_net_to_host_u32 (*((u32 *) msg + i));
SHA256_TRANSFORM (s, w, i, sha256_k[i]);
}
for (i = 16; i < 64; i++)
{
SHA256_MSG_SCHED (w, i);
SHA256_TRANSFORM (s, w, i, sha256_k[i]);
}
for (i = 0; i < 8; i++)
ctx->h32[i] += s[i];
/* next */
msg += SHA256_BLOCK_SIZE;
n_blocks--;
}
#endif
}
static_always_inline void
clib_sha512_block (clib_sha2_ctx_t *ctx, const u8 *msg, uword n_blocks)
{
u64 w[80], s[8], i;
while (n_blocks)
{
for (i = 0; i < 8; i++)
s[i] = ctx->h64[i];
for (i = 0; i < 16; i++)
{
w[i] = clib_net_to_host_u64 (*((u64 *) msg + i));
SHA512_TRANSFORM (s, w, i, sha512_k[i]);
}
for (i = 16; i < 80; i++)
{
SHA512_MSG_SCHED (w, i);
SHA512_TRANSFORM (s, w, i, sha512_k[i]);
}
for (i = 0; i < 8; i++)
ctx->h64[i] += s[i];
/* next */
msg += SHA512_BLOCK_SIZE;
n_blocks--;
}
}
static_always_inline void
clib_sha2_update (clib_sha2_ctx_t *ctx, const u8 *msg, uword n_bytes)
{
uword n_blocks;
if (ctx->n_pending)
{
uword n_left = ctx->block_size - ctx->n_pending;
if (n_bytes < n_left)
{
clib_memcpy_fast (ctx->pending.as_u8 + ctx->n_pending, msg, n_bytes);
ctx->n_pending += n_bytes;
return;
}
else
{
clib_memcpy_fast (ctx->pending.as_u8 + ctx->n_pending, msg, n_left);
if (ctx->block_size == SHA512_BLOCK_SIZE)
clib_sha512_block (ctx, ctx->pending.as_u8, 1);
else
clib_sha256_block (ctx, ctx->pending.as_u8, 1);
ctx->n_pending = 0;
ctx->total_bytes += ctx->block_size;
n_bytes -= n_left;
msg += n_left;
}
}
if ((n_blocks = n_bytes / ctx->block_size))
{
if (ctx->block_size == SHA512_BLOCK_SIZE)
clib_sha512_block (ctx, msg, n_blocks);
else
clib_sha256_block (ctx, msg, n_blocks);
n_bytes -= n_blocks * ctx->block_size;
msg += n_blocks * ctx->block_size;
ctx->total_bytes += n_blocks * ctx->block_size;
}
if (n_bytes)
{
clib_memset_u8 (ctx->pending.as_u8, 0, ctx->block_size);
clib_memcpy_fast (ctx->pending.as_u8, msg, n_bytes);
ctx->n_pending = n_bytes;
}
else
ctx->n_pending = 0;
}
static_always_inline void
clib_sha2_final (clib_sha2_ctx_t *ctx, u8 *digest)
{
int i;
ctx->total_bytes += ctx->n_pending;
if (ctx->n_pending == 0)
{
clib_memset (ctx->pending.as_u8, 0, ctx->block_size);
ctx->pending.as_u8[0] = 0x80;
}
else if (ctx->n_pending + sizeof (u64) + sizeof (u8) > ctx->block_size)
{
ctx->pending.as_u8[ctx->n_pending] = 0x80;
if (ctx->block_size == SHA512_BLOCK_SIZE)
clib_sha512_block (ctx, ctx->pending.as_u8, 1);
else
clib_sha256_block (ctx, ctx->pending.as_u8, 1);
clib_memset (ctx->pending.as_u8, 0, ctx->block_size);
}
else
ctx->pending.as_u8[ctx->n_pending] = 0x80;
ctx->pending.as_u64[ctx->block_size / 8 - 1] =
clib_net_to_host_u64 (ctx->total_bytes * 8);
if (ctx->block_size == SHA512_BLOCK_SIZE)
clib_sha512_block (ctx, ctx->pending.as_u8, 1);
else
clib_sha256_block (ctx, ctx->pending.as_u8, 1);
if (ctx->block_size == SHA512_BLOCK_SIZE)
{
for (i = 0; i < ctx->digest_size / sizeof (u64); i++)
*((u64 *) digest + i) = clib_net_to_host_u64 (ctx->h64[i]);
/* sha512-224 case - write half of u64 */
if (i * sizeof (u64) < ctx->digest_size)
*((u32 *) digest + 2 * i) = clib_net_to_host_u32 (ctx->h64[i] >> 32);
}
else
for (i = 0; i < ctx->digest_size / sizeof (u32); i++)
*((u32 *) digest + i) = clib_net_to_host_u32 (ctx->h32[i]);
}
static_always_inline void
clib_sha2 (clib_sha2_type_t type, const u8 *msg, uword len, u8 *digest)
{
clib_sha2_ctx_t ctx;
clib_sha2_init (&ctx, type);
clib_sha2_update (&ctx, msg, len);
clib_sha2_final (&ctx, digest);
}
#define clib_sha224(...) clib_sha2 (CLIB_SHA2_224, __VA_ARGS__)
#define clib_sha256(...) clib_sha2 (CLIB_SHA2_256, __VA_ARGS__)
#define clib_sha384(...) clib_sha2 (CLIB_SHA2_384, __VA_ARGS__)
#define clib_sha512(...) clib_sha2 (CLIB_SHA2_512, __VA_ARGS__)
#define clib_sha512_224(...) clib_sha2 (CLIB_SHA2_512_224, __VA_ARGS__)
#define clib_sha512_256(...) clib_sha2 (CLIB_SHA2_512_256, __VA_ARGS__)
static_always_inline void
clib_hmac_sha2 (clib_sha2_type_t type, const u8 *key, uword key_len,
const u8 *msg, uword len, u8 *digest)
{
clib_sha2_ctx_t _ctx, *ctx = &_ctx;
uword key_data[SHA2_MAX_BLOCK_SIZE / sizeof (uword)];
u8 i_digest[SHA2_MAX_DIGEST_SIZE];
int i, n_words;
clib_sha2_init (ctx, type);
n_words = ctx->block_size / sizeof (uword);
/* key */
if (key_len > ctx->block_size)
{
/* key is longer than block, calculate hash of key */
clib_sha2_update (ctx, key, key_len);
for (i = (ctx->digest_size / sizeof (uword)) / 2; i < n_words; i++)
key_data[i] = 0;
clib_sha2_final (ctx, (u8 *) key_data);
clib_sha2_init (ctx, type);
}
else
{
for (i = 0; i < n_words; i++)
key_data[i] = 0;
clib_memcpy_fast (key_data, key, key_len);
}
/* ipad */
for (i = 0; i < n_words; i++)
ctx->pending.as_uword[i] = key_data[i] ^ (uword) 0x3636363636363636;
if (ctx->block_size == SHA512_BLOCK_SIZE)
clib_sha512_block (ctx, ctx->pending.as_u8, 1);
else
clib_sha256_block (ctx, ctx->pending.as_u8, 1);
ctx->total_bytes += ctx->block_size;
/* message */
clib_sha2_update (ctx, msg, len);
clib_sha2_final (ctx, i_digest);
/* opad */
clib_sha2_init (ctx, type);
for (i = 0; i < n_words; i++)
ctx->pending.as_uword[i] = key_data[i] ^ (uword) 0x5c5c5c5c5c5c5c5c;
if (ctx->block_size == SHA512_BLOCK_SIZE)
clib_sha512_block (ctx, ctx->pending.as_u8, 1);
else
clib_sha256_block (ctx, ctx->pending.as_u8, 1);
ctx->total_bytes += ctx->block_size;
/* digest */
clib_sha2_update (ctx, i_digest, ctx->digest_size);
clib_sha2_final (ctx, digest);
}
#define clib_hmac_sha224(...) clib_hmac_sha2 (CLIB_SHA2_224, __VA_ARGS__)
#define clib_hmac_sha256(...) clib_hmac_sha2 (CLIB_SHA2_256, __VA_ARGS__)
#define clib_hmac_sha384(...) clib_hmac_sha2 (CLIB_SHA2_384, __VA_ARGS__)
#define clib_hmac_sha512(...) clib_hmac_sha2 (CLIB_SHA2_512, __VA_ARGS__)
#define clib_hmac_sha512_224(...) \
clib_hmac_sha2 (CLIB_SHA2_512_224, __VA_ARGS__)
#define clib_hmac_sha512_256(...) \
clib_hmac_sha2 (CLIB_SHA2_512_256, __VA_ARGS__)
#endif /* included_sha2_h */