| /* |
| * Copyright (c) 2015 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include <vnet/vnet.h> |
| #include <vppinfra/vec.h> |
| #include <vppinfra/format.h> |
| #include <vlib/unix/cj.h> |
| #include <assert.h> |
| |
| #include <vnet/ethernet/ethernet.h> |
| #include <vnet/devices/dpdk/dpdk.h> |
| |
| #include "dpdk_priv.h" |
| #include <vppinfra/error.h> |
| |
| #define foreach_dpdk_tx_func_error \ |
| _(BAD_RETVAL, "DPDK tx function returned an error") \ |
| _(RING_FULL, "Tx packet drops (ring full)") \ |
| _(PKT_DROP, "Tx packet drops (dpdk tx failure)") \ |
| _(REPL_FAIL, "Tx packet drops (replication failure)") |
| |
| typedef enum |
| { |
| #define _(f,s) DPDK_TX_FUNC_ERROR_##f, |
| foreach_dpdk_tx_func_error |
| #undef _ |
| DPDK_TX_FUNC_N_ERROR, |
| } dpdk_tx_func_error_t; |
| |
| static char *dpdk_tx_func_error_strings[] = { |
| #define _(n,s) s, |
| foreach_dpdk_tx_func_error |
| #undef _ |
| }; |
| |
| clib_error_t * |
| dpdk_set_mac_address (vnet_hw_interface_t * hi, char *address) |
| { |
| int error; |
| dpdk_main_t *dm = &dpdk_main; |
| dpdk_device_t *xd = vec_elt_at_index (dm->devices, hi->dev_instance); |
| |
| error = rte_eth_dev_default_mac_addr_set (xd->device_index, |
| (struct ether_addr *) address); |
| |
| if (error) |
| { |
| return clib_error_return (0, "mac address set failed: %d", error); |
| } |
| else |
| { |
| return NULL; |
| } |
| } |
| |
| clib_error_t * |
| dpdk_set_mc_filter (vnet_hw_interface_t * hi, |
| struct ether_addr mc_addr_vec[], int naddr) |
| { |
| int error; |
| dpdk_main_t *dm = &dpdk_main; |
| dpdk_device_t *xd = vec_elt_at_index (dm->devices, hi->dev_instance); |
| |
| error = rte_eth_dev_set_mc_addr_list (xd->device_index, mc_addr_vec, naddr); |
| |
| if (error) |
| { |
| return clib_error_return (0, "mc addr list failed: %d", error); |
| } |
| else |
| { |
| return NULL; |
| } |
| } |
| |
| struct rte_mbuf * |
| dpdk_replicate_packet_mb (vlib_buffer_t * b) |
| { |
| vlib_main_t *vm = vlib_get_main (); |
| vlib_buffer_main_t *bm = vm->buffer_main; |
| struct rte_mbuf *first_mb = 0, *new_mb, *pkt_mb, **prev_mb_next = 0; |
| u8 nb_segs, nb_segs_left; |
| u32 copy_bytes; |
| unsigned socket_id = rte_socket_id (); |
| |
| ASSERT (bm->pktmbuf_pools[socket_id]); |
| pkt_mb = rte_mbuf_from_vlib_buffer (b); |
| nb_segs = pkt_mb->nb_segs; |
| for (nb_segs_left = nb_segs; nb_segs_left; nb_segs_left--) |
| { |
| if (PREDICT_FALSE (pkt_mb == 0)) |
| { |
| clib_warning ("Missing %d mbuf chain segment(s): " |
| "(nb_segs = %d, nb_segs_left = %d)!", |
| nb_segs - nb_segs_left, nb_segs, nb_segs_left); |
| if (first_mb) |
| rte_pktmbuf_free (first_mb); |
| return NULL; |
| } |
| new_mb = rte_pktmbuf_alloc (bm->pktmbuf_pools[socket_id]); |
| if (PREDICT_FALSE (new_mb == 0)) |
| { |
| if (first_mb) |
| rte_pktmbuf_free (first_mb); |
| return NULL; |
| } |
| |
| /* |
| * Copy packet info into 1st segment. |
| */ |
| if (first_mb == 0) |
| { |
| first_mb = new_mb; |
| rte_pktmbuf_pkt_len (first_mb) = pkt_mb->pkt_len; |
| first_mb->nb_segs = pkt_mb->nb_segs; |
| first_mb->port = pkt_mb->port; |
| #ifdef DAW_FIXME // TX Offload support TBD |
| first_mb->vlan_macip = pkt_mb->vlan_macip; |
| first_mb->hash = pkt_mb->hash; |
| first_mb->ol_flags = pkt_mb->ol_flags |
| #endif |
| } |
| else |
| { |
| ASSERT (prev_mb_next != 0); |
| *prev_mb_next = new_mb; |
| } |
| |
| /* |
| * Copy packet segment data into new mbuf segment. |
| */ |
| rte_pktmbuf_data_len (new_mb) = pkt_mb->data_len; |
| copy_bytes = pkt_mb->data_len + RTE_PKTMBUF_HEADROOM; |
| ASSERT (copy_bytes <= pkt_mb->buf_len); |
| clib_memcpy (new_mb->buf_addr, pkt_mb->buf_addr, copy_bytes); |
| |
| prev_mb_next = &new_mb->next; |
| pkt_mb = pkt_mb->next; |
| } |
| |
| ASSERT (pkt_mb == 0); |
| __rte_mbuf_sanity_check (first_mb, 1); |
| |
| return first_mb; |
| } |
| |
| struct rte_mbuf * |
| dpdk_zerocopy_replicate_packet_mb (vlib_buffer_t * b) |
| { |
| vlib_main_t *vm = vlib_get_main (); |
| vlib_buffer_main_t *bm = vm->buffer_main; |
| struct rte_mbuf *first_mb = 0, *new_mb, *pkt_mb, **prev_mb_next = 0; |
| u8 nb_segs, nb_segs_left; |
| unsigned socket_id = rte_socket_id (); |
| |
| ASSERT (bm->pktmbuf_pools[socket_id]); |
| pkt_mb = rte_mbuf_from_vlib_buffer (b); |
| nb_segs = pkt_mb->nb_segs; |
| for (nb_segs_left = nb_segs; nb_segs_left; nb_segs_left--) |
| { |
| if (PREDICT_FALSE (pkt_mb == 0)) |
| { |
| clib_warning ("Missing %d mbuf chain segment(s): " |
| "(nb_segs = %d, nb_segs_left = %d)!", |
| nb_segs - nb_segs_left, nb_segs, nb_segs_left); |
| if (first_mb) |
| rte_pktmbuf_free (first_mb); |
| return NULL; |
| } |
| new_mb = rte_pktmbuf_clone (pkt_mb, bm->pktmbuf_pools[socket_id]); |
| if (PREDICT_FALSE (new_mb == 0)) |
| { |
| if (first_mb) |
| rte_pktmbuf_free (first_mb); |
| return NULL; |
| } |
| |
| /* |
| * Copy packet info into 1st segment. |
| */ |
| if (first_mb == 0) |
| { |
| first_mb = new_mb; |
| rte_pktmbuf_pkt_len (first_mb) = pkt_mb->pkt_len; |
| first_mb->nb_segs = pkt_mb->nb_segs; |
| first_mb->port = pkt_mb->port; |
| #ifdef DAW_FIXME // TX Offload support TBD |
| first_mb->vlan_macip = pkt_mb->vlan_macip; |
| first_mb->hash = pkt_mb->hash; |
| first_mb->ol_flags = pkt_mb->ol_flags |
| #endif |
| } |
| else |
| { |
| ASSERT (prev_mb_next != 0); |
| *prev_mb_next = new_mb; |
| } |
| |
| /* |
| * Copy packet segment data into new mbuf segment. |
| */ |
| rte_pktmbuf_data_len (new_mb) = pkt_mb->data_len; |
| |
| prev_mb_next = &new_mb->next; |
| pkt_mb = pkt_mb->next; |
| } |
| |
| ASSERT (pkt_mb == 0); |
| __rte_mbuf_sanity_check (first_mb, 1); |
| |
| return first_mb; |
| |
| |
| } |
| |
| static void |
| dpdk_tx_trace_buffer (dpdk_main_t * dm, |
| vlib_node_runtime_t * node, |
| dpdk_device_t * xd, |
| u16 queue_id, u32 buffer_index, vlib_buffer_t * buffer) |
| { |
| vlib_main_t *vm = vlib_get_main (); |
| dpdk_tx_dma_trace_t *t0; |
| struct rte_mbuf *mb; |
| |
| mb = rte_mbuf_from_vlib_buffer (buffer); |
| |
| t0 = vlib_add_trace (vm, node, buffer, sizeof (t0[0])); |
| t0->queue_index = queue_id; |
| t0->device_index = xd->device_index; |
| t0->buffer_index = buffer_index; |
| clib_memcpy (&t0->mb, mb, sizeof (t0->mb)); |
| clib_memcpy (&t0->buffer, buffer, |
| sizeof (buffer[0]) - sizeof (buffer->pre_data)); |
| clib_memcpy (t0->buffer.pre_data, buffer->data + buffer->current_data, |
| sizeof (t0->buffer.pre_data)); |
| } |
| |
| /* |
| * This function calls the dpdk's tx_burst function to transmit the packets |
| * on the tx_vector. It manages a lock per-device if the device does not |
| * support multiple queues. It returns the number of packets untransmitted |
| * on the tx_vector. If all packets are transmitted (the normal case), the |
| * function returns 0. |
| * |
| * The tx_burst function may not be able to transmit all packets because the |
| * dpdk ring is full. If a flowcontrol callback function has been configured |
| * then the function simply returns. If no callback has been configured, the |
| * function will retry calling tx_burst with the remaining packets. This will |
| * continue until all packets are transmitted or tx_burst indicates no packets |
| * could be transmitted. (The caller can drop the remaining packets.) |
| * |
| * The function assumes there is at least one packet on the tx_vector. |
| */ |
| static_always_inline |
| u32 tx_burst_vector_internal (vlib_main_t * vm, |
| dpdk_device_t * xd, |
| struct rte_mbuf **tx_vector) |
| { |
| dpdk_main_t *dm = &dpdk_main; |
| u32 n_packets; |
| u32 tx_head; |
| u32 tx_tail; |
| u32 n_retry; |
| int rv; |
| int queue_id; |
| tx_ring_hdr_t *ring; |
| |
| ring = vec_header (tx_vector, sizeof (*ring)); |
| |
| n_packets = ring->tx_head - ring->tx_tail; |
| |
| tx_head = ring->tx_head % xd->nb_tx_desc; |
| |
| /* |
| * Ensure rte_eth_tx_burst is not called with 0 packets, which can lead to |
| * unpredictable results. |
| */ |
| ASSERT (n_packets > 0); |
| |
| /* |
| * Check for tx_vector overflow. If this fails it is a system configuration |
| * error. The ring should be sized big enough to handle the largest un-flowed |
| * off burst from a traffic manager. A larger size also helps performance |
| * a bit because it decreases the probability of having to issue two tx_burst |
| * calls due to a ring wrap. |
| */ |
| ASSERT (n_packets < xd->nb_tx_desc); |
| |
| /* |
| * If there is no flowcontrol callback, there is only temporary buffering |
| * on the tx_vector and so the tail should always be 0. |
| */ |
| ASSERT (dm->flowcontrol_callback || ring->tx_tail == 0); |
| |
| /* |
| * If there is a flowcontrol callback, don't retry any incomplete tx_bursts. |
| * Apply backpressure instead. If there is no callback, keep retrying until |
| * a tx_burst sends no packets. n_retry of 255 essentially means no retry |
| * limit. |
| */ |
| n_retry = dm->flowcontrol_callback ? 0 : 255; |
| |
| queue_id = vm->cpu_index; |
| |
| do |
| { |
| /* start the burst at the tail */ |
| tx_tail = ring->tx_tail % xd->nb_tx_desc; |
| |
| /* |
| * This device only supports one TX queue, |
| * and we're running multi-threaded... |
| */ |
| if (PREDICT_FALSE ((xd->flags & DPDK_DEVICE_FLAG_VHOST_USER) == 0 && |
| xd->lockp != 0)) |
| { |
| queue_id = queue_id % xd->tx_q_used; |
| while (__sync_lock_test_and_set (xd->lockp[queue_id], 1)) |
| /* zzzz */ |
| queue_id = (queue_id + 1) % xd->tx_q_used; |
| } |
| |
| if (PREDICT_TRUE (xd->flags & DPDK_DEVICE_FLAG_HQOS)) /* HQoS ON */ |
| { |
| if (PREDICT_TRUE (tx_head > tx_tail)) |
| { |
| /* no wrap, transmit in one burst */ |
| dpdk_device_hqos_per_worker_thread_t *hqos = |
| &xd->hqos_wt[vm->cpu_index]; |
| |
| dpdk_hqos_metadata_set (hqos, |
| &tx_vector[tx_tail], tx_head - tx_tail); |
| rv = rte_ring_sp_enqueue_burst (hqos->swq, |
| (void **) &tx_vector[tx_tail], |
| (uint16_t) (tx_head - tx_tail)); |
| } |
| else |
| { |
| /* |
| * This can only happen if there is a flowcontrol callback. |
| * We need to split the transmit into two calls: one for |
| * the packets up to the wrap point, and one to continue |
| * at the start of the ring. |
| * Transmit pkts up to the wrap point. |
| */ |
| dpdk_device_hqos_per_worker_thread_t *hqos = |
| &xd->hqos_wt[vm->cpu_index]; |
| |
| dpdk_hqos_metadata_set (hqos, |
| &tx_vector[tx_tail], |
| xd->nb_tx_desc - tx_tail); |
| rv = rte_ring_sp_enqueue_burst (hqos->swq, |
| (void **) &tx_vector[tx_tail], |
| (uint16_t) (xd->nb_tx_desc - |
| tx_tail)); |
| /* |
| * If we transmitted everything we wanted, then allow 1 retry |
| * so we can try to transmit the rest. If we didn't transmit |
| * everything, stop now. |
| */ |
| n_retry = (rv == xd->nb_tx_desc - tx_tail) ? 1 : 0; |
| } |
| } |
| else if (PREDICT_TRUE (xd->flags & DPDK_DEVICE_FLAG_PMD)) |
| { |
| if (PREDICT_TRUE (tx_head > tx_tail)) |
| { |
| /* no wrap, transmit in one burst */ |
| rv = rte_eth_tx_burst (xd->device_index, |
| (uint16_t) queue_id, |
| &tx_vector[tx_tail], |
| (uint16_t) (tx_head - tx_tail)); |
| } |
| else |
| { |
| /* |
| * This can only happen if there is a flowcontrol callback. |
| * We need to split the transmit into two calls: one for |
| * the packets up to the wrap point, and one to continue |
| * at the start of the ring. |
| * Transmit pkts up to the wrap point. |
| */ |
| rv = rte_eth_tx_burst (xd->device_index, |
| (uint16_t) queue_id, |
| &tx_vector[tx_tail], |
| (uint16_t) (xd->nb_tx_desc - tx_tail)); |
| |
| /* |
| * If we transmitted everything we wanted, then allow 1 retry |
| * so we can try to transmit the rest. If we didn't transmit |
| * everything, stop now. |
| */ |
| n_retry = (rv == xd->nb_tx_desc - tx_tail) ? 1 : 0; |
| } |
| } |
| #if DPDK_VHOST_USER |
| else if (xd->flags & DPDK_DEVICE_FLAG_VHOST_USER) |
| { |
| u32 offset = 0; |
| if (xd->need_txlock) |
| { |
| queue_id = 0; |
| while (__sync_lock_test_and_set (xd->lockp[queue_id], 1)); |
| } |
| else |
| { |
| dpdk_device_and_queue_t *dq; |
| vec_foreach (dq, dm->devices_by_cpu[vm->cpu_index]) |
| { |
| if (xd->device_index == dq->device) |
| break; |
| } |
| assert (dq); |
| offset = dq->queue_id * VIRTIO_QNUM; |
| } |
| if (PREDICT_TRUE (tx_head > tx_tail)) |
| { |
| int i; |
| u32 bytes = 0; |
| struct rte_mbuf **pkts = &tx_vector[tx_tail]; |
| for (i = 0; i < (tx_head - tx_tail); i++) |
| { |
| struct rte_mbuf *buff = pkts[i]; |
| bytes += rte_pktmbuf_data_len (buff); |
| } |
| |
| /* no wrap, transmit in one burst */ |
| rv = |
| rte_vhost_enqueue_burst (&xd->vu_vhost_dev, |
| offset + VIRTIO_RXQ, |
| &tx_vector[tx_tail], |
| (uint16_t) (tx_head - tx_tail)); |
| if (PREDICT_TRUE (rv > 0)) |
| { |
| dpdk_vu_vring *vring = |
| &(xd->vu_intf->vrings[offset + VIRTIO_TXQ]); |
| vring->packets += rv; |
| vring->bytes += bytes; |
| |
| if (dpdk_vhost_user_want_interrupt |
| (xd, offset + VIRTIO_RXQ)) |
| { |
| vring = &(xd->vu_intf->vrings[offset + VIRTIO_RXQ]); |
| vring->n_since_last_int += rv; |
| |
| f64 now = vlib_time_now (vm); |
| if (vring->int_deadline < now || |
| vring->n_since_last_int > |
| dm->conf->vhost_coalesce_frames) |
| dpdk_vhost_user_send_interrupt (vm, xd, |
| offset + VIRTIO_RXQ); |
| } |
| |
| int c = rv; |
| while (c--) |
| rte_pktmbuf_free (tx_vector[tx_tail + c]); |
| } |
| } |
| else |
| { |
| /* |
| * If we transmitted everything we wanted, then allow 1 retry |
| * so we can try to transmit the rest. If we didn't transmit |
| * everything, stop now. |
| */ |
| int i; |
| u32 bytes = 0; |
| struct rte_mbuf **pkts = &tx_vector[tx_tail]; |
| for (i = 0; i < (xd->nb_tx_desc - tx_tail); i++) |
| { |
| struct rte_mbuf *buff = pkts[i]; |
| bytes += rte_pktmbuf_data_len (buff); |
| } |
| rv = |
| rte_vhost_enqueue_burst (&xd->vu_vhost_dev, |
| offset + VIRTIO_RXQ, |
| &tx_vector[tx_tail], |
| (uint16_t) (xd->nb_tx_desc - |
| tx_tail)); |
| |
| if (PREDICT_TRUE (rv > 0)) |
| { |
| dpdk_vu_vring *vring = |
| &(xd->vu_intf->vrings[offset + VIRTIO_TXQ]); |
| vring->packets += rv; |
| vring->bytes += bytes; |
| |
| if (dpdk_vhost_user_want_interrupt |
| (xd, offset + VIRTIO_RXQ)) |
| { |
| vring = &(xd->vu_intf->vrings[offset + VIRTIO_RXQ]); |
| vring->n_since_last_int += rv; |
| |
| f64 now = vlib_time_now (vm); |
| if (vring->int_deadline < now || |
| vring->n_since_last_int > |
| dm->conf->vhost_coalesce_frames) |
| dpdk_vhost_user_send_interrupt (vm, xd, |
| offset + VIRTIO_RXQ); |
| } |
| |
| int c = rv; |
| while (c--) |
| rte_pktmbuf_free (tx_vector[tx_tail + c]); |
| } |
| |
| n_retry = (rv == xd->nb_tx_desc - tx_tail) ? 1 : 0; |
| } |
| |
| if (xd->need_txlock) |
| *xd->lockp[queue_id] = 0; |
| } |
| #endif |
| #if RTE_LIBRTE_KNI |
| else if (xd->flags & DPDK_DEVICE_FLAG_KNI) |
| { |
| if (PREDICT_TRUE (tx_head > tx_tail)) |
| { |
| /* no wrap, transmit in one burst */ |
| rv = rte_kni_tx_burst (xd->kni, |
| &tx_vector[tx_tail], |
| (uint16_t) (tx_head - tx_tail)); |
| } |
| else |
| { |
| /* |
| * This can only happen if there is a flowcontrol callback. |
| * We need to split the transmit into two calls: one for |
| * the packets up to the wrap point, and one to continue |
| * at the start of the ring. |
| * Transmit pkts up to the wrap point. |
| */ |
| rv = rte_kni_tx_burst (xd->kni, |
| &tx_vector[tx_tail], |
| (uint16_t) (xd->nb_tx_desc - tx_tail)); |
| |
| /* |
| * If we transmitted everything we wanted, then allow 1 retry |
| * so we can try to transmit the rest. If we didn't transmit |
| * everything, stop now. |
| */ |
| n_retry = (rv == xd->nb_tx_desc - tx_tail) ? 1 : 0; |
| } |
| } |
| #endif |
| else |
| { |
| ASSERT (0); |
| rv = 0; |
| } |
| |
| if (PREDICT_FALSE ((xd->flags & DPDK_DEVICE_FLAG_VHOST_USER) == 0 && |
| xd->lockp != 0)) |
| *xd->lockp[queue_id] = 0; |
| |
| if (PREDICT_FALSE (rv < 0)) |
| { |
| // emit non-fatal message, bump counter |
| vnet_main_t *vnm = dm->vnet_main; |
| vnet_interface_main_t *im = &vnm->interface_main; |
| u32 node_index; |
| |
| node_index = vec_elt_at_index (im->hw_interfaces, |
| xd->vlib_hw_if_index)->tx_node_index; |
| |
| vlib_error_count (vm, node_index, DPDK_TX_FUNC_ERROR_BAD_RETVAL, 1); |
| clib_warning ("rte_eth_tx_burst[%d]: error %d", xd->device_index, |
| rv); |
| return n_packets; // untransmitted packets |
| } |
| ring->tx_tail += (u16) rv; |
| n_packets -= (uint16_t) rv; |
| } |
| while (rv && n_packets && (n_retry > 0)); |
| |
| return n_packets; |
| } |
| |
| |
| /* |
| * This function transmits any packets on the interface's tx_vector and returns |
| * the number of packets untransmitted on the tx_vector. If the tx_vector is |
| * empty the function simply returns 0. |
| * |
| * It is intended to be called by a traffic manager which has flowed-off an |
| * interface to see if the interface can be flowed-on again. |
| */ |
| u32 |
| dpdk_interface_tx_vector (vlib_main_t * vm, u32 dev_instance) |
| { |
| dpdk_main_t *dm = &dpdk_main; |
| dpdk_device_t *xd; |
| int queue_id; |
| struct rte_mbuf **tx_vector; |
| tx_ring_hdr_t *ring; |
| |
| /* param is dev_instance and not hw_if_index to save another lookup */ |
| xd = vec_elt_at_index (dm->devices, dev_instance); |
| |
| queue_id = vm->cpu_index; |
| tx_vector = xd->tx_vectors[queue_id]; |
| |
| /* If no packets on the ring, don't bother calling tx function */ |
| ring = vec_header (tx_vector, sizeof (*ring)); |
| if (ring->tx_head == ring->tx_tail) |
| { |
| return 0; |
| } |
| |
| return tx_burst_vector_internal (vm, xd, tx_vector); |
| } |
| |
| /* |
| * Transmits the packets on the frame to the interface associated with the |
| * node. It first copies packets on the frame to a tx_vector containing the |
| * rte_mbuf pointers. It then passes this vector to tx_burst_vector_internal |
| * which calls the dpdk tx_burst function. |
| * |
| * The tx_vector is treated slightly differently depending on whether or |
| * not a flowcontrol callback function has been configured. If there is no |
| * callback, the tx_vector is a temporary array of rte_mbuf packet pointers. |
| * Its entries are written and consumed before the function exits. |
| * |
| * If there is a callback then the transmit is being invoked in the presence |
| * of a traffic manager. Here the tx_vector is treated like a ring of rte_mbuf |
| * pointers. If not all packets can be transmitted, the untransmitted packets |
| * stay on the tx_vector until the next call. The callback allows the traffic |
| * manager to flow-off dequeues to the interface. The companion function |
| * dpdk_interface_tx_vector() allows the traffic manager to detect when |
| * it should flow-on the interface again. |
| */ |
| static uword |
| dpdk_interface_tx (vlib_main_t * vm, |
| vlib_node_runtime_t * node, vlib_frame_t * f) |
| { |
| dpdk_main_t *dm = &dpdk_main; |
| vnet_interface_output_runtime_t *rd = (void *) node->runtime_data; |
| dpdk_device_t *xd = vec_elt_at_index (dm->devices, rd->dev_instance); |
| u32 n_packets = f->n_vectors; |
| u32 n_left; |
| u32 *from; |
| struct rte_mbuf **tx_vector; |
| int i; |
| int queue_id; |
| u32 my_cpu; |
| u32 tx_pkts = 0; |
| tx_ring_hdr_t *ring; |
| u32 n_on_ring; |
| |
| my_cpu = vm->cpu_index; |
| |
| queue_id = my_cpu; |
| |
| tx_vector = xd->tx_vectors[queue_id]; |
| ring = vec_header (tx_vector, sizeof (*ring)); |
| |
| n_on_ring = ring->tx_head - ring->tx_tail; |
| from = vlib_frame_vector_args (f); |
| |
| ASSERT (n_packets <= VLIB_FRAME_SIZE); |
| |
| if (PREDICT_FALSE (n_on_ring + n_packets > xd->nb_tx_desc)) |
| { |
| /* |
| * Overflowing the ring should never happen. |
| * If it does then drop the whole frame. |
| */ |
| vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_RING_FULL, |
| n_packets); |
| |
| while (n_packets--) |
| { |
| u32 bi0 = from[n_packets]; |
| vlib_buffer_t *b0 = vlib_get_buffer (vm, bi0); |
| struct rte_mbuf *mb0 = rte_mbuf_from_vlib_buffer (b0); |
| rte_pktmbuf_free (mb0); |
| } |
| return n_on_ring; |
| } |
| |
| if (PREDICT_FALSE (dm->tx_pcap_enable)) |
| { |
| n_left = n_packets; |
| while (n_left > 0) |
| { |
| u32 bi0 = from[0]; |
| vlib_buffer_t *b0 = vlib_get_buffer (vm, bi0); |
| if (dm->pcap_sw_if_index == 0 || |
| dm->pcap_sw_if_index == vnet_buffer (b0)->sw_if_index[VLIB_TX]) |
| pcap_add_buffer (&dm->pcap_main, vm, bi0, 512); |
| from++; |
| n_left--; |
| } |
| } |
| |
| from = vlib_frame_vector_args (f); |
| n_left = n_packets; |
| i = ring->tx_head % xd->nb_tx_desc; |
| |
| while (n_left >= 4) |
| { |
| u32 bi0, bi1; |
| u32 pi0, pi1; |
| struct rte_mbuf *mb0, *mb1; |
| struct rte_mbuf *prefmb0, *prefmb1; |
| vlib_buffer_t *b0, *b1; |
| vlib_buffer_t *pref0, *pref1; |
| i16 delta0, delta1; |
| u16 new_data_len0, new_data_len1; |
| u16 new_pkt_len0, new_pkt_len1; |
| u32 any_clone; |
| |
| pi0 = from[2]; |
| pi1 = from[3]; |
| pref0 = vlib_get_buffer (vm, pi0); |
| pref1 = vlib_get_buffer (vm, pi1); |
| |
| prefmb0 = rte_mbuf_from_vlib_buffer (pref0); |
| prefmb1 = rte_mbuf_from_vlib_buffer (pref1); |
| |
| CLIB_PREFETCH (prefmb0, CLIB_CACHE_LINE_BYTES, LOAD); |
| CLIB_PREFETCH (pref0, CLIB_CACHE_LINE_BYTES, LOAD); |
| CLIB_PREFETCH (prefmb1, CLIB_CACHE_LINE_BYTES, LOAD); |
| CLIB_PREFETCH (pref1, CLIB_CACHE_LINE_BYTES, LOAD); |
| |
| bi0 = from[0]; |
| bi1 = from[1]; |
| from += 2; |
| |
| b0 = vlib_get_buffer (vm, bi0); |
| b1 = vlib_get_buffer (vm, bi1); |
| |
| mb0 = rte_mbuf_from_vlib_buffer (b0); |
| mb1 = rte_mbuf_from_vlib_buffer (b1); |
| |
| any_clone = (b0->flags & VLIB_BUFFER_RECYCLE) |
| | (b1->flags & VLIB_BUFFER_RECYCLE); |
| if (PREDICT_FALSE (any_clone != 0)) |
| { |
| if (PREDICT_FALSE ((b0->flags & VLIB_BUFFER_RECYCLE) != 0)) |
| { |
| struct rte_mbuf *mb0_new = dpdk_replicate_packet_mb (b0); |
| if (PREDICT_FALSE (mb0_new == 0)) |
| { |
| vlib_error_count (vm, node->node_index, |
| DPDK_TX_FUNC_ERROR_REPL_FAIL, 1); |
| b0->flags |= VLIB_BUFFER_REPL_FAIL; |
| } |
| else |
| mb0 = mb0_new; |
| vec_add1 (dm->recycle[my_cpu], bi0); |
| } |
| if (PREDICT_FALSE ((b1->flags & VLIB_BUFFER_RECYCLE) != 0)) |
| { |
| struct rte_mbuf *mb1_new = dpdk_replicate_packet_mb (b1); |
| if (PREDICT_FALSE (mb1_new == 0)) |
| { |
| vlib_error_count (vm, node->node_index, |
| DPDK_TX_FUNC_ERROR_REPL_FAIL, 1); |
| b1->flags |= VLIB_BUFFER_REPL_FAIL; |
| } |
| else |
| mb1 = mb1_new; |
| vec_add1 (dm->recycle[my_cpu], bi1); |
| } |
| } |
| |
| delta0 = PREDICT_FALSE (b0->flags & VLIB_BUFFER_REPL_FAIL) ? 0 : |
| vlib_buffer_length_in_chain (vm, b0) - (i16) mb0->pkt_len; |
| delta1 = PREDICT_FALSE (b1->flags & VLIB_BUFFER_REPL_FAIL) ? 0 : |
| vlib_buffer_length_in_chain (vm, b1) - (i16) mb1->pkt_len; |
| |
| new_data_len0 = (u16) ((i16) mb0->data_len + delta0); |
| new_data_len1 = (u16) ((i16) mb1->data_len + delta1); |
| new_pkt_len0 = (u16) ((i16) mb0->pkt_len + delta0); |
| new_pkt_len1 = (u16) ((i16) mb1->pkt_len + delta1); |
| |
| b0->current_length = new_data_len0; |
| b1->current_length = new_data_len1; |
| mb0->data_len = new_data_len0; |
| mb1->data_len = new_data_len1; |
| mb0->pkt_len = new_pkt_len0; |
| mb1->pkt_len = new_pkt_len1; |
| |
| mb0->data_off = (PREDICT_FALSE (b0->flags & VLIB_BUFFER_REPL_FAIL)) ? |
| mb0->data_off : (u16) (RTE_PKTMBUF_HEADROOM + b0->current_data); |
| mb1->data_off = (PREDICT_FALSE (b1->flags & VLIB_BUFFER_REPL_FAIL)) ? |
| mb1->data_off : (u16) (RTE_PKTMBUF_HEADROOM + b1->current_data); |
| |
| if (PREDICT_FALSE (node->flags & VLIB_NODE_FLAG_TRACE)) |
| { |
| if (b0->flags & VLIB_BUFFER_IS_TRACED) |
| dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi0, b0); |
| if (b1->flags & VLIB_BUFFER_IS_TRACED) |
| dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi1, b1); |
| } |
| |
| if (PREDICT_TRUE (any_clone == 0)) |
| { |
| tx_vector[i % xd->nb_tx_desc] = mb0; |
| i++; |
| tx_vector[i % xd->nb_tx_desc] = mb1; |
| i++; |
| } |
| else |
| { |
| /* cloning was done, need to check for failure */ |
| if (PREDICT_TRUE ((b0->flags & VLIB_BUFFER_REPL_FAIL) == 0)) |
| { |
| tx_vector[i % xd->nb_tx_desc] = mb0; |
| i++; |
| } |
| if (PREDICT_TRUE ((b1->flags & VLIB_BUFFER_REPL_FAIL) == 0)) |
| { |
| tx_vector[i % xd->nb_tx_desc] = mb1; |
| i++; |
| } |
| } |
| |
| n_left -= 2; |
| } |
| while (n_left > 0) |
| { |
| u32 bi0; |
| struct rte_mbuf *mb0; |
| vlib_buffer_t *b0; |
| i16 delta0; |
| u16 new_data_len0; |
| u16 new_pkt_len0; |
| |
| bi0 = from[0]; |
| from++; |
| |
| b0 = vlib_get_buffer (vm, bi0); |
| |
| mb0 = rte_mbuf_from_vlib_buffer (b0); |
| if (PREDICT_FALSE ((b0->flags & VLIB_BUFFER_RECYCLE) != 0)) |
| { |
| struct rte_mbuf *mb0_new = dpdk_replicate_packet_mb (b0); |
| if (PREDICT_FALSE (mb0_new == 0)) |
| { |
| vlib_error_count (vm, node->node_index, |
| DPDK_TX_FUNC_ERROR_REPL_FAIL, 1); |
| b0->flags |= VLIB_BUFFER_REPL_FAIL; |
| } |
| else |
| mb0 = mb0_new; |
| vec_add1 (dm->recycle[my_cpu], bi0); |
| } |
| |
| delta0 = PREDICT_FALSE (b0->flags & VLIB_BUFFER_REPL_FAIL) ? 0 : |
| vlib_buffer_length_in_chain (vm, b0) - (i16) mb0->pkt_len; |
| |
| new_data_len0 = (u16) ((i16) mb0->data_len + delta0); |
| new_pkt_len0 = (u16) ((i16) mb0->pkt_len + delta0); |
| |
| b0->current_length = new_data_len0; |
| mb0->data_len = new_data_len0; |
| mb0->pkt_len = new_pkt_len0; |
| mb0->data_off = (PREDICT_FALSE (b0->flags & VLIB_BUFFER_REPL_FAIL)) ? |
| mb0->data_off : (u16) (RTE_PKTMBUF_HEADROOM + b0->current_data); |
| |
| if (PREDICT_FALSE (node->flags & VLIB_NODE_FLAG_TRACE)) |
| if (b0->flags & VLIB_BUFFER_IS_TRACED) |
| dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi0, b0); |
| |
| if (PREDICT_TRUE ((b0->flags & VLIB_BUFFER_REPL_FAIL) == 0)) |
| { |
| tx_vector[i % xd->nb_tx_desc] = mb0; |
| i++; |
| } |
| n_left--; |
| } |
| |
| /* account for additional packets in the ring */ |
| ring->tx_head += n_packets; |
| n_on_ring = ring->tx_head - ring->tx_tail; |
| |
| /* transmit as many packets as possible */ |
| n_packets = tx_burst_vector_internal (vm, xd, tx_vector); |
| |
| /* |
| * tx_pkts is the number of packets successfully transmitted |
| * This is the number originally on ring minus the number remaining on ring |
| */ |
| tx_pkts = n_on_ring - n_packets; |
| |
| if (PREDICT_FALSE (dm->flowcontrol_callback != 0)) |
| { |
| if (PREDICT_FALSE (n_packets)) |
| { |
| /* Callback may want to enable flowcontrol */ |
| dm->flowcontrol_callback (vm, xd->vlib_hw_if_index, |
| ring->tx_head - ring->tx_tail); |
| } |
| else |
| { |
| /* Reset head/tail to avoid unnecessary wrap */ |
| ring->tx_head = 0; |
| ring->tx_tail = 0; |
| } |
| } |
| else |
| { |
| /* If there is no callback then drop any non-transmitted packets */ |
| if (PREDICT_FALSE (n_packets)) |
| { |
| vlib_simple_counter_main_t *cm; |
| vnet_main_t *vnm = vnet_get_main (); |
| |
| cm = vec_elt_at_index (vnm->interface_main.sw_if_counters, |
| VNET_INTERFACE_COUNTER_TX_ERROR); |
| |
| vlib_increment_simple_counter (cm, my_cpu, xd->vlib_sw_if_index, |
| n_packets); |
| |
| vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_PKT_DROP, |
| n_packets); |
| |
| while (n_packets--) |
| rte_pktmbuf_free (tx_vector[ring->tx_tail + n_packets]); |
| } |
| |
| /* Reset head/tail to avoid unnecessary wrap */ |
| ring->tx_head = 0; |
| ring->tx_tail = 0; |
| } |
| |
| /* Recycle replicated buffers */ |
| if (PREDICT_FALSE (vec_len (dm->recycle[my_cpu]))) |
| { |
| vlib_buffer_free (vm, dm->recycle[my_cpu], |
| vec_len (dm->recycle[my_cpu])); |
| _vec_len (dm->recycle[my_cpu]) = 0; |
| } |
| |
| ASSERT (ring->tx_head >= ring->tx_tail); |
| |
| return tx_pkts; |
| } |
| |
| static int |
| dpdk_device_renumber (vnet_hw_interface_t * hi, u32 new_dev_instance) |
| { |
| #if DPDK_VHOST_USER |
| dpdk_main_t *dm = &dpdk_main; |
| dpdk_device_t *xd = vec_elt_at_index (dm->devices, hi->dev_instance); |
| |
| if (!xd || (xd->flags & DPDK_DEVICE_FLAG_VHOST_USER) == 0) |
| { |
| clib_warning |
| ("cannot renumber non-vhost-user interface (sw_if_index: %d)", |
| hi->sw_if_index); |
| return 0; |
| } |
| |
| xd->vu_if_id = new_dev_instance; |
| #endif |
| return 0; |
| } |
| |
| static void |
| dpdk_clear_hw_interface_counters (u32 instance) |
| { |
| dpdk_main_t *dm = &dpdk_main; |
| dpdk_device_t *xd = vec_elt_at_index (dm->devices, instance); |
| |
| /* |
| * Set the "last_cleared_stats" to the current stats, so that |
| * things appear to clear from a display perspective. |
| */ |
| dpdk_update_counters (xd, vlib_time_now (dm->vlib_main)); |
| |
| clib_memcpy (&xd->last_cleared_stats, &xd->stats, sizeof (xd->stats)); |
| clib_memcpy (xd->last_cleared_xstats, xd->xstats, |
| vec_len (xd->last_cleared_xstats) * |
| sizeof (xd->last_cleared_xstats[0])); |
| |
| #if DPDK_VHOST_USER |
| if (PREDICT_FALSE (xd->flags & DPDK_DEVICE_FLAG_VHOST_USER)) |
| { |
| int i; |
| for (i = 0; i < xd->rx_q_used * VIRTIO_QNUM; i++) |
| { |
| xd->vu_intf->vrings[i].packets = 0; |
| xd->vu_intf->vrings[i].bytes = 0; |
| } |
| } |
| #endif |
| } |
| |
| #ifdef RTE_LIBRTE_KNI |
| static int |
| kni_config_network_if (u8 port_id, u8 if_up) |
| { |
| vnet_main_t *vnm = vnet_get_main (); |
| dpdk_main_t *dm = &dpdk_main; |
| dpdk_device_t *xd; |
| uword *p; |
| |
| p = hash_get (dm->dpdk_device_by_kni_port_id, port_id); |
| if (p == 0) |
| { |
| clib_warning ("unknown interface"); |
| return 0; |
| } |
| else |
| { |
| xd = vec_elt_at_index (dm->devices, p[0]); |
| } |
| |
| vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index, |
| if_up ? VNET_HW_INTERFACE_FLAG_LINK_UP | |
| ETH_LINK_FULL_DUPLEX : 0); |
| return 0; |
| } |
| |
| static int |
| kni_change_mtu (u8 port_id, unsigned new_mtu) |
| { |
| vnet_main_t *vnm = vnet_get_main (); |
| dpdk_main_t *dm = &dpdk_main; |
| dpdk_device_t *xd; |
| uword *p; |
| vnet_hw_interface_t *hif; |
| |
| p = hash_get (dm->dpdk_device_by_kni_port_id, port_id); |
| if (p == 0) |
| { |
| clib_warning ("unknown interface"); |
| return 0; |
| } |
| else |
| { |
| xd = vec_elt_at_index (dm->devices, p[0]); |
| } |
| hif = vnet_get_hw_interface (vnm, xd->vlib_hw_if_index); |
| |
| hif->max_packet_bytes = new_mtu; |
| |
| return 0; |
| } |
| #endif |
| |
| static clib_error_t * |
| dpdk_interface_admin_up_down (vnet_main_t * vnm, u32 hw_if_index, u32 flags) |
| { |
| vnet_hw_interface_t *hif = vnet_get_hw_interface (vnm, hw_if_index); |
| uword is_up = (flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP) != 0; |
| dpdk_main_t *dm = &dpdk_main; |
| dpdk_device_t *xd = vec_elt_at_index (dm->devices, hif->dev_instance); |
| int rv = 0; |
| |
| #ifdef RTE_LIBRTE_KNI |
| if (xd->flags & DPDK_DEVICE_FLAG_KNI) |
| { |
| if (is_up) |
| { |
| struct rte_kni_conf conf; |
| struct rte_kni_ops ops; |
| vlib_main_t *vm = vlib_get_main (); |
| vlib_buffer_main_t *bm = vm->buffer_main; |
| memset (&conf, 0, sizeof (conf)); |
| snprintf (conf.name, RTE_KNI_NAMESIZE, "vpp%u", xd->kni_port_id); |
| conf.mbuf_size = VLIB_BUFFER_DATA_SIZE; |
| memset (&ops, 0, sizeof (ops)); |
| ops.port_id = xd->kni_port_id; |
| ops.change_mtu = kni_change_mtu; |
| ops.config_network_if = kni_config_network_if; |
| |
| xd->kni = |
| rte_kni_alloc (bm->pktmbuf_pools[rte_socket_id ()], &conf, &ops); |
| if (!xd->kni) |
| { |
| clib_warning ("failed to allocate kni interface"); |
| } |
| else |
| { |
| hif->max_packet_bytes = 1500; /* kni interface default value */ |
| xd->flags |= DPDK_DEVICE_FLAG_ADMIN_UP; |
| } |
| } |
| else |
| { |
| xd->flags &= ~DPDK_DEVICE_FLAG_ADMIN_UP; |
| int kni_rv; |
| |
| kni_rv = rte_kni_release (xd->kni); |
| if (kni_rv < 0) |
| clib_warning ("rte_kni_release returned %d", kni_rv); |
| } |
| return 0; |
| } |
| #endif |
| #if DPDK_VHOST_USER |
| if (xd->flags & DPDK_DEVICE_FLAG_VHOST_USER) |
| { |
| if (is_up) |
| { |
| if (xd->vu_is_running) |
| vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index, |
| VNET_HW_INTERFACE_FLAG_LINK_UP | |
| ETH_LINK_FULL_DUPLEX); |
| xd->flags |= DPDK_DEVICE_FLAG_ADMIN_UP; |
| } |
| else |
| { |
| vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index, 0); |
| xd->flags &= ~DPDK_DEVICE_FLAG_ADMIN_UP; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| |
| if (is_up) |
| { |
| f64 now = vlib_time_now (dm->vlib_main); |
| |
| if ((xd->flags & DPDK_DEVICE_FLAG_ADMIN_UP) == 0) |
| rv = rte_eth_dev_start (xd->device_index); |
| |
| if (xd->flags & DPDK_DEVICE_FLAG_PROMISC) |
| rte_eth_promiscuous_enable (xd->device_index); |
| else |
| rte_eth_promiscuous_disable (xd->device_index); |
| |
| rte_eth_allmulticast_enable (xd->device_index); |
| xd->flags |= DPDK_DEVICE_FLAG_ADMIN_UP; |
| dpdk_update_counters (xd, now); |
| dpdk_update_link_state (xd, now); |
| } |
| else |
| { |
| xd->flags &= ~DPDK_DEVICE_FLAG_ADMIN_UP; |
| |
| rte_eth_allmulticast_disable (xd->device_index); |
| vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index, 0); |
| rte_eth_dev_stop (xd->device_index); |
| |
| /* For bonded interface, stop slave links */ |
| if (xd->pmd == VNET_DPDK_PMD_BOND) |
| { |
| u8 slink[16]; |
| int nlink = rte_eth_bond_slaves_get (xd->device_index, slink, 16); |
| while (nlink >= 1) |
| { |
| u8 dpdk_port = slink[--nlink]; |
| rte_eth_dev_stop (dpdk_port); |
| } |
| } |
| } |
| |
| if (rv < 0) |
| clib_warning ("rte_eth_dev_%s error: %d", is_up ? "start" : "stop", rv); |
| |
| return /* no error */ 0; |
| } |
| |
| /* |
| * Dynamically redirect all pkts from a specific interface |
| * to the specified node |
| */ |
| static void |
| dpdk_set_interface_next_node (vnet_main_t * vnm, u32 hw_if_index, |
| u32 node_index) |
| { |
| dpdk_main_t *xm = &dpdk_main; |
| vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index); |
| dpdk_device_t *xd = vec_elt_at_index (xm->devices, hw->dev_instance); |
| |
| /* Shut off redirection */ |
| if (node_index == ~0) |
| { |
| xd->per_interface_next_index = node_index; |
| return; |
| } |
| |
| xd->per_interface_next_index = |
| vlib_node_add_next (xm->vlib_main, dpdk_input_node.index, node_index); |
| } |
| |
| |
| static clib_error_t * |
| dpdk_subif_add_del_function (vnet_main_t * vnm, |
| u32 hw_if_index, |
| struct vnet_sw_interface_t *st, int is_add) |
| { |
| dpdk_main_t *xm = &dpdk_main; |
| vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index); |
| dpdk_device_t *xd = vec_elt_at_index (xm->devices, hw->dev_instance); |
| vnet_sw_interface_t *t = (vnet_sw_interface_t *) st; |
| int r, vlan_offload; |
| u32 prev_subifs = xd->num_subifs; |
| clib_error_t *err = 0; |
| |
| if (is_add) |
| xd->num_subifs++; |
| else if (xd->num_subifs) |
| xd->num_subifs--; |
| |
| if ((xd->flags & DPDK_DEVICE_FLAG_PMD) == 0) |
| goto done; |
| |
| /* currently we program VLANS only for IXGBE VF and I40E VF */ |
| if ((xd->pmd != VNET_DPDK_PMD_IXGBEVF) && (xd->pmd != VNET_DPDK_PMD_I40EVF)) |
| goto done; |
| |
| if (t->sub.eth.flags.no_tags == 1) |
| goto done; |
| |
| if ((t->sub.eth.flags.one_tag != 1) || (t->sub.eth.flags.exact_match != 1)) |
| { |
| xd->num_subifs = prev_subifs; |
| err = clib_error_return (0, "unsupported VLAN setup"); |
| goto done; |
| } |
| |
| vlan_offload = rte_eth_dev_get_vlan_offload (xd->device_index); |
| vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; |
| |
| if ((r = rte_eth_dev_set_vlan_offload (xd->device_index, vlan_offload))) |
| { |
| xd->num_subifs = prev_subifs; |
| err = clib_error_return (0, "rte_eth_dev_set_vlan_offload[%d]: err %d", |
| xd->device_index, r); |
| goto done; |
| } |
| |
| |
| if ((r = |
| rte_eth_dev_vlan_filter (xd->device_index, t->sub.eth.outer_vlan_id, |
| is_add))) |
| { |
| xd->num_subifs = prev_subifs; |
| err = clib_error_return (0, "rte_eth_dev_vlan_filter[%d]: err %d", |
| xd->device_index, r); |
| goto done; |
| } |
| |
| done: |
| if (xd->num_subifs) |
| xd->flags |= DPDK_DEVICE_FLAG_HAVE_SUBIF; |
| else |
| xd->flags &= ~DPDK_DEVICE_FLAG_HAVE_SUBIF; |
| |
| return err; |
| } |
| |
| /* *INDENT-OFF* */ |
| VNET_DEVICE_CLASS (dpdk_device_class) = { |
| .name = "dpdk", |
| .tx_function = dpdk_interface_tx, |
| .tx_function_n_errors = DPDK_TX_FUNC_N_ERROR, |
| .tx_function_error_strings = dpdk_tx_func_error_strings, |
| .format_device_name = format_dpdk_device_name, |
| .format_device = format_dpdk_device, |
| .format_tx_trace = format_dpdk_tx_dma_trace, |
| .clear_counters = dpdk_clear_hw_interface_counters, |
| .admin_up_down_function = dpdk_interface_admin_up_down, |
| .subif_add_del_function = dpdk_subif_add_del_function, |
| .rx_redirect_to_node = dpdk_set_interface_next_node, |
| .no_flatten_output_chains = 1, |
| .name_renumber = dpdk_device_renumber, |
| }; |
| |
| VLIB_DEVICE_TX_FUNCTION_MULTIARCH (dpdk_device_class, dpdk_interface_tx) |
| /* *INDENT-ON* */ |
| |
| void |
| dpdk_set_flowcontrol_callback (vlib_main_t * vm, |
| dpdk_flowcontrol_callback_t callback) |
| { |
| dpdk_main.flowcontrol_callback = callback; |
| } |
| |
| #define UP_DOWN_FLAG_EVENT 1 |
| |
| |
| u32 |
| dpdk_get_admin_up_down_in_progress (void) |
| { |
| return dpdk_main.admin_up_down_in_progress; |
| } |
| |
| uword |
| admin_up_down_process (vlib_main_t * vm, |
| vlib_node_runtime_t * rt, vlib_frame_t * f) |
| { |
| clib_error_t *error = 0; |
| uword event_type; |
| uword *event_data = 0; |
| u32 sw_if_index; |
| u32 flags; |
| |
| while (1) |
| { |
| vlib_process_wait_for_event (vm); |
| |
| event_type = vlib_process_get_events (vm, &event_data); |
| |
| dpdk_main.admin_up_down_in_progress = 1; |
| |
| switch (event_type) |
| { |
| case UP_DOWN_FLAG_EVENT: |
| { |
| if (vec_len (event_data) == 2) |
| { |
| sw_if_index = event_data[0]; |
| flags = event_data[1]; |
| error = |
| vnet_sw_interface_set_flags (vnet_get_main (), sw_if_index, |
| flags); |
| clib_error_report (error); |
| } |
| } |
| break; |
| } |
| |
| vec_reset_length (event_data); |
| |
| dpdk_main.admin_up_down_in_progress = 0; |
| |
| } |
| return 0; /* or not */ |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (admin_up_down_process_node,static) = { |
| .function = admin_up_down_process, |
| .type = VLIB_NODE_TYPE_PROCESS, |
| .name = "admin-up-down-process", |
| .process_log2_n_stack_bytes = 17, // 256KB |
| }; |
| /* *INDENT-ON* */ |
| |
| /* |
| * Asynchronously invoke vnet_sw_interface_set_flags via the admin_up_down |
| * process. Useful for avoiding long blocking delays (>150ms) in the dpdk |
| * drivers. |
| * WARNING: when posting this event, no other interface-related calls should |
| * be made (e.g. vnet_create_sw_interface()) while the event is being |
| * processed (admin_up_down_in_progress). This is required in order to avoid |
| * race conditions in manipulating interface data structures. |
| */ |
| void |
| post_sw_interface_set_flags (vlib_main_t * vm, u32 sw_if_index, u32 flags) |
| { |
| uword *d = vlib_process_signal_event_data |
| (vm, admin_up_down_process_node.index, |
| UP_DOWN_FLAG_EVENT, 2, sizeof (u32)); |
| d[0] = sw_if_index; |
| d[1] = flags; |
| } |
| |
| /* |
| * Return a copy of the DPDK port stats in dest. |
| */ |
| clib_error_t * |
| dpdk_get_hw_interface_stats (u32 hw_if_index, struct rte_eth_stats *dest) |
| { |
| dpdk_main_t *dm = &dpdk_main; |
| vnet_main_t *vnm = vnet_get_main (); |
| vnet_hw_interface_t *hi = vnet_get_hw_interface (vnm, hw_if_index); |
| dpdk_device_t *xd = vec_elt_at_index (dm->devices, hi->dev_instance); |
| |
| if (!dest) |
| { |
| return clib_error_return (0, "Missing or NULL argument"); |
| } |
| if (!xd) |
| { |
| return clib_error_return (0, |
| "Unable to get DPDK device from HW interface"); |
| } |
| |
| dpdk_update_counters (xd, vlib_time_now (dm->vlib_main)); |
| |
| clib_memcpy (dest, &xd->stats, sizeof (xd->stats)); |
| return (0); |
| } |
| |
| /* |
| * Return the number of dpdk mbufs |
| */ |
| u32 |
| dpdk_num_mbufs (void) |
| { |
| dpdk_main_t *dm = &dpdk_main; |
| |
| return dm->conf->num_mbufs; |
| } |
| |
| /* |
| * Return the pmd type for a given hardware interface |
| */ |
| dpdk_pmd_t |
| dpdk_get_pmd_type (vnet_hw_interface_t * hi) |
| { |
| dpdk_main_t *dm = &dpdk_main; |
| dpdk_device_t *xd; |
| |
| assert (hi); |
| |
| xd = vec_elt_at_index (dm->devices, hi->dev_instance); |
| |
| assert (xd); |
| |
| return xd->pmd; |
| } |
| |
| /* |
| * Return the cpu socket for a given hardware interface |
| */ |
| i8 |
| dpdk_get_cpu_socket (vnet_hw_interface_t * hi) |
| { |
| dpdk_main_t *dm = &dpdk_main; |
| dpdk_device_t *xd; |
| |
| assert (hi); |
| |
| xd = vec_elt_at_index (dm->devices, hi->dev_instance); |
| |
| assert (xd); |
| |
| return xd->cpu_socket; |
| } |
| |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |