blob: 5d1fcf60d2d9557e3aa296e15c3199970caa2819 [file] [log] [blame]
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vnet/vnet.h>
#include <vppinfra/vec.h>
#include <vppinfra/format.h>
#include <vlib/unix/cj.h>
#include <assert.h>
#include <vnet/ethernet/ethernet.h>
#include <vnet/devices/dpdk/dpdk.h>
#include "dpdk_priv.h"
#include <vppinfra/error.h>
#define foreach_dpdk_tx_func_error \
_(BAD_RETVAL, "DPDK tx function returned an error") \
_(RING_FULL, "Tx packet drops (ring full)") \
_(PKT_DROP, "Tx packet drops (dpdk tx failure)") \
_(REPL_FAIL, "Tx packet drops (replication failure)")
typedef enum
{
#define _(f,s) DPDK_TX_FUNC_ERROR_##f,
foreach_dpdk_tx_func_error
#undef _
DPDK_TX_FUNC_N_ERROR,
} dpdk_tx_func_error_t;
static char *dpdk_tx_func_error_strings[] = {
#define _(n,s) s,
foreach_dpdk_tx_func_error
#undef _
};
clib_error_t *
dpdk_set_mac_address (vnet_hw_interface_t * hi, char *address)
{
int error;
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd = vec_elt_at_index (dm->devices, hi->dev_instance);
error = rte_eth_dev_default_mac_addr_set (xd->device_index,
(struct ether_addr *) address);
if (error)
{
return clib_error_return (0, "mac address set failed: %d", error);
}
else
{
return NULL;
}
}
clib_error_t *
dpdk_set_mc_filter (vnet_hw_interface_t * hi,
struct ether_addr mc_addr_vec[], int naddr)
{
int error;
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd = vec_elt_at_index (dm->devices, hi->dev_instance);
error = rte_eth_dev_set_mc_addr_list (xd->device_index, mc_addr_vec, naddr);
if (error)
{
return clib_error_return (0, "mc addr list failed: %d", error);
}
else
{
return NULL;
}
}
struct rte_mbuf *
dpdk_replicate_packet_mb (vlib_buffer_t * b)
{
vlib_main_t *vm = vlib_get_main ();
vlib_buffer_main_t *bm = vm->buffer_main;
struct rte_mbuf *first_mb = 0, *new_mb, *pkt_mb, **prev_mb_next = 0;
u8 nb_segs, nb_segs_left;
u32 copy_bytes;
unsigned socket_id = rte_socket_id ();
ASSERT (bm->pktmbuf_pools[socket_id]);
pkt_mb = rte_mbuf_from_vlib_buffer (b);
nb_segs = pkt_mb->nb_segs;
for (nb_segs_left = nb_segs; nb_segs_left; nb_segs_left--)
{
if (PREDICT_FALSE (pkt_mb == 0))
{
clib_warning ("Missing %d mbuf chain segment(s): "
"(nb_segs = %d, nb_segs_left = %d)!",
nb_segs - nb_segs_left, nb_segs, nb_segs_left);
if (first_mb)
rte_pktmbuf_free (first_mb);
return NULL;
}
new_mb = rte_pktmbuf_alloc (bm->pktmbuf_pools[socket_id]);
if (PREDICT_FALSE (new_mb == 0))
{
if (first_mb)
rte_pktmbuf_free (first_mb);
return NULL;
}
/*
* Copy packet info into 1st segment.
*/
if (first_mb == 0)
{
first_mb = new_mb;
rte_pktmbuf_pkt_len (first_mb) = pkt_mb->pkt_len;
first_mb->nb_segs = pkt_mb->nb_segs;
first_mb->port = pkt_mb->port;
#ifdef DAW_FIXME // TX Offload support TBD
first_mb->vlan_macip = pkt_mb->vlan_macip;
first_mb->hash = pkt_mb->hash;
first_mb->ol_flags = pkt_mb->ol_flags
#endif
}
else
{
ASSERT (prev_mb_next != 0);
*prev_mb_next = new_mb;
}
/*
* Copy packet segment data into new mbuf segment.
*/
rte_pktmbuf_data_len (new_mb) = pkt_mb->data_len;
copy_bytes = pkt_mb->data_len + RTE_PKTMBUF_HEADROOM;
ASSERT (copy_bytes <= pkt_mb->buf_len);
clib_memcpy (new_mb->buf_addr, pkt_mb->buf_addr, copy_bytes);
prev_mb_next = &new_mb->next;
pkt_mb = pkt_mb->next;
}
ASSERT (pkt_mb == 0);
__rte_mbuf_sanity_check (first_mb, 1);
return first_mb;
}
struct rte_mbuf *
dpdk_zerocopy_replicate_packet_mb (vlib_buffer_t * b)
{
vlib_main_t *vm = vlib_get_main ();
vlib_buffer_main_t *bm = vm->buffer_main;
struct rte_mbuf *first_mb = 0, *new_mb, *pkt_mb, **prev_mb_next = 0;
u8 nb_segs, nb_segs_left;
unsigned socket_id = rte_socket_id ();
ASSERT (bm->pktmbuf_pools[socket_id]);
pkt_mb = rte_mbuf_from_vlib_buffer (b);
nb_segs = pkt_mb->nb_segs;
for (nb_segs_left = nb_segs; nb_segs_left; nb_segs_left--)
{
if (PREDICT_FALSE (pkt_mb == 0))
{
clib_warning ("Missing %d mbuf chain segment(s): "
"(nb_segs = %d, nb_segs_left = %d)!",
nb_segs - nb_segs_left, nb_segs, nb_segs_left);
if (first_mb)
rte_pktmbuf_free (first_mb);
return NULL;
}
new_mb = rte_pktmbuf_clone (pkt_mb, bm->pktmbuf_pools[socket_id]);
if (PREDICT_FALSE (new_mb == 0))
{
if (first_mb)
rte_pktmbuf_free (first_mb);
return NULL;
}
/*
* Copy packet info into 1st segment.
*/
if (first_mb == 0)
{
first_mb = new_mb;
rte_pktmbuf_pkt_len (first_mb) = pkt_mb->pkt_len;
first_mb->nb_segs = pkt_mb->nb_segs;
first_mb->port = pkt_mb->port;
#ifdef DAW_FIXME // TX Offload support TBD
first_mb->vlan_macip = pkt_mb->vlan_macip;
first_mb->hash = pkt_mb->hash;
first_mb->ol_flags = pkt_mb->ol_flags
#endif
}
else
{
ASSERT (prev_mb_next != 0);
*prev_mb_next = new_mb;
}
/*
* Copy packet segment data into new mbuf segment.
*/
rte_pktmbuf_data_len (new_mb) = pkt_mb->data_len;
prev_mb_next = &new_mb->next;
pkt_mb = pkt_mb->next;
}
ASSERT (pkt_mb == 0);
__rte_mbuf_sanity_check (first_mb, 1);
return first_mb;
}
static void
dpdk_tx_trace_buffer (dpdk_main_t * dm,
vlib_node_runtime_t * node,
dpdk_device_t * xd,
u16 queue_id, u32 buffer_index, vlib_buffer_t * buffer)
{
vlib_main_t *vm = vlib_get_main ();
dpdk_tx_dma_trace_t *t0;
struct rte_mbuf *mb;
mb = rte_mbuf_from_vlib_buffer (buffer);
t0 = vlib_add_trace (vm, node, buffer, sizeof (t0[0]));
t0->queue_index = queue_id;
t0->device_index = xd->device_index;
t0->buffer_index = buffer_index;
clib_memcpy (&t0->mb, mb, sizeof (t0->mb));
clib_memcpy (&t0->buffer, buffer,
sizeof (buffer[0]) - sizeof (buffer->pre_data));
clib_memcpy (t0->buffer.pre_data, buffer->data + buffer->current_data,
sizeof (t0->buffer.pre_data));
}
/*
* This function calls the dpdk's tx_burst function to transmit the packets
* on the tx_vector. It manages a lock per-device if the device does not
* support multiple queues. It returns the number of packets untransmitted
* on the tx_vector. If all packets are transmitted (the normal case), the
* function returns 0.
*
* The tx_burst function may not be able to transmit all packets because the
* dpdk ring is full. If a flowcontrol callback function has been configured
* then the function simply returns. If no callback has been configured, the
* function will retry calling tx_burst with the remaining packets. This will
* continue until all packets are transmitted or tx_burst indicates no packets
* could be transmitted. (The caller can drop the remaining packets.)
*
* The function assumes there is at least one packet on the tx_vector.
*/
static_always_inline
u32 tx_burst_vector_internal (vlib_main_t * vm,
dpdk_device_t * xd,
struct rte_mbuf **tx_vector)
{
dpdk_main_t *dm = &dpdk_main;
u32 n_packets;
u32 tx_head;
u32 tx_tail;
u32 n_retry;
int rv;
int queue_id;
tx_ring_hdr_t *ring;
ring = vec_header (tx_vector, sizeof (*ring));
n_packets = ring->tx_head - ring->tx_tail;
tx_head = ring->tx_head % xd->nb_tx_desc;
/*
* Ensure rte_eth_tx_burst is not called with 0 packets, which can lead to
* unpredictable results.
*/
ASSERT (n_packets > 0);
/*
* Check for tx_vector overflow. If this fails it is a system configuration
* error. The ring should be sized big enough to handle the largest un-flowed
* off burst from a traffic manager. A larger size also helps performance
* a bit because it decreases the probability of having to issue two tx_burst
* calls due to a ring wrap.
*/
ASSERT (n_packets < xd->nb_tx_desc);
/*
* If there is no flowcontrol callback, there is only temporary buffering
* on the tx_vector and so the tail should always be 0.
*/
ASSERT (dm->flowcontrol_callback || ring->tx_tail == 0);
/*
* If there is a flowcontrol callback, don't retry any incomplete tx_bursts.
* Apply backpressure instead. If there is no callback, keep retrying until
* a tx_burst sends no packets. n_retry of 255 essentially means no retry
* limit.
*/
n_retry = dm->flowcontrol_callback ? 0 : 255;
queue_id = vm->cpu_index;
do
{
/* start the burst at the tail */
tx_tail = ring->tx_tail % xd->nb_tx_desc;
/*
* This device only supports one TX queue,
* and we're running multi-threaded...
*/
if (PREDICT_FALSE ((xd->flags & DPDK_DEVICE_FLAG_VHOST_USER) == 0 &&
xd->lockp != 0))
{
queue_id = queue_id % xd->tx_q_used;
while (__sync_lock_test_and_set (xd->lockp[queue_id], 1))
/* zzzz */
queue_id = (queue_id + 1) % xd->tx_q_used;
}
if (PREDICT_TRUE (xd->flags & DPDK_DEVICE_FLAG_HQOS)) /* HQoS ON */
{
if (PREDICT_TRUE (tx_head > tx_tail))
{
/* no wrap, transmit in one burst */
dpdk_device_hqos_per_worker_thread_t *hqos =
&xd->hqos_wt[vm->cpu_index];
dpdk_hqos_metadata_set (hqos,
&tx_vector[tx_tail], tx_head - tx_tail);
rv = rte_ring_sp_enqueue_burst (hqos->swq,
(void **) &tx_vector[tx_tail],
(uint16_t) (tx_head - tx_tail));
}
else
{
/*
* This can only happen if there is a flowcontrol callback.
* We need to split the transmit into two calls: one for
* the packets up to the wrap point, and one to continue
* at the start of the ring.
* Transmit pkts up to the wrap point.
*/
dpdk_device_hqos_per_worker_thread_t *hqos =
&xd->hqos_wt[vm->cpu_index];
dpdk_hqos_metadata_set (hqos,
&tx_vector[tx_tail],
xd->nb_tx_desc - tx_tail);
rv = rte_ring_sp_enqueue_burst (hqos->swq,
(void **) &tx_vector[tx_tail],
(uint16_t) (xd->nb_tx_desc -
tx_tail));
/*
* If we transmitted everything we wanted, then allow 1 retry
* so we can try to transmit the rest. If we didn't transmit
* everything, stop now.
*/
n_retry = (rv == xd->nb_tx_desc - tx_tail) ? 1 : 0;
}
}
else if (PREDICT_TRUE (xd->flags & DPDK_DEVICE_FLAG_PMD))
{
if (PREDICT_TRUE (tx_head > tx_tail))
{
/* no wrap, transmit in one burst */
rv = rte_eth_tx_burst (xd->device_index,
(uint16_t) queue_id,
&tx_vector[tx_tail],
(uint16_t) (tx_head - tx_tail));
}
else
{
/*
* This can only happen if there is a flowcontrol callback.
* We need to split the transmit into two calls: one for
* the packets up to the wrap point, and one to continue
* at the start of the ring.
* Transmit pkts up to the wrap point.
*/
rv = rte_eth_tx_burst (xd->device_index,
(uint16_t) queue_id,
&tx_vector[tx_tail],
(uint16_t) (xd->nb_tx_desc - tx_tail));
/*
* If we transmitted everything we wanted, then allow 1 retry
* so we can try to transmit the rest. If we didn't transmit
* everything, stop now.
*/
n_retry = (rv == xd->nb_tx_desc - tx_tail) ? 1 : 0;
}
}
#if DPDK_VHOST_USER
else if (xd->flags & DPDK_DEVICE_FLAG_VHOST_USER)
{
u32 offset = 0;
if (xd->need_txlock)
{
queue_id = 0;
while (__sync_lock_test_and_set (xd->lockp[queue_id], 1));
}
else
{
dpdk_device_and_queue_t *dq;
vec_foreach (dq, dm->devices_by_cpu[vm->cpu_index])
{
if (xd->device_index == dq->device)
break;
}
assert (dq);
offset = dq->queue_id * VIRTIO_QNUM;
}
if (PREDICT_TRUE (tx_head > tx_tail))
{
int i;
u32 bytes = 0;
struct rte_mbuf **pkts = &tx_vector[tx_tail];
for (i = 0; i < (tx_head - tx_tail); i++)
{
struct rte_mbuf *buff = pkts[i];
bytes += rte_pktmbuf_data_len (buff);
}
/* no wrap, transmit in one burst */
rv =
rte_vhost_enqueue_burst (&xd->vu_vhost_dev,
offset + VIRTIO_RXQ,
&tx_vector[tx_tail],
(uint16_t) (tx_head - tx_tail));
if (PREDICT_TRUE (rv > 0))
{
dpdk_vu_vring *vring =
&(xd->vu_intf->vrings[offset + VIRTIO_TXQ]);
vring->packets += rv;
vring->bytes += bytes;
if (dpdk_vhost_user_want_interrupt
(xd, offset + VIRTIO_RXQ))
{
vring = &(xd->vu_intf->vrings[offset + VIRTIO_RXQ]);
vring->n_since_last_int += rv;
f64 now = vlib_time_now (vm);
if (vring->int_deadline < now ||
vring->n_since_last_int >
dm->conf->vhost_coalesce_frames)
dpdk_vhost_user_send_interrupt (vm, xd,
offset + VIRTIO_RXQ);
}
int c = rv;
while (c--)
rte_pktmbuf_free (tx_vector[tx_tail + c]);
}
}
else
{
/*
* If we transmitted everything we wanted, then allow 1 retry
* so we can try to transmit the rest. If we didn't transmit
* everything, stop now.
*/
int i;
u32 bytes = 0;
struct rte_mbuf **pkts = &tx_vector[tx_tail];
for (i = 0; i < (xd->nb_tx_desc - tx_tail); i++)
{
struct rte_mbuf *buff = pkts[i];
bytes += rte_pktmbuf_data_len (buff);
}
rv =
rte_vhost_enqueue_burst (&xd->vu_vhost_dev,
offset + VIRTIO_RXQ,
&tx_vector[tx_tail],
(uint16_t) (xd->nb_tx_desc -
tx_tail));
if (PREDICT_TRUE (rv > 0))
{
dpdk_vu_vring *vring =
&(xd->vu_intf->vrings[offset + VIRTIO_TXQ]);
vring->packets += rv;
vring->bytes += bytes;
if (dpdk_vhost_user_want_interrupt
(xd, offset + VIRTIO_RXQ))
{
vring = &(xd->vu_intf->vrings[offset + VIRTIO_RXQ]);
vring->n_since_last_int += rv;
f64 now = vlib_time_now (vm);
if (vring->int_deadline < now ||
vring->n_since_last_int >
dm->conf->vhost_coalesce_frames)
dpdk_vhost_user_send_interrupt (vm, xd,
offset + VIRTIO_RXQ);
}
int c = rv;
while (c--)
rte_pktmbuf_free (tx_vector[tx_tail + c]);
}
n_retry = (rv == xd->nb_tx_desc - tx_tail) ? 1 : 0;
}
if (xd->need_txlock)
*xd->lockp[queue_id] = 0;
}
#endif
#if RTE_LIBRTE_KNI
else if (xd->flags & DPDK_DEVICE_FLAG_KNI)
{
if (PREDICT_TRUE (tx_head > tx_tail))
{
/* no wrap, transmit in one burst */
rv = rte_kni_tx_burst (xd->kni,
&tx_vector[tx_tail],
(uint16_t) (tx_head - tx_tail));
}
else
{
/*
* This can only happen if there is a flowcontrol callback.
* We need to split the transmit into two calls: one for
* the packets up to the wrap point, and one to continue
* at the start of the ring.
* Transmit pkts up to the wrap point.
*/
rv = rte_kni_tx_burst (xd->kni,
&tx_vector[tx_tail],
(uint16_t) (xd->nb_tx_desc - tx_tail));
/*
* If we transmitted everything we wanted, then allow 1 retry
* so we can try to transmit the rest. If we didn't transmit
* everything, stop now.
*/
n_retry = (rv == xd->nb_tx_desc - tx_tail) ? 1 : 0;
}
}
#endif
else
{
ASSERT (0);
rv = 0;
}
if (PREDICT_FALSE ((xd->flags & DPDK_DEVICE_FLAG_VHOST_USER) == 0 &&
xd->lockp != 0))
*xd->lockp[queue_id] = 0;
if (PREDICT_FALSE (rv < 0))
{
// emit non-fatal message, bump counter
vnet_main_t *vnm = dm->vnet_main;
vnet_interface_main_t *im = &vnm->interface_main;
u32 node_index;
node_index = vec_elt_at_index (im->hw_interfaces,
xd->vlib_hw_if_index)->tx_node_index;
vlib_error_count (vm, node_index, DPDK_TX_FUNC_ERROR_BAD_RETVAL, 1);
clib_warning ("rte_eth_tx_burst[%d]: error %d", xd->device_index,
rv);
return n_packets; // untransmitted packets
}
ring->tx_tail += (u16) rv;
n_packets -= (uint16_t) rv;
}
while (rv && n_packets && (n_retry > 0));
return n_packets;
}
/*
* This function transmits any packets on the interface's tx_vector and returns
* the number of packets untransmitted on the tx_vector. If the tx_vector is
* empty the function simply returns 0.
*
* It is intended to be called by a traffic manager which has flowed-off an
* interface to see if the interface can be flowed-on again.
*/
u32
dpdk_interface_tx_vector (vlib_main_t * vm, u32 dev_instance)
{
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd;
int queue_id;
struct rte_mbuf **tx_vector;
tx_ring_hdr_t *ring;
/* param is dev_instance and not hw_if_index to save another lookup */
xd = vec_elt_at_index (dm->devices, dev_instance);
queue_id = vm->cpu_index;
tx_vector = xd->tx_vectors[queue_id];
/* If no packets on the ring, don't bother calling tx function */
ring = vec_header (tx_vector, sizeof (*ring));
if (ring->tx_head == ring->tx_tail)
{
return 0;
}
return tx_burst_vector_internal (vm, xd, tx_vector);
}
/*
* Transmits the packets on the frame to the interface associated with the
* node. It first copies packets on the frame to a tx_vector containing the
* rte_mbuf pointers. It then passes this vector to tx_burst_vector_internal
* which calls the dpdk tx_burst function.
*
* The tx_vector is treated slightly differently depending on whether or
* not a flowcontrol callback function has been configured. If there is no
* callback, the tx_vector is a temporary array of rte_mbuf packet pointers.
* Its entries are written and consumed before the function exits.
*
* If there is a callback then the transmit is being invoked in the presence
* of a traffic manager. Here the tx_vector is treated like a ring of rte_mbuf
* pointers. If not all packets can be transmitted, the untransmitted packets
* stay on the tx_vector until the next call. The callback allows the traffic
* manager to flow-off dequeues to the interface. The companion function
* dpdk_interface_tx_vector() allows the traffic manager to detect when
* it should flow-on the interface again.
*/
static uword
dpdk_interface_tx (vlib_main_t * vm,
vlib_node_runtime_t * node, vlib_frame_t * f)
{
dpdk_main_t *dm = &dpdk_main;
vnet_interface_output_runtime_t *rd = (void *) node->runtime_data;
dpdk_device_t *xd = vec_elt_at_index (dm->devices, rd->dev_instance);
u32 n_packets = f->n_vectors;
u32 n_left;
u32 *from;
struct rte_mbuf **tx_vector;
int i;
int queue_id;
u32 my_cpu;
u32 tx_pkts = 0;
tx_ring_hdr_t *ring;
u32 n_on_ring;
my_cpu = vm->cpu_index;
queue_id = my_cpu;
tx_vector = xd->tx_vectors[queue_id];
ring = vec_header (tx_vector, sizeof (*ring));
n_on_ring = ring->tx_head - ring->tx_tail;
from = vlib_frame_vector_args (f);
ASSERT (n_packets <= VLIB_FRAME_SIZE);
if (PREDICT_FALSE (n_on_ring + n_packets > xd->nb_tx_desc))
{
/*
* Overflowing the ring should never happen.
* If it does then drop the whole frame.
*/
vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_RING_FULL,
n_packets);
while (n_packets--)
{
u32 bi0 = from[n_packets];
vlib_buffer_t *b0 = vlib_get_buffer (vm, bi0);
struct rte_mbuf *mb0 = rte_mbuf_from_vlib_buffer (b0);
rte_pktmbuf_free (mb0);
}
return n_on_ring;
}
if (PREDICT_FALSE (dm->tx_pcap_enable))
{
n_left = n_packets;
while (n_left > 0)
{
u32 bi0 = from[0];
vlib_buffer_t *b0 = vlib_get_buffer (vm, bi0);
if (dm->pcap_sw_if_index == 0 ||
dm->pcap_sw_if_index == vnet_buffer (b0)->sw_if_index[VLIB_TX])
pcap_add_buffer (&dm->pcap_main, vm, bi0, 512);
from++;
n_left--;
}
}
from = vlib_frame_vector_args (f);
n_left = n_packets;
i = ring->tx_head % xd->nb_tx_desc;
while (n_left >= 4)
{
u32 bi0, bi1;
u32 pi0, pi1;
struct rte_mbuf *mb0, *mb1;
struct rte_mbuf *prefmb0, *prefmb1;
vlib_buffer_t *b0, *b1;
vlib_buffer_t *pref0, *pref1;
i16 delta0, delta1;
u16 new_data_len0, new_data_len1;
u16 new_pkt_len0, new_pkt_len1;
u32 any_clone;
pi0 = from[2];
pi1 = from[3];
pref0 = vlib_get_buffer (vm, pi0);
pref1 = vlib_get_buffer (vm, pi1);
prefmb0 = rte_mbuf_from_vlib_buffer (pref0);
prefmb1 = rte_mbuf_from_vlib_buffer (pref1);
CLIB_PREFETCH (prefmb0, CLIB_CACHE_LINE_BYTES, LOAD);
CLIB_PREFETCH (pref0, CLIB_CACHE_LINE_BYTES, LOAD);
CLIB_PREFETCH (prefmb1, CLIB_CACHE_LINE_BYTES, LOAD);
CLIB_PREFETCH (pref1, CLIB_CACHE_LINE_BYTES, LOAD);
bi0 = from[0];
bi1 = from[1];
from += 2;
b0 = vlib_get_buffer (vm, bi0);
b1 = vlib_get_buffer (vm, bi1);
mb0 = rte_mbuf_from_vlib_buffer (b0);
mb1 = rte_mbuf_from_vlib_buffer (b1);
any_clone = (b0->flags & VLIB_BUFFER_RECYCLE)
| (b1->flags & VLIB_BUFFER_RECYCLE);
if (PREDICT_FALSE (any_clone != 0))
{
if (PREDICT_FALSE ((b0->flags & VLIB_BUFFER_RECYCLE) != 0))
{
struct rte_mbuf *mb0_new = dpdk_replicate_packet_mb (b0);
if (PREDICT_FALSE (mb0_new == 0))
{
vlib_error_count (vm, node->node_index,
DPDK_TX_FUNC_ERROR_REPL_FAIL, 1);
b0->flags |= VLIB_BUFFER_REPL_FAIL;
}
else
mb0 = mb0_new;
vec_add1 (dm->recycle[my_cpu], bi0);
}
if (PREDICT_FALSE ((b1->flags & VLIB_BUFFER_RECYCLE) != 0))
{
struct rte_mbuf *mb1_new = dpdk_replicate_packet_mb (b1);
if (PREDICT_FALSE (mb1_new == 0))
{
vlib_error_count (vm, node->node_index,
DPDK_TX_FUNC_ERROR_REPL_FAIL, 1);
b1->flags |= VLIB_BUFFER_REPL_FAIL;
}
else
mb1 = mb1_new;
vec_add1 (dm->recycle[my_cpu], bi1);
}
}
delta0 = PREDICT_FALSE (b0->flags & VLIB_BUFFER_REPL_FAIL) ? 0 :
vlib_buffer_length_in_chain (vm, b0) - (i16) mb0->pkt_len;
delta1 = PREDICT_FALSE (b1->flags & VLIB_BUFFER_REPL_FAIL) ? 0 :
vlib_buffer_length_in_chain (vm, b1) - (i16) mb1->pkt_len;
new_data_len0 = (u16) ((i16) mb0->data_len + delta0);
new_data_len1 = (u16) ((i16) mb1->data_len + delta1);
new_pkt_len0 = (u16) ((i16) mb0->pkt_len + delta0);
new_pkt_len1 = (u16) ((i16) mb1->pkt_len + delta1);
b0->current_length = new_data_len0;
b1->current_length = new_data_len1;
mb0->data_len = new_data_len0;
mb1->data_len = new_data_len1;
mb0->pkt_len = new_pkt_len0;
mb1->pkt_len = new_pkt_len1;
mb0->data_off = (PREDICT_FALSE (b0->flags & VLIB_BUFFER_REPL_FAIL)) ?
mb0->data_off : (u16) (RTE_PKTMBUF_HEADROOM + b0->current_data);
mb1->data_off = (PREDICT_FALSE (b1->flags & VLIB_BUFFER_REPL_FAIL)) ?
mb1->data_off : (u16) (RTE_PKTMBUF_HEADROOM + b1->current_data);
if (PREDICT_FALSE (node->flags & VLIB_NODE_FLAG_TRACE))
{
if (b0->flags & VLIB_BUFFER_IS_TRACED)
dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi0, b0);
if (b1->flags & VLIB_BUFFER_IS_TRACED)
dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi1, b1);
}
if (PREDICT_TRUE (any_clone == 0))
{
tx_vector[i % xd->nb_tx_desc] = mb0;
i++;
tx_vector[i % xd->nb_tx_desc] = mb1;
i++;
}
else
{
/* cloning was done, need to check for failure */
if (PREDICT_TRUE ((b0->flags & VLIB_BUFFER_REPL_FAIL) == 0))
{
tx_vector[i % xd->nb_tx_desc] = mb0;
i++;
}
if (PREDICT_TRUE ((b1->flags & VLIB_BUFFER_REPL_FAIL) == 0))
{
tx_vector[i % xd->nb_tx_desc] = mb1;
i++;
}
}
n_left -= 2;
}
while (n_left > 0)
{
u32 bi0;
struct rte_mbuf *mb0;
vlib_buffer_t *b0;
i16 delta0;
u16 new_data_len0;
u16 new_pkt_len0;
bi0 = from[0];
from++;
b0 = vlib_get_buffer (vm, bi0);
mb0 = rte_mbuf_from_vlib_buffer (b0);
if (PREDICT_FALSE ((b0->flags & VLIB_BUFFER_RECYCLE) != 0))
{
struct rte_mbuf *mb0_new = dpdk_replicate_packet_mb (b0);
if (PREDICT_FALSE (mb0_new == 0))
{
vlib_error_count (vm, node->node_index,
DPDK_TX_FUNC_ERROR_REPL_FAIL, 1);
b0->flags |= VLIB_BUFFER_REPL_FAIL;
}
else
mb0 = mb0_new;
vec_add1 (dm->recycle[my_cpu], bi0);
}
delta0 = PREDICT_FALSE (b0->flags & VLIB_BUFFER_REPL_FAIL) ? 0 :
vlib_buffer_length_in_chain (vm, b0) - (i16) mb0->pkt_len;
new_data_len0 = (u16) ((i16) mb0->data_len + delta0);
new_pkt_len0 = (u16) ((i16) mb0->pkt_len + delta0);
b0->current_length = new_data_len0;
mb0->data_len = new_data_len0;
mb0->pkt_len = new_pkt_len0;
mb0->data_off = (PREDICT_FALSE (b0->flags & VLIB_BUFFER_REPL_FAIL)) ?
mb0->data_off : (u16) (RTE_PKTMBUF_HEADROOM + b0->current_data);
if (PREDICT_FALSE (node->flags & VLIB_NODE_FLAG_TRACE))
if (b0->flags & VLIB_BUFFER_IS_TRACED)
dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi0, b0);
if (PREDICT_TRUE ((b0->flags & VLIB_BUFFER_REPL_FAIL) == 0))
{
tx_vector[i % xd->nb_tx_desc] = mb0;
i++;
}
n_left--;
}
/* account for additional packets in the ring */
ring->tx_head += n_packets;
n_on_ring = ring->tx_head - ring->tx_tail;
/* transmit as many packets as possible */
n_packets = tx_burst_vector_internal (vm, xd, tx_vector);
/*
* tx_pkts is the number of packets successfully transmitted
* This is the number originally on ring minus the number remaining on ring
*/
tx_pkts = n_on_ring - n_packets;
if (PREDICT_FALSE (dm->flowcontrol_callback != 0))
{
if (PREDICT_FALSE (n_packets))
{
/* Callback may want to enable flowcontrol */
dm->flowcontrol_callback (vm, xd->vlib_hw_if_index,
ring->tx_head - ring->tx_tail);
}
else
{
/* Reset head/tail to avoid unnecessary wrap */
ring->tx_head = 0;
ring->tx_tail = 0;
}
}
else
{
/* If there is no callback then drop any non-transmitted packets */
if (PREDICT_FALSE (n_packets))
{
vlib_simple_counter_main_t *cm;
vnet_main_t *vnm = vnet_get_main ();
cm = vec_elt_at_index (vnm->interface_main.sw_if_counters,
VNET_INTERFACE_COUNTER_TX_ERROR);
vlib_increment_simple_counter (cm, my_cpu, xd->vlib_sw_if_index,
n_packets);
vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_PKT_DROP,
n_packets);
while (n_packets--)
rte_pktmbuf_free (tx_vector[ring->tx_tail + n_packets]);
}
/* Reset head/tail to avoid unnecessary wrap */
ring->tx_head = 0;
ring->tx_tail = 0;
}
/* Recycle replicated buffers */
if (PREDICT_FALSE (vec_len (dm->recycle[my_cpu])))
{
vlib_buffer_free (vm, dm->recycle[my_cpu],
vec_len (dm->recycle[my_cpu]));
_vec_len (dm->recycle[my_cpu]) = 0;
}
ASSERT (ring->tx_head >= ring->tx_tail);
return tx_pkts;
}
static int
dpdk_device_renumber (vnet_hw_interface_t * hi, u32 new_dev_instance)
{
#if DPDK_VHOST_USER
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd = vec_elt_at_index (dm->devices, hi->dev_instance);
if (!xd || (xd->flags & DPDK_DEVICE_FLAG_VHOST_USER) == 0)
{
clib_warning
("cannot renumber non-vhost-user interface (sw_if_index: %d)",
hi->sw_if_index);
return 0;
}
xd->vu_if_id = new_dev_instance;
#endif
return 0;
}
static void
dpdk_clear_hw_interface_counters (u32 instance)
{
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd = vec_elt_at_index (dm->devices, instance);
/*
* Set the "last_cleared_stats" to the current stats, so that
* things appear to clear from a display perspective.
*/
dpdk_update_counters (xd, vlib_time_now (dm->vlib_main));
clib_memcpy (&xd->last_cleared_stats, &xd->stats, sizeof (xd->stats));
clib_memcpy (xd->last_cleared_xstats, xd->xstats,
vec_len (xd->last_cleared_xstats) *
sizeof (xd->last_cleared_xstats[0]));
#if DPDK_VHOST_USER
if (PREDICT_FALSE (xd->flags & DPDK_DEVICE_FLAG_VHOST_USER))
{
int i;
for (i = 0; i < xd->rx_q_used * VIRTIO_QNUM; i++)
{
xd->vu_intf->vrings[i].packets = 0;
xd->vu_intf->vrings[i].bytes = 0;
}
}
#endif
}
#ifdef RTE_LIBRTE_KNI
static int
kni_config_network_if (u8 port_id, u8 if_up)
{
vnet_main_t *vnm = vnet_get_main ();
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd;
uword *p;
p = hash_get (dm->dpdk_device_by_kni_port_id, port_id);
if (p == 0)
{
clib_warning ("unknown interface");
return 0;
}
else
{
xd = vec_elt_at_index (dm->devices, p[0]);
}
vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index,
if_up ? VNET_HW_INTERFACE_FLAG_LINK_UP |
ETH_LINK_FULL_DUPLEX : 0);
return 0;
}
static int
kni_change_mtu (u8 port_id, unsigned new_mtu)
{
vnet_main_t *vnm = vnet_get_main ();
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd;
uword *p;
vnet_hw_interface_t *hif;
p = hash_get (dm->dpdk_device_by_kni_port_id, port_id);
if (p == 0)
{
clib_warning ("unknown interface");
return 0;
}
else
{
xd = vec_elt_at_index (dm->devices, p[0]);
}
hif = vnet_get_hw_interface (vnm, xd->vlib_hw_if_index);
hif->max_packet_bytes = new_mtu;
return 0;
}
#endif
static clib_error_t *
dpdk_interface_admin_up_down (vnet_main_t * vnm, u32 hw_if_index, u32 flags)
{
vnet_hw_interface_t *hif = vnet_get_hw_interface (vnm, hw_if_index);
uword is_up = (flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP) != 0;
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd = vec_elt_at_index (dm->devices, hif->dev_instance);
int rv = 0;
#ifdef RTE_LIBRTE_KNI
if (xd->flags & DPDK_DEVICE_FLAG_KNI)
{
if (is_up)
{
struct rte_kni_conf conf;
struct rte_kni_ops ops;
vlib_main_t *vm = vlib_get_main ();
vlib_buffer_main_t *bm = vm->buffer_main;
memset (&conf, 0, sizeof (conf));
snprintf (conf.name, RTE_KNI_NAMESIZE, "vpp%u", xd->kni_port_id);
conf.mbuf_size = VLIB_BUFFER_DATA_SIZE;
memset (&ops, 0, sizeof (ops));
ops.port_id = xd->kni_port_id;
ops.change_mtu = kni_change_mtu;
ops.config_network_if = kni_config_network_if;
xd->kni =
rte_kni_alloc (bm->pktmbuf_pools[rte_socket_id ()], &conf, &ops);
if (!xd->kni)
{
clib_warning ("failed to allocate kni interface");
}
else
{
hif->max_packet_bytes = 1500; /* kni interface default value */
xd->flags |= DPDK_DEVICE_FLAG_ADMIN_UP;
}
}
else
{
xd->flags &= ~DPDK_DEVICE_FLAG_ADMIN_UP;
int kni_rv;
kni_rv = rte_kni_release (xd->kni);
if (kni_rv < 0)
clib_warning ("rte_kni_release returned %d", kni_rv);
}
return 0;
}
#endif
#if DPDK_VHOST_USER
if (xd->flags & DPDK_DEVICE_FLAG_VHOST_USER)
{
if (is_up)
{
if (xd->vu_is_running)
vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index,
VNET_HW_INTERFACE_FLAG_LINK_UP |
ETH_LINK_FULL_DUPLEX);
xd->flags |= DPDK_DEVICE_FLAG_ADMIN_UP;
}
else
{
vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index, 0);
xd->flags &= ~DPDK_DEVICE_FLAG_ADMIN_UP;
}
return 0;
}
#endif
if (is_up)
{
f64 now = vlib_time_now (dm->vlib_main);
if ((xd->flags & DPDK_DEVICE_FLAG_ADMIN_UP) == 0)
rv = rte_eth_dev_start (xd->device_index);
if (xd->flags & DPDK_DEVICE_FLAG_PROMISC)
rte_eth_promiscuous_enable (xd->device_index);
else
rte_eth_promiscuous_disable (xd->device_index);
rte_eth_allmulticast_enable (xd->device_index);
xd->flags |= DPDK_DEVICE_FLAG_ADMIN_UP;
dpdk_update_counters (xd, now);
dpdk_update_link_state (xd, now);
}
else
{
xd->flags &= ~DPDK_DEVICE_FLAG_ADMIN_UP;
rte_eth_allmulticast_disable (xd->device_index);
vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index, 0);
rte_eth_dev_stop (xd->device_index);
/* For bonded interface, stop slave links */
if (xd->pmd == VNET_DPDK_PMD_BOND)
{
u8 slink[16];
int nlink = rte_eth_bond_slaves_get (xd->device_index, slink, 16);
while (nlink >= 1)
{
u8 dpdk_port = slink[--nlink];
rte_eth_dev_stop (dpdk_port);
}
}
}
if (rv < 0)
clib_warning ("rte_eth_dev_%s error: %d", is_up ? "start" : "stop", rv);
return /* no error */ 0;
}
/*
* Dynamically redirect all pkts from a specific interface
* to the specified node
*/
static void
dpdk_set_interface_next_node (vnet_main_t * vnm, u32 hw_if_index,
u32 node_index)
{
dpdk_main_t *xm = &dpdk_main;
vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index);
dpdk_device_t *xd = vec_elt_at_index (xm->devices, hw->dev_instance);
/* Shut off redirection */
if (node_index == ~0)
{
xd->per_interface_next_index = node_index;
return;
}
xd->per_interface_next_index =
vlib_node_add_next (xm->vlib_main, dpdk_input_node.index, node_index);
}
static clib_error_t *
dpdk_subif_add_del_function (vnet_main_t * vnm,
u32 hw_if_index,
struct vnet_sw_interface_t *st, int is_add)
{
dpdk_main_t *xm = &dpdk_main;
vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index);
dpdk_device_t *xd = vec_elt_at_index (xm->devices, hw->dev_instance);
vnet_sw_interface_t *t = (vnet_sw_interface_t *) st;
int r, vlan_offload;
u32 prev_subifs = xd->num_subifs;
clib_error_t *err = 0;
if (is_add)
xd->num_subifs++;
else if (xd->num_subifs)
xd->num_subifs--;
if ((xd->flags & DPDK_DEVICE_FLAG_PMD) == 0)
goto done;
/* currently we program VLANS only for IXGBE VF and I40E VF */
if ((xd->pmd != VNET_DPDK_PMD_IXGBEVF) && (xd->pmd != VNET_DPDK_PMD_I40EVF))
goto done;
if (t->sub.eth.flags.no_tags == 1)
goto done;
if ((t->sub.eth.flags.one_tag != 1) || (t->sub.eth.flags.exact_match != 1))
{
xd->num_subifs = prev_subifs;
err = clib_error_return (0, "unsupported VLAN setup");
goto done;
}
vlan_offload = rte_eth_dev_get_vlan_offload (xd->device_index);
vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
if ((r = rte_eth_dev_set_vlan_offload (xd->device_index, vlan_offload)))
{
xd->num_subifs = prev_subifs;
err = clib_error_return (0, "rte_eth_dev_set_vlan_offload[%d]: err %d",
xd->device_index, r);
goto done;
}
if ((r =
rte_eth_dev_vlan_filter (xd->device_index, t->sub.eth.outer_vlan_id,
is_add)))
{
xd->num_subifs = prev_subifs;
err = clib_error_return (0, "rte_eth_dev_vlan_filter[%d]: err %d",
xd->device_index, r);
goto done;
}
done:
if (xd->num_subifs)
xd->flags |= DPDK_DEVICE_FLAG_HAVE_SUBIF;
else
xd->flags &= ~DPDK_DEVICE_FLAG_HAVE_SUBIF;
return err;
}
/* *INDENT-OFF* */
VNET_DEVICE_CLASS (dpdk_device_class) = {
.name = "dpdk",
.tx_function = dpdk_interface_tx,
.tx_function_n_errors = DPDK_TX_FUNC_N_ERROR,
.tx_function_error_strings = dpdk_tx_func_error_strings,
.format_device_name = format_dpdk_device_name,
.format_device = format_dpdk_device,
.format_tx_trace = format_dpdk_tx_dma_trace,
.clear_counters = dpdk_clear_hw_interface_counters,
.admin_up_down_function = dpdk_interface_admin_up_down,
.subif_add_del_function = dpdk_subif_add_del_function,
.rx_redirect_to_node = dpdk_set_interface_next_node,
.no_flatten_output_chains = 1,
.name_renumber = dpdk_device_renumber,
};
VLIB_DEVICE_TX_FUNCTION_MULTIARCH (dpdk_device_class, dpdk_interface_tx)
/* *INDENT-ON* */
void
dpdk_set_flowcontrol_callback (vlib_main_t * vm,
dpdk_flowcontrol_callback_t callback)
{
dpdk_main.flowcontrol_callback = callback;
}
#define UP_DOWN_FLAG_EVENT 1
u32
dpdk_get_admin_up_down_in_progress (void)
{
return dpdk_main.admin_up_down_in_progress;
}
uword
admin_up_down_process (vlib_main_t * vm,
vlib_node_runtime_t * rt, vlib_frame_t * f)
{
clib_error_t *error = 0;
uword event_type;
uword *event_data = 0;
u32 sw_if_index;
u32 flags;
while (1)
{
vlib_process_wait_for_event (vm);
event_type = vlib_process_get_events (vm, &event_data);
dpdk_main.admin_up_down_in_progress = 1;
switch (event_type)
{
case UP_DOWN_FLAG_EVENT:
{
if (vec_len (event_data) == 2)
{
sw_if_index = event_data[0];
flags = event_data[1];
error =
vnet_sw_interface_set_flags (vnet_get_main (), sw_if_index,
flags);
clib_error_report (error);
}
}
break;
}
vec_reset_length (event_data);
dpdk_main.admin_up_down_in_progress = 0;
}
return 0; /* or not */
}
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (admin_up_down_process_node,static) = {
.function = admin_up_down_process,
.type = VLIB_NODE_TYPE_PROCESS,
.name = "admin-up-down-process",
.process_log2_n_stack_bytes = 17, // 256KB
};
/* *INDENT-ON* */
/*
* Asynchronously invoke vnet_sw_interface_set_flags via the admin_up_down
* process. Useful for avoiding long blocking delays (>150ms) in the dpdk
* drivers.
* WARNING: when posting this event, no other interface-related calls should
* be made (e.g. vnet_create_sw_interface()) while the event is being
* processed (admin_up_down_in_progress). This is required in order to avoid
* race conditions in manipulating interface data structures.
*/
void
post_sw_interface_set_flags (vlib_main_t * vm, u32 sw_if_index, u32 flags)
{
uword *d = vlib_process_signal_event_data
(vm, admin_up_down_process_node.index,
UP_DOWN_FLAG_EVENT, 2, sizeof (u32));
d[0] = sw_if_index;
d[1] = flags;
}
/*
* Return a copy of the DPDK port stats in dest.
*/
clib_error_t *
dpdk_get_hw_interface_stats (u32 hw_if_index, struct rte_eth_stats *dest)
{
dpdk_main_t *dm = &dpdk_main;
vnet_main_t *vnm = vnet_get_main ();
vnet_hw_interface_t *hi = vnet_get_hw_interface (vnm, hw_if_index);
dpdk_device_t *xd = vec_elt_at_index (dm->devices, hi->dev_instance);
if (!dest)
{
return clib_error_return (0, "Missing or NULL argument");
}
if (!xd)
{
return clib_error_return (0,
"Unable to get DPDK device from HW interface");
}
dpdk_update_counters (xd, vlib_time_now (dm->vlib_main));
clib_memcpy (dest, &xd->stats, sizeof (xd->stats));
return (0);
}
/*
* Return the number of dpdk mbufs
*/
u32
dpdk_num_mbufs (void)
{
dpdk_main_t *dm = &dpdk_main;
return dm->conf->num_mbufs;
}
/*
* Return the pmd type for a given hardware interface
*/
dpdk_pmd_t
dpdk_get_pmd_type (vnet_hw_interface_t * hi)
{
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd;
assert (hi);
xd = vec_elt_at_index (dm->devices, hi->dev_instance);
assert (xd);
return xd->pmd;
}
/*
* Return the cpu socket for a given hardware interface
*/
i8
dpdk_get_cpu_socket (vnet_hw_interface_t * hi)
{
dpdk_main_t *dm = &dpdk_main;
dpdk_device_t *xd;
assert (hi);
xd = vec_elt_at_index (dm->devices, hi->dev_instance);
assert (xd);
return xd->cpu_socket;
}
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/