blob: 00b67109de48a57d790432135cbbe578761c767e [file] [log] [blame]
/*
* Copyright (c) 2020 Doc.ai and/or its affiliates.
* Copyright (c) 2015-2020 Jason A. Donenfeld <Jason@zx2c4.com>.
* Copyright (c) 2019-2020 Matt Dunwoodie <ncon@noconroy.net>.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <openssl/hmac.h>
#include <wireguard/wireguard.h>
/* This implements Noise_IKpsk2:
*
* <- s
* ******
* -> e, es, s, ss, {t}
* <- e, ee, se, psk, {}
*/
noise_local_t *noise_local_pool;
/* Private functions */
static noise_keypair_t *noise_remote_keypair_allocate (noise_remote_t *);
static void noise_remote_keypair_free (vlib_main_t * vm, noise_remote_t *,
noise_keypair_t **);
static uint32_t noise_remote_handshake_index_get (noise_remote_t *);
static void noise_remote_handshake_index_drop (noise_remote_t *);
static uint64_t noise_counter_send (noise_counter_t *);
static bool noise_counter_recv (noise_counter_t *, uint64_t);
static void noise_kdf (uint8_t *, uint8_t *, uint8_t *, const uint8_t *,
size_t, size_t, size_t, size_t,
const uint8_t[NOISE_HASH_LEN]);
static bool noise_mix_dh (uint8_t[NOISE_HASH_LEN],
uint8_t[NOISE_SYMMETRIC_KEY_LEN],
const uint8_t[NOISE_PUBLIC_KEY_LEN],
const uint8_t[NOISE_PUBLIC_KEY_LEN]);
static bool noise_mix_ss (uint8_t ck[NOISE_HASH_LEN],
uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
const uint8_t ss[NOISE_PUBLIC_KEY_LEN]);
static void noise_mix_hash (uint8_t[NOISE_HASH_LEN], const uint8_t *, size_t);
static void noise_mix_psk (uint8_t[NOISE_HASH_LEN],
uint8_t[NOISE_HASH_LEN],
uint8_t[NOISE_SYMMETRIC_KEY_LEN],
const uint8_t[NOISE_SYMMETRIC_KEY_LEN]);
static void noise_param_init (uint8_t[NOISE_HASH_LEN],
uint8_t[NOISE_HASH_LEN],
const uint8_t[NOISE_PUBLIC_KEY_LEN]);
static void noise_msg_encrypt (vlib_main_t * vm, uint8_t *, uint8_t *, size_t,
uint32_t key_idx, uint8_t[NOISE_HASH_LEN]);
static bool noise_msg_decrypt (vlib_main_t * vm, uint8_t *, uint8_t *, size_t,
uint32_t key_idx, uint8_t[NOISE_HASH_LEN]);
static void noise_msg_ephemeral (uint8_t[NOISE_HASH_LEN],
uint8_t[NOISE_HASH_LEN],
const uint8_t src[NOISE_PUBLIC_KEY_LEN]);
static void noise_tai64n_now (uint8_t[NOISE_TIMESTAMP_LEN]);
static void secure_zero_memory (void *v, size_t n);
/* Set/Get noise parameters */
void
noise_local_init (noise_local_t * l, struct noise_upcall *upcall)
{
clib_memset (l, 0, sizeof (*l));
l->l_upcall = *upcall;
}
bool
noise_local_set_private (noise_local_t * l,
const uint8_t private[NOISE_PUBLIC_KEY_LEN])
{
clib_memcpy (l->l_private, private, NOISE_PUBLIC_KEY_LEN);
return curve25519_gen_public (l->l_public, private);
}
void
noise_remote_init (noise_remote_t * r, uint32_t peer_pool_idx,
const uint8_t public[NOISE_PUBLIC_KEY_LEN],
u32 noise_local_idx)
{
clib_memset (r, 0, sizeof (*r));
clib_memcpy (r->r_public, public, NOISE_PUBLIC_KEY_LEN);
clib_rwlock_init (&r->r_keypair_lock);
r->r_peer_idx = peer_pool_idx;
r->r_local_idx = noise_local_idx;
r->r_handshake.hs_state = HS_ZEROED;
noise_remote_precompute (r);
}
void
noise_remote_precompute (noise_remote_t * r)
{
noise_local_t *l = noise_local_get (r->r_local_idx);
if (!curve25519_gen_shared (r->r_ss, l->l_private, r->r_public))
clib_memset (r->r_ss, 0, NOISE_PUBLIC_KEY_LEN);
noise_remote_handshake_index_drop (r);
secure_zero_memory (&r->r_handshake, sizeof (r->r_handshake));
}
/* Handshake functions */
bool
noise_create_initiation (vlib_main_t * vm, noise_remote_t * r,
uint32_t * s_idx, uint8_t ue[NOISE_PUBLIC_KEY_LEN],
uint8_t es[NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN],
uint8_t ets[NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN])
{
noise_handshake_t *hs = &r->r_handshake;
noise_local_t *l = noise_local_get (r->r_local_idx);
uint8_t _key[NOISE_SYMMETRIC_KEY_LEN];
uint32_t key_idx;
uint8_t *key;
int ret = false;
key_idx =
vnet_crypto_key_add (vm, VNET_CRYPTO_ALG_CHACHA20_POLY1305, _key,
NOISE_SYMMETRIC_KEY_LEN);
key = vnet_crypto_get_key (key_idx)->data;
noise_param_init (hs->hs_ck, hs->hs_hash, r->r_public);
/* e */
curve25519_gen_secret (hs->hs_e);
if (!curve25519_gen_public (ue, hs->hs_e))
goto error;
noise_msg_ephemeral (hs->hs_ck, hs->hs_hash, ue);
/* es */
if (!noise_mix_dh (hs->hs_ck, key, hs->hs_e, r->r_public))
goto error;
/* s */
noise_msg_encrypt (vm, es, l->l_public, NOISE_PUBLIC_KEY_LEN, key_idx,
hs->hs_hash);
/* ss */
if (!noise_mix_ss (hs->hs_ck, key, r->r_ss))
goto error;
/* {t} */
noise_tai64n_now (ets);
noise_msg_encrypt (vm, ets, ets, NOISE_TIMESTAMP_LEN, key_idx, hs->hs_hash);
noise_remote_handshake_index_drop (r);
hs->hs_state = CREATED_INITIATION;
hs->hs_local_index = noise_remote_handshake_index_get (r);
*s_idx = hs->hs_local_index;
ret = true;
error:
vnet_crypto_key_del (vm, key_idx);
secure_zero_memory (key, NOISE_SYMMETRIC_KEY_LEN);
return ret;
}
bool
noise_consume_initiation (vlib_main_t * vm, noise_local_t * l,
noise_remote_t ** rp, uint32_t s_idx,
uint8_t ue[NOISE_PUBLIC_KEY_LEN],
uint8_t es[NOISE_PUBLIC_KEY_LEN +
NOISE_AUTHTAG_LEN],
uint8_t ets[NOISE_TIMESTAMP_LEN +
NOISE_AUTHTAG_LEN])
{
noise_remote_t *r;
noise_handshake_t hs;
uint8_t _key[NOISE_SYMMETRIC_KEY_LEN];
uint8_t r_public[NOISE_PUBLIC_KEY_LEN];
uint8_t timestamp[NOISE_TIMESTAMP_LEN];
u32 key_idx;
uint8_t *key;
int ret = false;
key_idx =
vnet_crypto_key_add (vm, VNET_CRYPTO_ALG_CHACHA20_POLY1305, _key,
NOISE_SYMMETRIC_KEY_LEN);
key = vnet_crypto_get_key (key_idx)->data;
noise_param_init (hs.hs_ck, hs.hs_hash, l->l_public);
/* e */
noise_msg_ephemeral (hs.hs_ck, hs.hs_hash, ue);
/* es */
if (!noise_mix_dh (hs.hs_ck, key, l->l_private, ue))
goto error;
/* s */
if (!noise_msg_decrypt (vm, r_public, es,
NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN, key_idx,
hs.hs_hash))
goto error;
/* Lookup the remote we received from */
if ((r = l->l_upcall.u_remote_get (r_public)) == NULL)
goto error;
/* ss */
if (!noise_mix_ss (hs.hs_ck, key, r->r_ss))
goto error;
/* {t} */
if (!noise_msg_decrypt (vm, timestamp, ets,
NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN, key_idx,
hs.hs_hash))
goto error;
;
hs.hs_state = CONSUMED_INITIATION;
hs.hs_local_index = 0;
hs.hs_remote_index = s_idx;
clib_memcpy (hs.hs_e, ue, NOISE_PUBLIC_KEY_LEN);
/* Replay */
if (clib_memcmp (timestamp, r->r_timestamp, NOISE_TIMESTAMP_LEN) > 0)
clib_memcpy (r->r_timestamp, timestamp, NOISE_TIMESTAMP_LEN);
else
goto error;
/* Flood attack */
if (wg_birthdate_has_expired (r->r_last_init, REJECT_INTERVAL))
r->r_last_init = vlib_time_now (vm);
else
goto error;
/* Ok, we're happy to accept this initiation now */
noise_remote_handshake_index_drop (r);
r->r_handshake = hs;
*rp = r;
ret = true;
error:
vnet_crypto_key_del (vm, key_idx);
secure_zero_memory (key, NOISE_SYMMETRIC_KEY_LEN);
secure_zero_memory (&hs, sizeof (hs));
return ret;
}
bool
noise_create_response (vlib_main_t * vm, noise_remote_t * r, uint32_t * s_idx,
uint32_t * r_idx, uint8_t ue[NOISE_PUBLIC_KEY_LEN],
uint8_t en[0 + NOISE_AUTHTAG_LEN])
{
noise_handshake_t *hs = &r->r_handshake;
uint8_t _key[NOISE_SYMMETRIC_KEY_LEN];
uint8_t e[NOISE_PUBLIC_KEY_LEN];
uint32_t key_idx;
uint8_t *key;
int ret = false;
key_idx =
vnet_crypto_key_add (vm, VNET_CRYPTO_ALG_CHACHA20_POLY1305, _key,
NOISE_SYMMETRIC_KEY_LEN);
key = vnet_crypto_get_key (key_idx)->data;
if (hs->hs_state != CONSUMED_INITIATION)
goto error;
/* e */
curve25519_gen_secret (e);
if (!curve25519_gen_public (ue, e))
goto error;
noise_msg_ephemeral (hs->hs_ck, hs->hs_hash, ue);
/* ee */
if (!noise_mix_dh (hs->hs_ck, NULL, e, hs->hs_e))
goto error;
/* se */
if (!noise_mix_dh (hs->hs_ck, NULL, e, r->r_public))
goto error;
/* psk */
noise_mix_psk (hs->hs_ck, hs->hs_hash, key, r->r_psk);
/* {} */
noise_msg_encrypt (vm, en, NULL, 0, key_idx, hs->hs_hash);
hs->hs_state = CREATED_RESPONSE;
hs->hs_local_index = noise_remote_handshake_index_get (r);
*r_idx = hs->hs_remote_index;
*s_idx = hs->hs_local_index;
ret = true;
error:
vnet_crypto_key_del (vm, key_idx);
secure_zero_memory (key, NOISE_SYMMETRIC_KEY_LEN);
secure_zero_memory (e, NOISE_PUBLIC_KEY_LEN);
return ret;
}
bool
noise_consume_response (vlib_main_t * vm, noise_remote_t * r, uint32_t s_idx,
uint32_t r_idx, uint8_t ue[NOISE_PUBLIC_KEY_LEN],
uint8_t en[0 + NOISE_AUTHTAG_LEN])
{
noise_local_t *l = noise_local_get (r->r_local_idx);
noise_handshake_t hs;
uint8_t _key[NOISE_SYMMETRIC_KEY_LEN];
uint8_t preshared_key[NOISE_PUBLIC_KEY_LEN];
uint32_t key_idx;
uint8_t *key;
int ret = false;
key_idx =
vnet_crypto_key_add (vm, VNET_CRYPTO_ALG_CHACHA20_POLY1305, _key,
NOISE_SYMMETRIC_KEY_LEN);
key = vnet_crypto_get_key (key_idx)->data;
hs = r->r_handshake;
clib_memcpy (preshared_key, r->r_psk, NOISE_SYMMETRIC_KEY_LEN);
if (hs.hs_state != CREATED_INITIATION || hs.hs_local_index != r_idx)
goto error;
/* e */
noise_msg_ephemeral (hs.hs_ck, hs.hs_hash, ue);
/* ee */
if (!noise_mix_dh (hs.hs_ck, NULL, hs.hs_e, ue))
goto error;
/* se */
if (!noise_mix_dh (hs.hs_ck, NULL, l->l_private, ue))
goto error;
/* psk */
noise_mix_psk (hs.hs_ck, hs.hs_hash, key, preshared_key);
/* {} */
if (!noise_msg_decrypt
(vm, NULL, en, 0 + NOISE_AUTHTAG_LEN, key_idx, hs.hs_hash))
goto error;
hs.hs_remote_index = s_idx;
if (r->r_handshake.hs_state == hs.hs_state &&
r->r_handshake.hs_local_index == hs.hs_local_index)
{
r->r_handshake = hs;
r->r_handshake.hs_state = CONSUMED_RESPONSE;
ret = true;
}
error:
vnet_crypto_key_del (vm, key_idx);
secure_zero_memory (&hs, sizeof (hs));
secure_zero_memory (key, NOISE_SYMMETRIC_KEY_LEN);
return ret;
}
bool
noise_remote_begin_session (vlib_main_t * vm, noise_remote_t * r)
{
noise_handshake_t *hs = &r->r_handshake;
noise_keypair_t kp, *next, *current, *previous;
uint8_t key_send[NOISE_SYMMETRIC_KEY_LEN];
uint8_t key_recv[NOISE_SYMMETRIC_KEY_LEN];
/* We now derive the keypair from the handshake */
if (hs->hs_state == CONSUMED_RESPONSE)
{
kp.kp_is_initiator = 1;
noise_kdf (key_send, key_recv, NULL, NULL,
NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0,
hs->hs_ck);
}
else if (hs->hs_state == CREATED_RESPONSE)
{
kp.kp_is_initiator = 0;
noise_kdf (key_recv, key_send, NULL, NULL,
NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0,
hs->hs_ck);
}
else
{
return false;
}
kp.kp_valid = 1;
kp.kp_send_index = vnet_crypto_key_add (vm,
VNET_CRYPTO_ALG_CHACHA20_POLY1305,
key_send, NOISE_SYMMETRIC_KEY_LEN);
kp.kp_recv_index = vnet_crypto_key_add (vm,
VNET_CRYPTO_ALG_CHACHA20_POLY1305,
key_recv, NOISE_SYMMETRIC_KEY_LEN);
kp.kp_local_index = hs->hs_local_index;
kp.kp_remote_index = hs->hs_remote_index;
kp.kp_birthdate = vlib_time_now (vm);
clib_memset (&kp.kp_ctr, 0, sizeof (kp.kp_ctr));
/* Now we need to add_new_keypair */
clib_rwlock_writer_lock (&r->r_keypair_lock);
next = r->r_next;
current = r->r_current;
previous = r->r_previous;
if (kp.kp_is_initiator)
{
if (next != NULL)
{
r->r_next = NULL;
r->r_previous = next;
noise_remote_keypair_free (vm, r, &current);
}
else
{
r->r_previous = current;
}
noise_remote_keypair_free (vm, r, &previous);
r->r_current = noise_remote_keypair_allocate (r);
*r->r_current = kp;
}
else
{
noise_remote_keypair_free (vm, r, &next);
r->r_previous = NULL;
noise_remote_keypair_free (vm, r, &previous);
r->r_next = noise_remote_keypair_allocate (r);
*r->r_next = kp;
}
clib_rwlock_writer_unlock (&r->r_keypair_lock);
secure_zero_memory (&r->r_handshake, sizeof (r->r_handshake));
secure_zero_memory (&kp, sizeof (kp));
return true;
}
void
noise_remote_clear (vlib_main_t * vm, noise_remote_t * r)
{
noise_remote_handshake_index_drop (r);
secure_zero_memory (&r->r_handshake, sizeof (r->r_handshake));
clib_rwlock_writer_lock (&r->r_keypair_lock);
noise_remote_keypair_free (vm, r, &r->r_next);
noise_remote_keypair_free (vm, r, &r->r_current);
noise_remote_keypair_free (vm, r, &r->r_previous);
r->r_next = NULL;
r->r_current = NULL;
r->r_previous = NULL;
clib_rwlock_writer_unlock (&r->r_keypair_lock);
}
void
noise_remote_expire_current (noise_remote_t * r)
{
clib_rwlock_writer_lock (&r->r_keypair_lock);
if (r->r_next != NULL)
r->r_next->kp_valid = 0;
if (r->r_current != NULL)
r->r_current->kp_valid = 0;
clib_rwlock_writer_unlock (&r->r_keypair_lock);
}
bool
noise_remote_ready (noise_remote_t * r)
{
noise_keypair_t *kp;
int ret;
clib_rwlock_reader_lock (&r->r_keypair_lock);
if ((kp = r->r_current) == NULL ||
!kp->kp_valid ||
wg_birthdate_has_expired (kp->kp_birthdate, REJECT_AFTER_TIME) ||
kp->kp_ctr.c_recv >= REJECT_AFTER_MESSAGES ||
kp->kp_ctr.c_send >= REJECT_AFTER_MESSAGES)
ret = false;
else
ret = true;
clib_rwlock_reader_unlock (&r->r_keypair_lock);
return ret;
}
static bool
chacha20poly1305_calc (vlib_main_t * vm,
u8 * src,
u32 src_len,
u8 * dst,
u8 * aad,
u32 aad_len,
u64 nonce,
vnet_crypto_op_id_t op_id,
vnet_crypto_key_index_t key_index)
{
vnet_crypto_op_t _op, *op = &_op;
u8 iv[12];
u8 tag_[NOISE_AUTHTAG_LEN] = { };
u8 src_[] = { };
clib_memset (iv, 0, 12);
clib_memcpy (iv + 4, &nonce, sizeof (nonce));
vnet_crypto_op_init (op, op_id);
op->tag_len = NOISE_AUTHTAG_LEN;
if (op_id == VNET_CRYPTO_OP_CHACHA20_POLY1305_DEC)
{
op->tag = src + src_len - NOISE_AUTHTAG_LEN;
src_len -= NOISE_AUTHTAG_LEN;
}
else
op->tag = tag_;
op->src = !src ? src_ : src;
op->len = src_len;
op->dst = dst;
op->key_index = key_index;
op->aad = aad;
op->aad_len = aad_len;
op->iv = iv;
vnet_crypto_process_ops (vm, op, 1);
if (op_id == VNET_CRYPTO_OP_CHACHA20_POLY1305_ENC)
{
clib_memcpy (dst + src_len, op->tag, NOISE_AUTHTAG_LEN);
}
return (op->status == VNET_CRYPTO_OP_STATUS_COMPLETED);
}
enum noise_state_crypt
noise_remote_encrypt (vlib_main_t * vm, noise_remote_t * r, uint32_t * r_idx,
uint64_t * nonce, uint8_t * src, size_t srclen,
uint8_t * dst)
{
noise_keypair_t *kp;
enum noise_state_crypt ret = SC_FAILED;
clib_rwlock_reader_lock (&r->r_keypair_lock);
if ((kp = r->r_current) == NULL)
goto error;
/* We confirm that our values are within our tolerances. We want:
* - a valid keypair
* - our keypair to be less than REJECT_AFTER_TIME seconds old
* - our receive counter to be less than REJECT_AFTER_MESSAGES
* - our send counter to be less than REJECT_AFTER_MESSAGES
*/
if (!kp->kp_valid ||
wg_birthdate_has_expired (kp->kp_birthdate, REJECT_AFTER_TIME) ||
kp->kp_ctr.c_recv >= REJECT_AFTER_MESSAGES ||
((*nonce = noise_counter_send (&kp->kp_ctr)) > REJECT_AFTER_MESSAGES))
goto error;
/* We encrypt into the same buffer, so the caller must ensure that buf
* has NOISE_AUTHTAG_LEN bytes to store the MAC. The nonce and index
* are passed back out to the caller through the provided data pointer. */
*r_idx = kp->kp_remote_index;
chacha20poly1305_calc (vm, src, srclen, dst, NULL, 0, *nonce,
VNET_CRYPTO_OP_CHACHA20_POLY1305_ENC,
kp->kp_send_index);
/* If our values are still within tolerances, but we are approaching
* the tolerances, we notify the caller with ESTALE that they should
* establish a new keypair. The current keypair can continue to be used
* until the tolerances are hit. We notify if:
* - our send counter is valid and not less than REKEY_AFTER_MESSAGES
* - we're the initiator and our keypair is older than
* REKEY_AFTER_TIME seconds */
ret = SC_KEEP_KEY_FRESH;
if ((kp->kp_valid && *nonce >= REKEY_AFTER_MESSAGES) ||
(kp->kp_is_initiator &&
wg_birthdate_has_expired (kp->kp_birthdate, REKEY_AFTER_TIME)))
goto error;
ret = SC_OK;
error:
clib_rwlock_reader_unlock (&r->r_keypair_lock);
return ret;
}
enum noise_state_crypt
noise_remote_decrypt (vlib_main_t * vm, noise_remote_t * r, uint32_t r_idx,
uint64_t nonce, uint8_t * src, size_t srclen,
uint8_t * dst)
{
noise_keypair_t *kp;
enum noise_state_crypt ret = SC_FAILED;
clib_rwlock_reader_lock (&r->r_keypair_lock);
if (r->r_current != NULL && r->r_current->kp_local_index == r_idx)
{
kp = r->r_current;
}
else if (r->r_previous != NULL && r->r_previous->kp_local_index == r_idx)
{
kp = r->r_previous;
}
else if (r->r_next != NULL && r->r_next->kp_local_index == r_idx)
{
kp = r->r_next;
}
else
{
goto error;
}
/* We confirm that our values are within our tolerances. These values
* are the same as the encrypt routine.
*
* kp_ctr isn't locked here, we're happy to accept a racy read. */
if (wg_birthdate_has_expired (kp->kp_birthdate, REJECT_AFTER_TIME) ||
kp->kp_ctr.c_recv >= REJECT_AFTER_MESSAGES)
goto error;
/* Decrypt, then validate the counter. We don't want to validate the
* counter before decrypting as we do not know the message is authentic
* prior to decryption. */
if (!chacha20poly1305_calc (vm, src, srclen, dst, NULL, 0, nonce,
VNET_CRYPTO_OP_CHACHA20_POLY1305_DEC,
kp->kp_recv_index))
goto error;
if (!noise_counter_recv (&kp->kp_ctr, nonce))
goto error;
/* If we've received the handshake confirming data packet then move the
* next keypair into current. If we do slide the next keypair in, then
* we skip the REKEY_AFTER_TIME_RECV check. This is safe to do as a
* data packet can't confirm a session that we are an INITIATOR of. */
if (kp == r->r_next)
{
clib_rwlock_reader_unlock (&r->r_keypair_lock);
clib_rwlock_writer_lock (&r->r_keypair_lock);
if (kp == r->r_next && kp->kp_local_index == r_idx)
{
noise_remote_keypair_free (vm, r, &r->r_previous);
r->r_previous = r->r_current;
r->r_current = r->r_next;
r->r_next = NULL;
ret = SC_CONN_RESET;
clib_rwlock_writer_unlock (&r->r_keypair_lock);
clib_rwlock_reader_lock (&r->r_keypair_lock);
goto error;
}
clib_rwlock_writer_unlock (&r->r_keypair_lock);
clib_rwlock_reader_lock (&r->r_keypair_lock);
}
/* Similar to when we encrypt, we want to notify the caller when we
* are approaching our tolerances. We notify if:
* - we're the initiator and the current keypair is older than
* REKEY_AFTER_TIME_RECV seconds. */
ret = SC_KEEP_KEY_FRESH;
kp = r->r_current;
if (kp != NULL &&
kp->kp_valid &&
kp->kp_is_initiator &&
wg_birthdate_has_expired (kp->kp_birthdate, REKEY_AFTER_TIME_RECV))
goto error;
ret = SC_OK;
error:
clib_rwlock_reader_unlock (&r->r_keypair_lock);
return ret;
}
/* Private functions - these should not be called outside this file under any
* circumstances. */
static noise_keypair_t *
noise_remote_keypair_allocate (noise_remote_t * r)
{
noise_keypair_t *kp;
kp = clib_mem_alloc (sizeof (*kp));
return kp;
}
static void
noise_remote_keypair_free (vlib_main_t * vm, noise_remote_t * r,
noise_keypair_t ** kp)
{
noise_local_t *local = noise_local_get (r->r_local_idx);
struct noise_upcall *u = &local->l_upcall;
if (*kp)
{
u->u_index_drop ((*kp)->kp_local_index);
vnet_crypto_key_del (vm, (*kp)->kp_send_index);
vnet_crypto_key_del (vm, (*kp)->kp_recv_index);
clib_mem_free (*kp);
}
}
static uint32_t
noise_remote_handshake_index_get (noise_remote_t * r)
{
noise_local_t *local = noise_local_get (r->r_local_idx);
struct noise_upcall *u = &local->l_upcall;
return u->u_index_set (r);
}
static void
noise_remote_handshake_index_drop (noise_remote_t * r)
{
noise_handshake_t *hs = &r->r_handshake;
noise_local_t *local = noise_local_get (r->r_local_idx);
struct noise_upcall *u = &local->l_upcall;
if (hs->hs_state != HS_ZEROED)
u->u_index_drop (hs->hs_local_index);
}
static uint64_t
noise_counter_send (noise_counter_t * ctr)
{
uint64_t ret;
ret = ctr->c_send++;
return ret;
}
static bool
noise_counter_recv (noise_counter_t * ctr, uint64_t recv)
{
uint64_t i, top, index_recv, index_ctr;
unsigned long bit;
bool ret = false;
/* Check that the recv counter is valid */
if (ctr->c_recv >= REJECT_AFTER_MESSAGES || recv >= REJECT_AFTER_MESSAGES)
goto error;
/* If the packet is out of the window, invalid */
if (recv + COUNTER_WINDOW_SIZE < ctr->c_recv)
goto error;
/* If the new counter is ahead of the current counter, we'll need to
* zero out the bitmap that has previously been used */
index_recv = recv / COUNTER_BITS;
index_ctr = ctr->c_recv / COUNTER_BITS;
if (recv > ctr->c_recv)
{
top = clib_min (index_recv - index_ctr, COUNTER_NUM);
for (i = 1; i <= top; i++)
ctr->c_backtrack[(i + index_ctr) & (COUNTER_NUM - 1)] = 0;
ctr->c_recv = recv;
}
index_recv %= COUNTER_NUM;
bit = 1ul << (recv % COUNTER_BITS);
if (ctr->c_backtrack[index_recv] & bit)
goto error;
ctr->c_backtrack[index_recv] |= bit;
ret = true;
error:
return ret;
}
static void
noise_kdf (uint8_t * a, uint8_t * b, uint8_t * c, const uint8_t * x,
size_t a_len, size_t b_len, size_t c_len, size_t x_len,
const uint8_t ck[NOISE_HASH_LEN])
{
uint8_t out[BLAKE2S_HASH_SIZE + 1];
uint8_t sec[BLAKE2S_HASH_SIZE];
/* Extract entropy from "x" into sec */
u32 l = 0;
HMAC (EVP_blake2s256 (), ck, NOISE_HASH_LEN, x, x_len, sec, &l);
ASSERT (l == BLAKE2S_HASH_SIZE);
if (a == NULL || a_len == 0)
goto out;
/* Expand first key: key = sec, data = 0x1 */
out[0] = 1;
HMAC (EVP_blake2s256 (), sec, BLAKE2S_HASH_SIZE, out, 1, out, &l);
ASSERT (l == BLAKE2S_HASH_SIZE);
clib_memcpy (a, out, a_len);
if (b == NULL || b_len == 0)
goto out;
/* Expand second key: key = sec, data = "a" || 0x2 */
out[BLAKE2S_HASH_SIZE] = 2;
HMAC (EVP_blake2s256 (), sec, BLAKE2S_HASH_SIZE, out, BLAKE2S_HASH_SIZE + 1,
out, &l);
ASSERT (l == BLAKE2S_HASH_SIZE);
clib_memcpy (b, out, b_len);
if (c == NULL || c_len == 0)
goto out;
/* Expand third key: key = sec, data = "b" || 0x3 */
out[BLAKE2S_HASH_SIZE] = 3;
HMAC (EVP_blake2s256 (), sec, BLAKE2S_HASH_SIZE, out, BLAKE2S_HASH_SIZE + 1,
out, &l);
ASSERT (l == BLAKE2S_HASH_SIZE);
clib_memcpy (c, out, c_len);
out:
/* Clear sensitive data from stack */
secure_zero_memory (sec, BLAKE2S_HASH_SIZE);
secure_zero_memory (out, BLAKE2S_HASH_SIZE + 1);
}
static bool
noise_mix_dh (uint8_t ck[NOISE_HASH_LEN],
uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
const uint8_t private[NOISE_PUBLIC_KEY_LEN],
const uint8_t public[NOISE_PUBLIC_KEY_LEN])
{
uint8_t dh[NOISE_PUBLIC_KEY_LEN];
if (!curve25519_gen_shared (dh, private, public))
return false;
noise_kdf (ck, key, NULL, dh,
NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN,
ck);
secure_zero_memory (dh, NOISE_PUBLIC_KEY_LEN);
return true;
}
static bool
noise_mix_ss (uint8_t ck[NOISE_HASH_LEN],
uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
const uint8_t ss[NOISE_PUBLIC_KEY_LEN])
{
static uint8_t null_point[NOISE_PUBLIC_KEY_LEN];
if (clib_memcmp (ss, null_point, NOISE_PUBLIC_KEY_LEN) == 0)
return false;
noise_kdf (ck, key, NULL, ss,
NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN,
ck);
return true;
}
static void
noise_mix_hash (uint8_t hash[NOISE_HASH_LEN], const uint8_t * src,
size_t src_len)
{
blake2s_state_t blake;
blake2s_init (&blake, NOISE_HASH_LEN);
blake2s_update (&blake, hash, NOISE_HASH_LEN);
blake2s_update (&blake, src, src_len);
blake2s_final (&blake, hash, NOISE_HASH_LEN);
}
static void
noise_mix_psk (uint8_t ck[NOISE_HASH_LEN], uint8_t hash[NOISE_HASH_LEN],
uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
const uint8_t psk[NOISE_SYMMETRIC_KEY_LEN])
{
uint8_t tmp[NOISE_HASH_LEN];
noise_kdf (ck, tmp, key, psk,
NOISE_HASH_LEN, NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN,
NOISE_SYMMETRIC_KEY_LEN, ck);
noise_mix_hash (hash, tmp, NOISE_HASH_LEN);
secure_zero_memory (tmp, NOISE_HASH_LEN);
}
static void
noise_param_init (uint8_t ck[NOISE_HASH_LEN], uint8_t hash[NOISE_HASH_LEN],
const uint8_t s[NOISE_PUBLIC_KEY_LEN])
{
blake2s_state_t blake;
blake2s (ck, NOISE_HASH_LEN, (uint8_t *) NOISE_HANDSHAKE_NAME,
strlen (NOISE_HANDSHAKE_NAME), NULL, 0);
blake2s_init (&blake, NOISE_HASH_LEN);
blake2s_update (&blake, ck, NOISE_HASH_LEN);
blake2s_update (&blake, (uint8_t *) NOISE_IDENTIFIER_NAME,
strlen (NOISE_IDENTIFIER_NAME));
blake2s_final (&blake, hash, NOISE_HASH_LEN);
noise_mix_hash (hash, s, NOISE_PUBLIC_KEY_LEN);
}
static void
noise_msg_encrypt (vlib_main_t * vm, uint8_t * dst, uint8_t * src,
size_t src_len, uint32_t key_idx,
uint8_t hash[NOISE_HASH_LEN])
{
/* Nonce always zero for Noise_IK */
chacha20poly1305_calc (vm, src, src_len, dst, hash, NOISE_HASH_LEN, 0,
VNET_CRYPTO_OP_CHACHA20_POLY1305_ENC, key_idx);
noise_mix_hash (hash, dst, src_len + NOISE_AUTHTAG_LEN);
}
static bool
noise_msg_decrypt (vlib_main_t * vm, uint8_t * dst, uint8_t * src,
size_t src_len, uint32_t key_idx,
uint8_t hash[NOISE_HASH_LEN])
{
/* Nonce always zero for Noise_IK */
if (!chacha20poly1305_calc (vm, src, src_len, dst, hash, NOISE_HASH_LEN, 0,
VNET_CRYPTO_OP_CHACHA20_POLY1305_DEC, key_idx))
return false;
noise_mix_hash (hash, src, src_len);
return true;
}
static void
noise_msg_ephemeral (uint8_t ck[NOISE_HASH_LEN], uint8_t hash[NOISE_HASH_LEN],
const uint8_t src[NOISE_PUBLIC_KEY_LEN])
{
noise_mix_hash (hash, src, NOISE_PUBLIC_KEY_LEN);
noise_kdf (ck, NULL, NULL, src, NOISE_HASH_LEN, 0, 0,
NOISE_PUBLIC_KEY_LEN, ck);
}
static void
noise_tai64n_now (uint8_t output[NOISE_TIMESTAMP_LEN])
{
uint32_t unix_sec;
uint32_t unix_nanosec;
uint64_t sec;
uint32_t nsec;
unix_time_now_nsec_fraction (&unix_sec, &unix_nanosec);
/* Round down the nsec counter to limit precise timing leak. */
unix_nanosec &= REJECT_INTERVAL_MASK;
/* https://cr.yp.to/libtai/tai64.html */
sec = htobe64 (0x400000000000000aULL + unix_sec);
nsec = htobe32 (unix_nanosec);
/* memcpy to output buffer, assuming output could be unaligned. */
clib_memcpy (output, &sec, sizeof (sec));
clib_memcpy (output + sizeof (sec), &nsec, sizeof (nsec));
}
static void
secure_zero_memory (void *v, size_t n)
{
static void *(*const volatile memset_v) (void *, int, size_t) = &memset;
memset_v (v, 0, n);
}
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/