| /* |
| * esp_encrypt.c : IPSec ESP encrypt node |
| * |
| * Copyright (c) 2015 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <vnet/vnet.h> |
| #include <vnet/api_errno.h> |
| #include <vnet/ip/ip.h> |
| #include <vnet/udp/udp.h> |
| |
| #include <vnet/ipsec/ipsec.h> |
| #include <vnet/ipsec/esp.h> |
| |
| ipsec_proto_main_t ipsec_proto_main; |
| |
| #define foreach_esp_encrypt_next \ |
| _(DROP, "error-drop") \ |
| _(IP4_LOOKUP, "ip4-lookup") \ |
| _(IP6_LOOKUP, "ip6-lookup") \ |
| _(INTERFACE_OUTPUT, "interface-output") |
| |
| #define _(v, s) ESP_ENCRYPT_NEXT_##v, |
| typedef enum |
| { |
| foreach_esp_encrypt_next |
| #undef _ |
| ESP_ENCRYPT_N_NEXT, |
| } esp_encrypt_next_t; |
| |
| #define foreach_esp_encrypt_error \ |
| _(RX_PKTS, "ESP pkts received") \ |
| _(NO_BUFFER, "No buffer (packet dropped)") \ |
| _(DECRYPTION_FAILED, "ESP encryption failed") \ |
| _(SEQ_CYCLED, "sequence number cycled") |
| |
| |
| typedef enum |
| { |
| #define _(sym,str) ESP_ENCRYPT_ERROR_##sym, |
| foreach_esp_encrypt_error |
| #undef _ |
| ESP_ENCRYPT_N_ERROR, |
| } esp_encrypt_error_t; |
| |
| static char *esp_encrypt_error_strings[] = { |
| #define _(sym,string) string, |
| foreach_esp_encrypt_error |
| #undef _ |
| }; |
| |
| vlib_node_registration_t esp_encrypt_node; |
| |
| typedef struct |
| { |
| u32 spi; |
| u32 seq; |
| u8 udp_encap; |
| ipsec_crypto_alg_t crypto_alg; |
| ipsec_integ_alg_t integ_alg; |
| } esp_encrypt_trace_t; |
| |
| /* packet trace format function */ |
| static u8 * |
| format_esp_encrypt_trace (u8 * s, va_list * args) |
| { |
| CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *); |
| CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *); |
| esp_encrypt_trace_t *t = va_arg (*args, esp_encrypt_trace_t *); |
| |
| s = format (s, "esp: spi %u seq %u crypto %U integrity %U%s", |
| t->spi, t->seq, |
| format_ipsec_crypto_alg, t->crypto_alg, |
| format_ipsec_integ_alg, t->integ_alg, |
| t->udp_encap ? " udp-encap-enabled" : ""); |
| return s; |
| } |
| |
| always_inline void |
| esp_encrypt_cbc (ipsec_crypto_alg_t alg, |
| u8 * in, u8 * out, size_t in_len, u8 * key, u8 * iv) |
| { |
| ipsec_proto_main_t *em = &ipsec_proto_main; |
| u32 thread_index = vlib_get_thread_index (); |
| #if OPENSSL_VERSION_NUMBER >= 0x10100000L |
| EVP_CIPHER_CTX *ctx = em->per_thread_data[thread_index].encrypt_ctx; |
| #else |
| EVP_CIPHER_CTX *ctx = &(em->per_thread_data[thread_index].encrypt_ctx); |
| #endif |
| const EVP_CIPHER *cipher = NULL; |
| int out_len; |
| |
| ASSERT (alg < IPSEC_CRYPTO_N_ALG); |
| |
| if (PREDICT_FALSE |
| (em->ipsec_proto_main_crypto_algs[alg].type == IPSEC_CRYPTO_ALG_NONE)) |
| return; |
| |
| if (PREDICT_FALSE |
| (alg != em->per_thread_data[thread_index].last_encrypt_alg)) |
| { |
| cipher = em->ipsec_proto_main_crypto_algs[alg].type; |
| em->per_thread_data[thread_index].last_encrypt_alg = alg; |
| } |
| |
| EVP_EncryptInit_ex (ctx, cipher, NULL, key, iv); |
| |
| EVP_EncryptUpdate (ctx, out, &out_len, in, in_len); |
| EVP_EncryptFinal_ex (ctx, out + out_len, &out_len); |
| } |
| |
| static uword |
| esp_encrypt_node_fn (vlib_main_t * vm, |
| vlib_node_runtime_t * node, vlib_frame_t * from_frame) |
| { |
| u32 n_left_from, *from, *to_next = 0, next_index; |
| from = vlib_frame_vector_args (from_frame); |
| n_left_from = from_frame->n_vectors; |
| ipsec_main_t *im = &ipsec_main; |
| ipsec_proto_main_t *em = &ipsec_proto_main; |
| u32 *recycle = 0; |
| u32 thread_index = vlib_get_thread_index (); |
| |
| ipsec_alloc_empty_buffers (vm, im); |
| |
| u32 *empty_buffers = im->empty_buffers[thread_index]; |
| |
| if (PREDICT_FALSE (vec_len (empty_buffers) < n_left_from)) |
| { |
| vlib_node_increment_counter (vm, esp_encrypt_node.index, |
| ESP_ENCRYPT_ERROR_NO_BUFFER, n_left_from); |
| clib_warning ("no enough empty buffers. discarding frame"); |
| goto free_buffers_and_exit; |
| } |
| |
| next_index = node->cached_next_index; |
| |
| while (n_left_from > 0) |
| { |
| u32 n_left_to_next; |
| |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| |
| while (n_left_from > 0 && n_left_to_next > 0) |
| { |
| u32 i_bi0, o_bi0, next0; |
| vlib_buffer_t *i_b0, *o_b0 = 0; |
| u32 sa_index0; |
| ipsec_sa_t *sa0; |
| ip4_and_esp_header_t *oh0 = 0; |
| ip6_and_esp_header_t *ih6_0, *oh6_0 = 0; |
| ip4_and_udp_and_esp_header_t *iuh0, *ouh0 = 0; |
| uword last_empty_buffer; |
| esp_header_t *o_esp0; |
| esp_footer_t *f0; |
| u8 is_ipv6; |
| u8 ip_udp_hdr_size; |
| u8 next_hdr_type; |
| u32 ip_proto = 0; |
| u8 transport_mode = 0; |
| |
| i_bi0 = from[0]; |
| from += 1; |
| n_left_from -= 1; |
| n_left_to_next -= 1; |
| |
| next0 = ESP_ENCRYPT_NEXT_DROP; |
| |
| i_b0 = vlib_get_buffer (vm, i_bi0); |
| sa_index0 = vnet_buffer (i_b0)->ipsec.sad_index; |
| sa0 = pool_elt_at_index (im->sad, sa_index0); |
| |
| if (PREDICT_FALSE (esp_seq_advance (sa0))) |
| { |
| clib_warning ("sequence number counter has cycled SPI %u", |
| sa0->spi); |
| vlib_node_increment_counter (vm, esp_encrypt_node.index, |
| ESP_ENCRYPT_ERROR_SEQ_CYCLED, 1); |
| //TODO: rekey SA |
| o_bi0 = i_bi0; |
| to_next[0] = o_bi0; |
| to_next += 1; |
| goto trace; |
| } |
| |
| sa0->total_data_size += i_b0->current_length; |
| |
| /* grab free buffer */ |
| last_empty_buffer = vec_len (empty_buffers) - 1; |
| o_bi0 = empty_buffers[last_empty_buffer]; |
| o_b0 = vlib_get_buffer (vm, o_bi0); |
| o_b0->flags = VLIB_BUFFER_TOTAL_LENGTH_VALID; |
| o_b0->current_data = sizeof (ethernet_header_t); |
| iuh0 = vlib_buffer_get_current (i_b0); |
| vlib_prefetch_buffer_with_index (vm, |
| empty_buffers[last_empty_buffer - |
| 1], STORE); |
| _vec_len (empty_buffers) = last_empty_buffer; |
| to_next[0] = o_bi0; |
| to_next += 1; |
| |
| /* add old buffer to the recycle list */ |
| vec_add1 (recycle, i_bi0); |
| |
| /* is ipv6 */ |
| if (PREDICT_FALSE |
| ((iuh0->ip4.ip_version_and_header_length & 0xF0) == 0x60)) |
| { |
| is_ipv6 = 1; |
| ih6_0 = vlib_buffer_get_current (i_b0); |
| next_hdr_type = IP_PROTOCOL_IPV6; |
| oh6_0 = vlib_buffer_get_current (o_b0); |
| |
| oh6_0->ip6.ip_version_traffic_class_and_flow_label = |
| ih6_0->ip6.ip_version_traffic_class_and_flow_label; |
| oh6_0->ip6.protocol = IP_PROTOCOL_IPSEC_ESP; |
| ip_udp_hdr_size = sizeof (ip6_header_t); |
| o_esp0 = vlib_buffer_get_current (o_b0) + ip_udp_hdr_size; |
| oh6_0->ip6.hop_limit = 254; |
| oh6_0->ip6.src_address.as_u64[0] = |
| ih6_0->ip6.src_address.as_u64[0]; |
| oh6_0->ip6.src_address.as_u64[1] = |
| ih6_0->ip6.src_address.as_u64[1]; |
| oh6_0->ip6.dst_address.as_u64[0] = |
| ih6_0->ip6.dst_address.as_u64[0]; |
| oh6_0->ip6.dst_address.as_u64[1] = |
| ih6_0->ip6.dst_address.as_u64[1]; |
| o_esp0->spi = clib_net_to_host_u32 (sa0->spi); |
| o_esp0->seq = clib_net_to_host_u32 (sa0->seq); |
| ip_proto = ih6_0->ip6.protocol; |
| |
| next0 = ESP_ENCRYPT_NEXT_IP6_LOOKUP; |
| } |
| else |
| { |
| is_ipv6 = 0; |
| next_hdr_type = IP_PROTOCOL_IP_IN_IP; |
| oh0 = vlib_buffer_get_current (o_b0); |
| ouh0 = vlib_buffer_get_current (o_b0); |
| |
| oh0->ip4.ip_version_and_header_length = 0x45; |
| oh0->ip4.tos = iuh0->ip4.tos; |
| oh0->ip4.fragment_id = 0; |
| oh0->ip4.flags_and_fragment_offset = 0; |
| oh0->ip4.ttl = 254; |
| if (sa0->udp_encap) |
| { |
| ouh0->udp.src_port = |
| clib_host_to_net_u16 (UDP_DST_PORT_ipsec); |
| ouh0->udp.dst_port = |
| clib_host_to_net_u16 (UDP_DST_PORT_ipsec); |
| ouh0->udp.checksum = 0; |
| ouh0->ip4.protocol = IP_PROTOCOL_UDP; |
| ip_udp_hdr_size = |
| sizeof (udp_header_t) + sizeof (ip4_header_t); |
| } |
| else |
| { |
| oh0->ip4.protocol = IP_PROTOCOL_IPSEC_ESP; |
| ip_udp_hdr_size = sizeof (ip4_header_t); |
| } |
| o_esp0 = vlib_buffer_get_current (o_b0) + ip_udp_hdr_size; |
| oh0->ip4.src_address.as_u32 = iuh0->ip4.src_address.as_u32; |
| oh0->ip4.dst_address.as_u32 = iuh0->ip4.dst_address.as_u32; |
| o_esp0->spi = clib_net_to_host_u32 (sa0->spi); |
| o_esp0->seq = clib_net_to_host_u32 (sa0->seq); |
| ip_proto = iuh0->ip4.protocol; |
| |
| next0 = ESP_ENCRYPT_NEXT_IP4_LOOKUP; |
| } |
| |
| if (PREDICT_TRUE |
| (!is_ipv6 && sa0->is_tunnel && !sa0->is_tunnel_ip6)) |
| { |
| oh0->ip4.src_address.as_u32 = sa0->tunnel_src_addr.ip4.as_u32; |
| oh0->ip4.dst_address.as_u32 = sa0->tunnel_dst_addr.ip4.as_u32; |
| |
| vnet_buffer (o_b0)->sw_if_index[VLIB_TX] = (u32) ~ 0; |
| } |
| else if (is_ipv6 && sa0->is_tunnel && sa0->is_tunnel_ip6) |
| { |
| oh6_0->ip6.src_address.as_u64[0] = |
| sa0->tunnel_src_addr.ip6.as_u64[0]; |
| oh6_0->ip6.src_address.as_u64[1] = |
| sa0->tunnel_src_addr.ip6.as_u64[1]; |
| oh6_0->ip6.dst_address.as_u64[0] = |
| sa0->tunnel_dst_addr.ip6.as_u64[0]; |
| oh6_0->ip6.dst_address.as_u64[1] = |
| sa0->tunnel_dst_addr.ip6.as_u64[1]; |
| |
| vnet_buffer (o_b0)->sw_if_index[VLIB_TX] = (u32) ~ 0; |
| } |
| else |
| { |
| next_hdr_type = ip_proto; |
| if (vnet_buffer (i_b0)->sw_if_index[VLIB_TX] != ~0) |
| { |
| transport_mode = 1; |
| ethernet_header_t *ieh0, *oeh0; |
| ieh0 = |
| (ethernet_header_t *) ((u8 *) |
| vlib_buffer_get_current (i_b0) - |
| sizeof (ethernet_header_t)); |
| oeh0 = (ethernet_header_t *) o_b0->data; |
| clib_memcpy (oeh0, ieh0, sizeof (ethernet_header_t)); |
| next0 = ESP_ENCRYPT_NEXT_INTERFACE_OUTPUT; |
| vnet_buffer (o_b0)->sw_if_index[VLIB_TX] = |
| vnet_buffer (i_b0)->sw_if_index[VLIB_TX]; |
| } |
| vlib_buffer_advance (i_b0, ip_udp_hdr_size); |
| } |
| |
| ASSERT (sa0->crypto_alg < IPSEC_CRYPTO_N_ALG); |
| |
| if (PREDICT_TRUE (sa0->crypto_alg != IPSEC_CRYPTO_ALG_NONE)) |
| { |
| |
| const int BLOCK_SIZE = |
| em->ipsec_proto_main_crypto_algs[sa0->crypto_alg].block_size; |
| const int IV_SIZE = |
| em->ipsec_proto_main_crypto_algs[sa0->crypto_alg].iv_size; |
| int blocks = 1 + (i_b0->current_length + 1) / BLOCK_SIZE; |
| |
| /* pad packet in input buffer */ |
| u8 pad_bytes = BLOCK_SIZE * blocks - 2 - i_b0->current_length; |
| u8 i; |
| u8 *padding = |
| vlib_buffer_get_current (i_b0) + i_b0->current_length; |
| i_b0->current_length = BLOCK_SIZE * blocks; |
| for (i = 0; i < pad_bytes; ++i) |
| { |
| padding[i] = i + 1; |
| } |
| f0 = vlib_buffer_get_current (i_b0) + i_b0->current_length - 2; |
| f0->pad_length = pad_bytes; |
| f0->next_header = next_hdr_type; |
| |
| o_b0->current_length = ip_udp_hdr_size + sizeof (esp_header_t) + |
| BLOCK_SIZE * blocks + IV_SIZE; |
| |
| vnet_buffer (o_b0)->sw_if_index[VLIB_RX] = |
| vnet_buffer (i_b0)->sw_if_index[VLIB_RX]; |
| |
| u8 iv[em-> |
| ipsec_proto_main_crypto_algs[sa0->crypto_alg].iv_size]; |
| RAND_bytes (iv, sizeof (iv)); |
| |
| clib_memcpy ((u8 *) vlib_buffer_get_current (o_b0) + |
| ip_udp_hdr_size + sizeof (esp_header_t), iv, |
| em->ipsec_proto_main_crypto_algs[sa0-> |
| crypto_alg].iv_size); |
| |
| esp_encrypt_cbc (sa0->crypto_alg, |
| (u8 *) vlib_buffer_get_current (i_b0), |
| (u8 *) vlib_buffer_get_current (o_b0) + |
| ip_udp_hdr_size + sizeof (esp_header_t) + |
| IV_SIZE, BLOCK_SIZE * blocks, |
| sa0->crypto_key, iv); |
| } |
| |
| o_b0->current_length += hmac_calc (sa0->integ_alg, sa0->integ_key, |
| sa0->integ_key_len, |
| (u8 *) o_esp0, |
| o_b0->current_length - |
| ip_udp_hdr_size, |
| vlib_buffer_get_current (o_b0) + |
| o_b0->current_length, |
| sa0->use_esn, sa0->seq_hi); |
| |
| |
| if (PREDICT_FALSE (is_ipv6)) |
| { |
| oh6_0->ip6.payload_length = |
| clib_host_to_net_u16 (vlib_buffer_length_in_chain (vm, o_b0) - |
| sizeof (ip6_header_t)); |
| } |
| else |
| { |
| oh0->ip4.length = |
| clib_host_to_net_u16 (vlib_buffer_length_in_chain (vm, o_b0)); |
| oh0->ip4.checksum = ip4_header_checksum (&oh0->ip4); |
| if (sa0->udp_encap) |
| { |
| ouh0->udp.length = |
| clib_host_to_net_u16 (oh0->ip4.length - |
| ip4_header_bytes (&oh0->ip4)); |
| } |
| } |
| |
| if (transport_mode) |
| vlib_buffer_reset (o_b0); |
| |
| trace: |
| if (PREDICT_FALSE (i_b0->flags & VLIB_BUFFER_IS_TRACED)) |
| { |
| if (o_b0) |
| { |
| o_b0->flags |= VLIB_BUFFER_IS_TRACED; |
| o_b0->trace_index = i_b0->trace_index; |
| esp_encrypt_trace_t *tr = |
| vlib_add_trace (vm, node, o_b0, sizeof (*tr)); |
| tr->spi = sa0->spi; |
| tr->seq = sa0->seq - 1; |
| tr->udp_encap = sa0->udp_encap; |
| tr->crypto_alg = sa0->crypto_alg; |
| tr->integ_alg = sa0->integ_alg; |
| } |
| } |
| |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, |
| to_next, n_left_to_next, o_bi0, |
| next0); |
| } |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| vlib_node_increment_counter (vm, esp_encrypt_node.index, |
| ESP_ENCRYPT_ERROR_RX_PKTS, |
| from_frame->n_vectors); |
| |
| free_buffers_and_exit: |
| if (recycle) |
| vlib_buffer_free (vm, recycle, vec_len (recycle)); |
| vec_free (recycle); |
| return from_frame->n_vectors; |
| } |
| |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (esp_encrypt_node) = { |
| .function = esp_encrypt_node_fn, |
| .name = "esp-encrypt", |
| .vector_size = sizeof (u32), |
| .format_trace = format_esp_encrypt_trace, |
| .type = VLIB_NODE_TYPE_INTERNAL, |
| |
| .n_errors = ARRAY_LEN(esp_encrypt_error_strings), |
| .error_strings = esp_encrypt_error_strings, |
| |
| .n_next_nodes = ESP_ENCRYPT_N_NEXT, |
| .next_nodes = { |
| #define _(s,n) [ESP_ENCRYPT_NEXT_##s] = n, |
| foreach_esp_encrypt_next |
| #undef _ |
| }, |
| }; |
| /* *INDENT-ON* */ |
| |
| VLIB_NODE_FUNCTION_MULTIARCH (esp_encrypt_node, esp_encrypt_node_fn) |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |