blob: 143833dfb20ecee01d5649a87f17127586d98884 [file] [log] [blame]
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __included_vnet_classify_h__
#define __included_vnet_classify_h__
#include <vnet/vnet.h>
#include <vnet/api_errno.h> /* for API error numbers */
#include <vppinfra/error.h>
#include <vppinfra/hash.h>
#include <vppinfra/cache.h>
#include <vppinfra/crc32.h>
#include <vppinfra/xxhash.h>
extern vlib_node_registration_t ip4_classify_node;
extern vlib_node_registration_t ip6_classify_node;
#define CLASSIFY_TRACE 0
/*
* Classify table option to process packets
* CLASSIFY_FLAG_USE_CURR_DATA:
* - classify packets starting from VPP node’s current data pointer
*/
typedef enum vnet_classify_flags_t_
{
CLASSIFY_FLAG_NONE = 0,
CLASSIFY_FLAG_USE_CURR_DATA = (1 << 0),
} __clib_packed vnet_classify_flags_t;
/*
* Classify session action
* CLASSIFY_ACTION_SET_IP4_FIB_INDEX:
* - Classified IP packets will be looked up
* from the specified ipv4 fib table
* CLASSIFY_ACTION_SET_IP6_FIB_INDEX:
* - Classified IP packets will be looked up
* from the specified ipv6 fib table
*/
typedef enum vnet_classify_action_t_
{
CLASSIFY_ACTION_NONE = 0,
CLASSIFY_ACTION_SET_IP4_FIB_INDEX = 1,
CLASSIFY_ACTION_SET_IP6_FIB_INDEX = 2,
CLASSIFY_ACTION_SET_METADATA = 3,
} __clib_packed vnet_classify_action_t;
struct _vnet_classify_main;
typedef struct _vnet_classify_main vnet_classify_main_t;
#define foreach_size_in_u32x4 \
_(1) \
_(2) \
_(3) \
_(4) \
_(5)
typedef struct _vnet_classify_entry
{
/* put into vnet_buffer(b)->l2_classfy.opaque_index */
union
{
struct
{
u32 opaque_index;
/* advance on hit, note it's a signed quantity... */
i32 advance;
};
u64 opaque_count;
};
/* Hit counter */
union
{
u64 hits;
struct _vnet_classify_entry *next_free;
};
/* last heard time */
f64 last_heard;
/* Really only need 1 bit */
u8 flags;
#define VNET_CLASSIFY_ENTRY_FREE (1<<0)
vnet_classify_action_t action;
u16 metadata;
/* Graph node next index */
u32 next_index;
/* Must be aligned to a 16-octet boundary */
u32x4 key[0];
} vnet_classify_entry_t;
/**
* Check there's no padding in the entry. the key lies on a 16 byte boundary.
*/
STATIC_ASSERT_OFFSET_OF (vnet_classify_entry_t, key, 32);
static inline int
vnet_classify_entry_is_free (vnet_classify_entry_t * e)
{
return e->flags & VNET_CLASSIFY_ENTRY_FREE;
}
static inline int
vnet_classify_entry_is_busy (vnet_classify_entry_t * e)
{
return ((e->flags & VNET_CLASSIFY_ENTRY_FREE) == 0);
}
/* Need these to con the vector allocator */
#define _(size) \
typedef struct \
{ \
vnet_classify_entry_t e; \
u32x4 key[size]; \
} __clib_packed vnet_classify_entry_##size##_t;
foreach_size_in_u32x4;
#undef _
typedef struct
{
union
{
struct
{
u32 offset;
u8 linear_search;
u8 pad[2];
u8 log2_pages;
};
u64 as_u64;
};
} vnet_classify_bucket_t;
typedef struct
{
CLIB_CACHE_LINE_ALIGN_MARK (cacheline0);
/* hash Buckets */
vnet_classify_bucket_t *buckets;
/* Private allocation arena, protected by the writer lock,
* where the entries are stored. */
void *mheap;
/* User/client data associated with the table */
uword user_ctx;
u32 nbuckets;
u32 log2_nbuckets;
u32 entries_per_page;
u32 skip_n_vectors;
u32 match_n_vectors;
u16 load_mask;
/* Index of next table to try */
u32 next_table_index;
/* packet offsets */
i16 current_data_offset;
vnet_classify_flags_t current_data_flag;
/* Miss next index, return if next_table_index = 0 */
u32 miss_next_index;
/**
* All members accessed in the DP above here
*/
CLIB_CACHE_LINE_ALIGN_MARK (cacheline1);
/* Config parameters */
u32 linear_buckets;
u32 active_elements;
u32 data_offset;
/* Per-bucket working copies, one per thread */
vnet_classify_entry_t **working_copies;
int *working_copy_lengths;
vnet_classify_bucket_t saved_bucket;
/* Free entry freelists */
vnet_classify_entry_t **freelists;
/* Writer (only) lock for this table */
clib_spinlock_t writer_lock;
CLIB_CACHE_LINE_ALIGN_MARK (cacheline2);
/* Mask to apply after skipping N vectors */
union
{
u32x4 mask[8];
u32 mask_u32[32];
};
} vnet_classify_table_t;
/**
* Ensure DP fields don't spill over to cache-line 2
*/
STATIC_ASSERT_OFFSET_OF (vnet_classify_table_t, cacheline1,
CLIB_CACHE_LINE_BYTES);
/**
* The vector size for the classifier
* in the add/del table 'match' is the number of vectors of this size
*/
#define VNET_CLASSIFY_VECTOR_SIZE \
sizeof (((vnet_classify_table_t *) 0)->mask[0])
struct _vnet_classify_main
{
/* Table pool */
vnet_classify_table_t *tables;
/* Registered next-index, opaque unformat fcns */
unformat_function_t **unformat_l2_next_index_fns;
unformat_function_t **unformat_ip_next_index_fns;
unformat_function_t **unformat_acl_next_index_fns;
unformat_function_t **unformat_policer_next_index_fns;
unformat_function_t **unformat_opaque_index_fns;
/* Per-interface filter table. [0] is used for pcap */
u32 *classify_table_index_by_sw_if_index;
/* convenience variables */
vlib_main_t *vlib_main;
vnet_main_t *vnet_main;
};
extern vnet_classify_main_t vnet_classify_main;
u8 *format_classify_entry (u8 *s, va_list *args);
u8 *format_classify_table (u8 * s, va_list * args);
u8 *format_vnet_classify_table (u8 *s, va_list *args);
u32 vnet_classify_hash_packet (const vnet_classify_table_t *t, u8 *h);
static_always_inline vnet_classify_table_t *
vnet_classify_table_get (u32 table_index)
{
vnet_classify_main_t *vcm = &vnet_classify_main;
return (pool_elt_at_index (vcm->tables, table_index));
}
static inline u32
vnet_classify_hash_packet_inline (const vnet_classify_table_t *t, const u8 *h)
{
u64 xor_sum;
ASSERT (t);
h += t->skip_n_vectors * 16;
#if defined(CLIB_HAVE_VEC512) && defined(CLIB_HAVE_VEC512_MASK_LOAD_STORE)
u64x8 xor_sum_x8, *mask = (u64x8 *) t->mask;
u16 load_mask = t->load_mask;
u64x8u *data = (u64x8u *) h;
xor_sum_x8 = u64x8_mask_load_zero (data, load_mask) & mask[0];
if (PREDICT_FALSE (load_mask >> 8))
xor_sum_x8 ^= u64x8_mask_load_zero (data + 1, load_mask >> 8) & mask[1];
xor_sum_x8 ^= u64x8_align_right (xor_sum_x8, xor_sum_x8, 4);
xor_sum_x8 ^= u64x8_align_right (xor_sum_x8, xor_sum_x8, 2);
xor_sum = xor_sum_x8[0] ^ xor_sum_x8[1];
#elif defined(CLIB_HAVE_VEC256) && defined(CLIB_HAVE_VEC256_MASK_LOAD_STORE)
u64x4 xor_sum_x4, *mask = (u64x4 *) t->mask;
u16 load_mask = t->load_mask;
u64x4u *data = (u64x4u *) h;
xor_sum_x4 = u64x4_mask_load_zero (data, load_mask) & mask[0];
xor_sum_x4 ^= u64x4_mask_load_zero (data + 1, load_mask >> 4) & mask[1];
if (PREDICT_FALSE (load_mask >> 8))
xor_sum_x4 ^= u64x4_mask_load_zero (data + 2, load_mask >> 8) & mask[2];
xor_sum_x4 ^= u64x4_align_right (xor_sum_x4, xor_sum_x4, 2);
xor_sum = xor_sum_x4[0] ^ xor_sum_x4[1];
#elif defined(CLIB_HAVE_VEC128)
u64x2 *mask = (u64x2 *) t->mask;
u64x2u *data = (u64x2u *) h;
u64x2 xor_sum_x2;
xor_sum_x2 = data[0] & mask[0];
switch (t->match_n_vectors)
{
case 5:
xor_sum_x2 ^= data[4] & mask[4];
/* FALLTHROUGH */
case 4:
xor_sum_x2 ^= data[3] & mask[3];
/* FALLTHROUGH */
case 3:
xor_sum_x2 ^= data[2] & mask[2];
/* FALLTHROUGH */
case 2:
xor_sum_x2 ^= data[1] & mask[1];
/* FALLTHROUGH */
case 1:
break;
default:
abort ();
}
xor_sum = xor_sum_x2[0] ^ xor_sum_x2[1];
#else
u64 *data = (u64 *) h;
u64 *mask = (u64 *) t->mask;
xor_sum = (data[0] & mask[0]) ^ (data[1] & mask[1]);
switch (t->match_n_vectors)
{
case 5:
xor_sum ^= (data[8] & mask[8]) ^ (data[9] & mask[9]);
/* FALLTHROUGH */
case 4:
xor_sum ^= (data[6] & mask[6]) ^ (data[7] & mask[7]);
/* FALLTHROUGH */
case 3:
xor_sum ^= (data[4] & mask[4]) ^ (data[5] & mask[5]);
/* FALLTHROUGH */
case 2:
xor_sum ^= (data[2] & mask[2]) ^ (data[3] & mask[3]);
/* FALLTHROUGH */
case 1:
break;
default:
abort ();
}
#endif /* CLIB_HAVE_VEC128 */
#ifdef clib_crc32c_uses_intrinsics
return clib_crc32c ((u8 *) & xor_sum, sizeof (xor_sum));
#else
return clib_xxhash (xor_sum);
#endif
}
static inline void
vnet_classify_prefetch_bucket (vnet_classify_table_t * t, u64 hash)
{
u32 bucket_index;
ASSERT (is_pow2 (t->nbuckets));
bucket_index = hash & (t->nbuckets - 1);
clib_prefetch_load (&t->buckets[bucket_index]);
}
static inline vnet_classify_entry_t *
vnet_classify_get_entry (const vnet_classify_table_t *t, uword offset)
{
u8 *hp = clib_mem_get_heap_base (t->mheap);
u8 *vp = hp + offset;
return (vnet_classify_entry_t *) vp;
}
static inline uword
vnet_classify_get_offset (vnet_classify_table_t * t,
vnet_classify_entry_t * v)
{
u8 *hp, *vp;
hp = (u8 *) clib_mem_get_heap_base (t->mheap);
vp = (u8 *) v;
ASSERT ((vp - hp) < 0x100000000ULL);
return vp - hp;
}
static inline vnet_classify_entry_t *
vnet_classify_entry_at_index (const vnet_classify_table_t *t,
vnet_classify_entry_t *e, u32 index)
{
u8 *eu8;
eu8 = (u8 *) e;
eu8 += index * (sizeof (vnet_classify_entry_t) +
(t->match_n_vectors * sizeof (u32x4)));
return (vnet_classify_entry_t *) eu8;
}
static inline void
vnet_classify_prefetch_entry (vnet_classify_table_t * t, u64 hash)
{
u32 bucket_index;
u32 value_index;
vnet_classify_bucket_t *b;
vnet_classify_entry_t *e;
bucket_index = hash & (t->nbuckets - 1);
b = &t->buckets[bucket_index];
if (b->offset == 0)
return;
hash >>= t->log2_nbuckets;
e = vnet_classify_get_entry (t, b->offset);
value_index = hash & ((1 << b->log2_pages) - 1);
e = vnet_classify_entry_at_index (t, e, value_index);
clib_prefetch_load (e);
}
vnet_classify_entry_t *
vnet_classify_find_entry (const vnet_classify_table_t *t, u8 *h, u32 hash,
f64 now);
static_always_inline int
vnet_classify_entry_is_equal (vnet_classify_entry_t *v, const u8 *d, u8 *m,
u32 match_n_vectors, u16 load_mask)
{
#if defined(CLIB_HAVE_VEC512) && defined(CLIB_HAVE_VEC512_MASK_LOAD_STORE)
u64x8 r, *mask = (u64x8 *) m;
u64x8u *data = (u64x8u *) d;
u64x8 *key = (u64x8 *) v->key;
r = (u64x8_mask_load_zero (data, load_mask) & mask[0]) ^
u64x8_mask_load_zero (key, load_mask);
load_mask >>= 8;
if (PREDICT_FALSE (load_mask))
r |= (u64x8_mask_load_zero (data + 1, load_mask) & mask[1]) ^
u64x8_mask_load_zero (key + 1, load_mask);
if (u64x8_is_all_zero (r))
return 1;
#elif defined(CLIB_HAVE_VEC256) && defined(CLIB_HAVE_VEC256_MASK_LOAD_STORE)
u64x4 r, *mask = (u64x4 *) m;
u64x4u *data = (u64x4u *) d;
u64x4 *key = (u64x4 *) v->key;
r = (u64x4_mask_load_zero (data, load_mask) & mask[0]) ^
u64x4_mask_load_zero (key, load_mask);
load_mask >>= 4;
r |= (u64x4_mask_load_zero (data + 1, load_mask) & mask[1]) ^
u64x4_mask_load_zero (key + 1, load_mask);
load_mask >>= 4;
if (PREDICT_FALSE (load_mask))
r |= (u64x4_mask_load_zero (data + 2, load_mask) & mask[2]) ^
u64x4_mask_load_zero (key + 2, load_mask);
if (u64x4_is_all_zero (r))
return 1;
#elif defined(CLIB_HAVE_VEC128)
u64x2u *data = (u64x2 *) d;
u64x2 *key = (u64x2 *) v->key;
u64x2 *mask = (u64x2 *) m;
u64x2 r;
r = (data[0] & mask[0]) ^ key[0];
switch (match_n_vectors)
{
case 5:
r |= (data[4] & mask[4]) ^ key[4];
/* fall through */
case 4:
r |= (data[3] & mask[3]) ^ key[3];
/* fall through */
case 3:
r |= (data[2] & mask[2]) ^ key[2];
/* fall through */
case 2:
r |= (data[1] & mask[1]) ^ key[1];
/* fall through */
case 1:
break;
default:
abort ();
}
if (u64x2_is_all_zero (r))
return 1;
#else
u64 *data = (u64 *) d;
u64 *key = (u64 *) v->key;
u64 *mask = (u64 *) m;
u64 r;
r = ((data[0] & mask[0]) ^ key[0]) | ((data[1] & mask[1]) ^ key[1]);
switch (match_n_vectors)
{
case 5:
r |= ((data[8] & mask[8]) ^ key[8]) | ((data[9] & mask[9]) ^ key[9]);
/* fall through */
case 4:
r |= ((data[6] & mask[6]) ^ key[6]) | ((data[7] & mask[7]) ^ key[7]);
/* fall through */
case 3:
r |= ((data[4] & mask[4]) ^ key[4]) | ((data[5] & mask[5]) ^ key[5]);
/* fall through */
case 2:
r |= ((data[2] & mask[2]) ^ key[2]) | ((data[3] & mask[3]) ^ key[3]);
/* fall through */
case 1:
break;
default:
abort ();
}
if (r == 0)
return 1;
#endif /* CLIB_HAVE_VEC128 */
return 0;
}
static inline vnet_classify_entry_t *
vnet_classify_find_entry_inline (const vnet_classify_table_t *t, const u8 *h,
u32 hash, f64 now)
{
vnet_classify_entry_t *v;
vnet_classify_bucket_t *b;
u32 bucket_index, limit, pages, match_n_vectors = t->match_n_vectors;
u16 load_mask = t->load_mask;
u8 *mask = (u8 *) t->mask;
int i;
bucket_index = hash & (t->nbuckets - 1);
b = &t->buckets[bucket_index];
if (b->offset == 0)
return 0;
pages = 1 << b->log2_pages;
v = vnet_classify_get_entry (t, b->offset);
limit = t->entries_per_page;
if (PREDICT_FALSE (b->linear_search))
{
limit *= pages;
v = vnet_classify_entry_at_index (t, v, 0);
}
else
{
hash >>= t->log2_nbuckets;
v = vnet_classify_entry_at_index (t, v, hash & (pages - 1));
}
h += t->skip_n_vectors * 16;
for (i = 0; i < limit; i++)
{
if (vnet_classify_entry_is_equal (v, h, mask, match_n_vectors,
load_mask))
{
if (PREDICT_TRUE (now))
{
v->hits++;
v->last_heard = now;
}
return (v);
}
v = vnet_classify_entry_at_index (t, v, 1);
}
return 0;
}
vnet_classify_table_t *vnet_classify_new_table (vnet_classify_main_t *cm,
const u8 *mask, u32 nbuckets,
u32 memory_size,
u32 skip_n_vectors,
u32 match_n_vectors);
int vnet_classify_add_del_session (vnet_classify_main_t *cm, u32 table_index,
const u8 *match, u32 hit_next_index,
u32 opaque_index, i32 advance, u8 action,
u16 metadata, int is_add);
int vnet_classify_add_del_table (vnet_classify_main_t *cm, const u8 *mask,
u32 nbuckets, u32 memory_size, u32 skip,
u32 match, u32 next_table_index,
u32 miss_next_index, u32 *table_index,
u8 current_data_flag, i16 current_data_offset,
int is_add, int del_chain);
void vnet_classify_delete_table_index (vnet_classify_main_t *cm,
u32 table_index, int del_chain);
unformat_function_t unformat_ip4_mask;
unformat_function_t unformat_ip6_mask;
unformat_function_t unformat_l3_mask;
unformat_function_t unformat_l2_mask;
unformat_function_t unformat_classify_mask;
unformat_function_t unformat_l2_next_index;
unformat_function_t unformat_ip_next_index;
unformat_function_t unformat_ip4_match;
unformat_function_t unformat_ip6_match;
unformat_function_t unformat_l3_match;
unformat_function_t unformat_l4_match;
unformat_function_t unformat_vlan_tag;
unformat_function_t unformat_l2_match;
unformat_function_t unformat_classify_match;
void vnet_classify_register_unformat_ip_next_index_fn
(unformat_function_t * fn);
void vnet_classify_register_unformat_l2_next_index_fn
(unformat_function_t * fn);
void vnet_classify_register_unformat_acl_next_index_fn
(unformat_function_t * fn);
void vnet_classify_register_unformat_policer_next_index_fn
(unformat_function_t * fn);
void vnet_classify_register_unformat_opaque_index_fn (unformat_function_t *
fn);
u32 classify_get_pcap_chain (vnet_classify_main_t * cm, u32 sw_if_index);
void classify_set_pcap_chain (vnet_classify_main_t * cm,
u32 sw_if_index, u32 table_index);
u32 classify_get_trace_chain (void);
void classify_set_trace_chain (vnet_classify_main_t * cm, u32 table_index);
u32 classify_sort_table_chain (vnet_classify_main_t * cm, u32 table_index);
u32 classify_lookup_chain (u32 table_index,
u8 * mask, u32 n_skip, u32 n_match);
#endif /* __included_vnet_classify_h__ */
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/