blob: 8a5f76c3b33579a86fb4ee4be00595d56d0dfc4e [file] [log] [blame]
/* SPDX-License-Identifier: Apache-2.0
* Copyright(c) 2023 Cisco Systems, Inc.
*/
#ifndef __crypto_aes_gcm_h__
#define __crypto_aes_gcm_h__
#include <vppinfra/clib.h>
#include <vppinfra/vector.h>
#include <vppinfra/cache.h>
#include <vppinfra/string.h>
#include <vppinfra/crypto/aes.h>
#include <vppinfra/crypto/ghash.h>
#define NUM_HI 36
#if defined(__VAES__) && defined(__AVX512F__)
typedef u8x64 aes_data_t;
typedef u8x64u aes_ghash_t;
typedef u8x64u aes_mem_t;
typedef u32x16 aes_gcm_counter_t;
#define N 64
#define aes_gcm_load_partial(p, n) u8x64_load_partial ((u8 *) (p), n)
#define aes_gcm_store_partial(v, p, n) u8x64_store_partial (v, (u8 *) (p), n)
#define aes_gcm_splat(v) u8x64_splat (v)
#define aes_gcm_reflect(r) u8x64_reflect_u8x16 (r)
#define aes_gcm_ghash_reduce(c) ghash4_reduce (&(c)->gd)
#define aes_gcm_ghash_reduce2(c) ghash4_reduce2 (&(c)->gd)
#define aes_gcm_ghash_final(c) (c)->T = ghash4_final (&(c)->gd)
#elif defined(__VAES__)
typedef u8x32 aes_data_t;
typedef u8x32u aes_ghash_t;
typedef u8x32u aes_mem_t;
typedef u32x8 aes_gcm_counter_t;
#define N 32
#define aes_gcm_load_partial(p, n) u8x32_load_partial ((u8 *) (p), n)
#define aes_gcm_store_partial(v, p, n) u8x32_store_partial (v, (u8 *) (p), n)
#define aes_gcm_splat(v) u8x32_splat (v)
#define aes_gcm_reflect(r) u8x32_reflect_u8x16 (r)
#define aes_gcm_ghash_reduce(c) ghash2_reduce (&(c)->gd)
#define aes_gcm_ghash_reduce2(c) ghash2_reduce2 (&(c)->gd)
#define aes_gcm_ghash_final(c) (c)->T = ghash2_final (&(c)->gd)
#else
typedef u8x16 aes_data_t;
typedef u8x16 aes_ghash_t;
typedef u8x16u aes_mem_t;
typedef u32x4 aes_gcm_counter_t;
#define N 16
#define aes_gcm_load_partial(p, n) u8x16_load_partial ((u8 *) (p), n)
#define aes_gcm_store_partial(v, p, n) u8x16_store_partial (v, (u8 *) (p), n)
#define aes_gcm_splat(v) u8x16_splat (v)
#define aes_gcm_reflect(r) u8x16_reflect (r)
#define aes_gcm_ghash_reduce(c) ghash_reduce (&(c)->gd)
#define aes_gcm_ghash_reduce2(c) ghash_reduce2 (&(c)->gd)
#define aes_gcm_ghash_final(c) (c)->T = ghash_final (&(c)->gd)
#endif
#define N_LANES (N / 16)
typedef enum
{
AES_GCM_OP_UNKNONW = 0,
AES_GCM_OP_ENCRYPT,
AES_GCM_OP_DECRYPT,
AES_GCM_OP_GMAC
} aes_gcm_op_t;
typedef union
{
u8x16 x1;
u8x32 x2;
u8x64 x4;
u8x16 lanes[4];
} __clib_aligned (64)
aes_gcm_expaned_key_t;
typedef struct
{
/* pre-calculated hash key values */
const u8x16 Hi[NUM_HI];
/* extracted AES key */
const aes_gcm_expaned_key_t Ke[AES_KEY_ROUNDS (AES_KEY_256) + 1];
} aes_gcm_key_data_t;
typedef struct
{
aes_gcm_op_t operation;
int last;
u8 rounds;
uword data_bytes;
uword aad_bytes;
u8x16 T;
/* hash */
const u8x16 *Hi;
const aes_ghash_t *next_Hi;
/* expaded keys */
const aes_gcm_expaned_key_t *Ke;
/* counter */
u32 counter;
u8x16 EY0;
aes_gcm_counter_t Y;
/* ghash */
ghash_data_t gd;
} aes_gcm_ctx_t;
static_always_inline void
aes_gcm_ghash_mul_first (aes_gcm_ctx_t *ctx, aes_data_t data, u32 n_lanes)
{
uword hash_offset = NUM_HI - n_lanes;
ctx->next_Hi = (aes_ghash_t *) (ctx->Hi + hash_offset);
#if N_LANES == 4
u8x64 tag4 = {};
tag4 = u8x64_insert_u8x16 (tag4, ctx->T, 0);
ghash4_mul_first (&ctx->gd, aes_gcm_reflect (data) ^ tag4, *ctx->next_Hi++);
#elif N_LANES == 2
u8x32 tag2 = {};
tag2 = u8x32_insert_lo (tag2, ctx->T);
ghash2_mul_first (&ctx->gd, aes_gcm_reflect (data) ^ tag2, *ctx->next_Hi++);
#else
ghash_mul_first (&ctx->gd, aes_gcm_reflect (data) ^ ctx->T, *ctx->next_Hi++);
#endif
}
static_always_inline void
aes_gcm_ghash_mul_next (aes_gcm_ctx_t *ctx, aes_data_t data)
{
#if N_LANES == 4
ghash4_mul_next (&ctx->gd, aes_gcm_reflect (data), *ctx->next_Hi++);
#elif N_LANES == 2
ghash2_mul_next (&ctx->gd, aes_gcm_reflect (data), *ctx->next_Hi++);
#else
ghash_mul_next (&ctx->gd, aes_gcm_reflect (data), *ctx->next_Hi++);
#endif
}
static_always_inline void
aes_gcm_ghash_mul_bit_len (aes_gcm_ctx_t *ctx)
{
u8x16 r = (u8x16) ((u64x2){ ctx->data_bytes, ctx->aad_bytes } << 3);
#if N_LANES == 4
u8x64 h = u8x64_insert_u8x16 (u8x64_zero (), ctx->Hi[NUM_HI - 1], 0);
u8x64 r4 = u8x64_insert_u8x16 (u8x64_zero (), r, 0);
ghash4_mul_next (&ctx->gd, r4, h);
#elif N_LANES == 2
u8x32 h = u8x32_insert_lo (u8x32_zero (), ctx->Hi[NUM_HI - 1]);
u8x32 r2 = u8x32_insert_lo (u8x32_zero (), r);
ghash2_mul_next (&ctx->gd, r2, h);
#else
ghash_mul_next (&ctx->gd, r, ctx->Hi[NUM_HI - 1]);
#endif
}
static_always_inline void
aes_gcm_enc_ctr0_round (aes_gcm_ctx_t *ctx, int aes_round)
{
if (aes_round == 0)
ctx->EY0 ^= ctx->Ke[0].x1;
else if (aes_round == ctx->rounds)
ctx->EY0 = aes_enc_last_round (ctx->EY0, ctx->Ke[aes_round].x1);
else
ctx->EY0 = aes_enc_round (ctx->EY0, ctx->Ke[aes_round].x1);
}
static_always_inline void
aes_gcm_ghash (aes_gcm_ctx_t *ctx, u8 *data, u32 n_left)
{
uword i;
aes_data_t r = {};
const aes_mem_t *d = (aes_mem_t *) data;
for (; n_left >= 8 * N; n_left -= 8 * N, d += 8)
{
if (ctx->operation == AES_GCM_OP_GMAC && n_left == N * 8)
{
aes_gcm_ghash_mul_first (ctx, d[0], 8 * N_LANES + 1);
for (i = 1; i < 8; i++)
aes_gcm_ghash_mul_next (ctx, d[i]);
aes_gcm_ghash_mul_bit_len (ctx);
aes_gcm_ghash_reduce (ctx);
aes_gcm_ghash_reduce2 (ctx);
aes_gcm_ghash_final (ctx);
goto done;
}
aes_gcm_ghash_mul_first (ctx, d[0], 8 * N_LANES);
for (i = 1; i < 8; i++)
aes_gcm_ghash_mul_next (ctx, d[i]);
aes_gcm_ghash_reduce (ctx);
aes_gcm_ghash_reduce2 (ctx);
aes_gcm_ghash_final (ctx);
}
if (n_left > 0)
{
int n_lanes = (n_left + 15) / 16;
if (ctx->operation == AES_GCM_OP_GMAC)
n_lanes++;
if (n_left < N)
{
clib_memcpy_fast (&r, d, n_left);
aes_gcm_ghash_mul_first (ctx, r, n_lanes);
}
else
{
aes_gcm_ghash_mul_first (ctx, d[0], n_lanes);
n_left -= N;
i = 1;
if (n_left >= 4 * N)
{
aes_gcm_ghash_mul_next (ctx, d[i]);
aes_gcm_ghash_mul_next (ctx, d[i + 1]);
aes_gcm_ghash_mul_next (ctx, d[i + 2]);
aes_gcm_ghash_mul_next (ctx, d[i + 3]);
n_left -= 4 * N;
i += 4;
}
if (n_left >= 2 * N)
{
aes_gcm_ghash_mul_next (ctx, d[i]);
aes_gcm_ghash_mul_next (ctx, d[i + 1]);
n_left -= 2 * N;
i += 2;
}
if (n_left >= N)
{
aes_gcm_ghash_mul_next (ctx, d[i]);
n_left -= N;
i += 1;
}
if (n_left)
{
clib_memcpy_fast (&r, d + i, n_left);
aes_gcm_ghash_mul_next (ctx, r);
}
}
if (ctx->operation == AES_GCM_OP_GMAC)
aes_gcm_ghash_mul_bit_len (ctx);
aes_gcm_ghash_reduce (ctx);
aes_gcm_ghash_reduce2 (ctx);
aes_gcm_ghash_final (ctx);
}
else if (ctx->operation == AES_GCM_OP_GMAC)
{
u8x16 r = (u8x16) ((u64x2){ ctx->data_bytes, ctx->aad_bytes } << 3);
ctx->T = ghash_mul (r ^ ctx->T, ctx->Hi[NUM_HI - 1]);
}
done:
/* encrypt counter 0 E(Y0, k) */
if (ctx->operation == AES_GCM_OP_GMAC)
for (int i = 0; i < ctx->rounds + 1; i += 1)
aes_gcm_enc_ctr0_round (ctx, i);
}
static_always_inline void
aes_gcm_enc_first_round (aes_gcm_ctx_t *ctx, aes_data_t *r, uword n_blocks)
{
const aes_gcm_expaned_key_t Ke0 = ctx->Ke[0];
uword i = 0;
#if N_LANES == 4
const u32x16 ctr_inv_4444 = { 0, 0, 0, 4 << 24, 0, 0, 0, 4 << 24,
0, 0, 0, 4 << 24, 0, 0, 0, 4 << 24 };
const u32x16 ctr_4444 = {
4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0,
};
/* As counter is stored in network byte order for performance reasons we
are incrementing least significant byte only except in case where we
overlow. As we are processing four 512-blocks in parallel except the
last round, overflow can happen only when n == 4 */
if (n_blocks == 4)
for (; i < 2; i++)
{
r[i] = Ke0.x4 ^ (u8x64) ctx->Y;
ctx->Y += ctr_inv_4444;
}
if (n_blocks == 4 && PREDICT_FALSE ((u8) ctx->counter == 242))
{
u32x16 Yr = (u32x16) aes_gcm_reflect ((u8x64) ctx->Y);
for (; i < n_blocks; i++)
{
r[i] = Ke0.x4 ^ (u8x64) ctx->Y;
Yr += ctr_4444;
ctx->Y = (u32x16) aes_gcm_reflect ((u8x64) Yr);
}
}
else
{
for (; i < n_blocks; i++)
{
r[i] = Ke0.x4 ^ (u8x64) ctx->Y;
ctx->Y += ctr_inv_4444;
}
}
ctx->counter += n_blocks * 4;
#elif N_LANES == 2
const u32x8 ctr_inv_22 = { 0, 0, 0, 2 << 24, 0, 0, 0, 2 << 24 };
const u32x8 ctr_22 = { 2, 0, 0, 0, 2, 0, 0, 0 };
/* As counter is stored in network byte order for performance reasons we
are incrementing least significant byte only except in case where we
overlow. As we are processing four 512-blocks in parallel except the
last round, overflow can happen only when n == 4 */
if (n_blocks == 4)
for (; i < 2; i++)
{
r[i] = Ke0.x2 ^ (u8x32) ctx->Y;
ctx->Y += ctr_inv_22;
}
if (n_blocks == 4 && PREDICT_FALSE ((u8) ctx->counter == 250))
{
u32x8 Yr = (u32x8) aes_gcm_reflect ((u8x32) ctx->Y);
for (; i < n_blocks; i++)
{
r[i] = Ke0.x2 ^ (u8x32) ctx->Y;
Yr += ctr_22;
ctx->Y = (u32x8) aes_gcm_reflect ((u8x32) Yr);
}
}
else
{
for (; i < n_blocks; i++)
{
r[i] = Ke0.x2 ^ (u8x32) ctx->Y;
ctx->Y += ctr_inv_22;
}
}
ctx->counter += n_blocks * 2;
#else
const u32x4 ctr_inv_1 = { 0, 0, 0, 1 << 24 };
if (PREDICT_TRUE ((u8) ctx->counter < 0xfe) || n_blocks < 3)
{
for (; i < n_blocks; i++)
{
r[i] = Ke0.x1 ^ (u8x16) ctx->Y;
ctx->Y += ctr_inv_1;
}
ctx->counter += n_blocks;
}
else
{
r[i++] = Ke0.x1 ^ (u8x16) ctx->Y;
ctx->Y += ctr_inv_1;
ctx->counter += 1;
for (; i < n_blocks; i++)
{
r[i] = Ke0.x1 ^ (u8x16) ctx->Y;
ctx->counter++;
ctx->Y[3] = clib_host_to_net_u32 (ctx->counter);
}
}
#endif
}
static_always_inline void
aes_gcm_enc_round (aes_data_t *r, const aes_gcm_expaned_key_t *Ke,
uword n_blocks)
{
for (int i = 0; i < n_blocks; i++)
#if N_LANES == 4
r[i] = aes_enc_round_x4 (r[i], Ke->x4);
#elif N_LANES == 2
r[i] = aes_enc_round_x2 (r[i], Ke->x2);
#else
r[i] = aes_enc_round (r[i], Ke->x1);
#endif
}
static_always_inline void
aes_gcm_enc_last_round (aes_gcm_ctx_t *ctx, aes_data_t *r, aes_data_t *d,
const aes_gcm_expaned_key_t *Ke, uword n_blocks)
{
/* additional ronuds for AES-192 and AES-256 */
for (int i = 10; i < ctx->rounds; i++)
aes_gcm_enc_round (r, Ke + i, n_blocks);
for (int i = 0; i < n_blocks; i++)
#if N_LANES == 4
d[i] ^= aes_enc_last_round_x4 (r[i], Ke[ctx->rounds].x4);
#elif N_LANES == 2
d[i] ^= aes_enc_last_round_x2 (r[i], Ke[ctx->rounds].x2);
#else
d[i] ^= aes_enc_last_round (r[i], Ke[ctx->rounds].x1);
#endif
}
static_always_inline void
aes_gcm_calc (aes_gcm_ctx_t *ctx, aes_data_t *d, const u8 *src, u8 *dst, u32 n,
u32 n_bytes, int with_ghash)
{
const aes_gcm_expaned_key_t *k = ctx->Ke;
const aes_mem_t *sv = (aes_mem_t *) src;
aes_mem_t *dv = (aes_mem_t *) dst;
uword ghash_blocks, gc = 1;
aes_data_t r[4];
u32 i, n_lanes;
if (ctx->operation == AES_GCM_OP_ENCRYPT)
{
ghash_blocks = 4;
n_lanes = N_LANES * 4;
}
else
{
ghash_blocks = n;
n_lanes = n * N_LANES;
#if N_LANES != 1
if (ctx->last)
n_lanes = (n_bytes + 15) / 16;
#endif
}
n_bytes -= (n - 1) * N;
/* AES rounds 0 and 1 */
aes_gcm_enc_first_round (ctx, r, n);
aes_gcm_enc_round (r, k + 1, n);
/* load data - decrypt round */
if (ctx->operation == AES_GCM_OP_DECRYPT)
{
for (i = 0; i < n - ctx->last; i++)
d[i] = sv[i];
if (ctx->last)
d[n - 1] = aes_gcm_load_partial ((u8 *) (sv + n - 1), n_bytes);
}
/* GHASH multiply block 0 */
if (with_ghash)
aes_gcm_ghash_mul_first (ctx, d[0], n_lanes);
/* AES rounds 2 and 3 */
aes_gcm_enc_round (r, k + 2, n);
aes_gcm_enc_round (r, k + 3, n);
/* GHASH multiply block 1 */
if (with_ghash && gc++ < ghash_blocks)
aes_gcm_ghash_mul_next (ctx, (d[1]));
/* AES rounds 4 and 5 */
aes_gcm_enc_round (r, k + 4, n);
aes_gcm_enc_round (r, k + 5, n);
/* GHASH multiply block 2 */
if (with_ghash && gc++ < ghash_blocks)
aes_gcm_ghash_mul_next (ctx, (d[2]));
/* AES rounds 6 and 7 */
aes_gcm_enc_round (r, k + 6, n);
aes_gcm_enc_round (r, k + 7, n);
/* GHASH multiply block 3 */
if (with_ghash && gc++ < ghash_blocks)
aes_gcm_ghash_mul_next (ctx, (d[3]));
/* load 4 blocks of data - decrypt round */
if (ctx->operation == AES_GCM_OP_ENCRYPT)
{
for (i = 0; i < n - ctx->last; i++)
d[i] = sv[i];
if (ctx->last)
d[n - 1] = aes_gcm_load_partial (sv + n - 1, n_bytes);
}
/* AES rounds 8 and 9 */
aes_gcm_enc_round (r, k + 8, n);
aes_gcm_enc_round (r, k + 9, n);
/* AES last round(s) */
aes_gcm_enc_last_round (ctx, r, d, k, n);
/* store data */
for (i = 0; i < n - ctx->last; i++)
dv[i] = d[i];
if (ctx->last)
aes_gcm_store_partial (d[n - 1], dv + n - 1, n_bytes);
/* GHASH reduce 1st step */
aes_gcm_ghash_reduce (ctx);
/* GHASH reduce 2nd step */
if (with_ghash)
aes_gcm_ghash_reduce2 (ctx);
/* GHASH final step */
if (with_ghash)
aes_gcm_ghash_final (ctx);
}
static_always_inline void
aes_gcm_calc_double (aes_gcm_ctx_t *ctx, aes_data_t *d, const u8 *src, u8 *dst,
int with_ghash)
{
const aes_gcm_expaned_key_t *k = ctx->Ke;
const aes_mem_t *sv = (aes_mem_t *) src;
aes_mem_t *dv = (aes_mem_t *) dst;
aes_data_t r[4];
/* AES rounds 0 and 1 */
aes_gcm_enc_first_round (ctx, r, 4);
aes_gcm_enc_round (r, k + 1, 4);
/* load 4 blocks of data - decrypt round */
if (ctx->operation == AES_GCM_OP_DECRYPT)
for (int i = 0; i < 4; i++)
d[i] = sv[i];
/* GHASH multiply block 0 */
aes_gcm_ghash_mul_first (ctx, d[0], N_LANES * 8);
/* AES rounds 2 and 3 */
aes_gcm_enc_round (r, k + 2, 4);
aes_gcm_enc_round (r, k + 3, 4);
/* GHASH multiply block 1 */
aes_gcm_ghash_mul_next (ctx, (d[1]));
/* AES rounds 4 and 5 */
aes_gcm_enc_round (r, k + 4, 4);
aes_gcm_enc_round (r, k + 5, 4);
/* GHASH multiply block 2 */
aes_gcm_ghash_mul_next (ctx, (d[2]));
/* AES rounds 6 and 7 */
aes_gcm_enc_round (r, k + 6, 4);
aes_gcm_enc_round (r, k + 7, 4);
/* GHASH multiply block 3 */
aes_gcm_ghash_mul_next (ctx, (d[3]));
/* AES rounds 8 and 9 */
aes_gcm_enc_round (r, k + 8, 4);
aes_gcm_enc_round (r, k + 9, 4);
/* load 4 blocks of data - encrypt round */
if (ctx->operation == AES_GCM_OP_ENCRYPT)
for (int i = 0; i < 4; i++)
d[i] = sv[i];
/* AES last round(s) */
aes_gcm_enc_last_round (ctx, r, d, k, 4);
/* store 4 blocks of data */
for (int i = 0; i < 4; i++)
dv[i] = d[i];
/* load next 4 blocks of data data - decrypt round */
if (ctx->operation == AES_GCM_OP_DECRYPT)
for (int i = 0; i < 4; i++)
d[i] = sv[i + 4];
/* GHASH multiply block 4 */
aes_gcm_ghash_mul_next (ctx, (d[0]));
/* AES rounds 0 and 1 */
aes_gcm_enc_first_round (ctx, r, 4);
aes_gcm_enc_round (r, k + 1, 4);
/* GHASH multiply block 5 */
aes_gcm_ghash_mul_next (ctx, (d[1]));
/* AES rounds 2 and 3 */
aes_gcm_enc_round (r, k + 2, 4);
aes_gcm_enc_round (r, k + 3, 4);
/* GHASH multiply block 6 */
aes_gcm_ghash_mul_next (ctx, (d[2]));
/* AES rounds 4 and 5 */
aes_gcm_enc_round (r, k + 4, 4);
aes_gcm_enc_round (r, k + 5, 4);
/* GHASH multiply block 7 */
aes_gcm_ghash_mul_next (ctx, (d[3]));
/* AES rounds 6 and 7 */
aes_gcm_enc_round (r, k + 6, 4);
aes_gcm_enc_round (r, k + 7, 4);
/* GHASH reduce 1st step */
aes_gcm_ghash_reduce (ctx);
/* AES rounds 8 and 9 */
aes_gcm_enc_round (r, k + 8, 4);
aes_gcm_enc_round (r, k + 9, 4);
/* GHASH reduce 2nd step */
aes_gcm_ghash_reduce2 (ctx);
/* load 4 blocks of data - encrypt round */
if (ctx->operation == AES_GCM_OP_ENCRYPT)
for (int i = 0; i < 4; i++)
d[i] = sv[i + 4];
/* AES last round(s) */
aes_gcm_enc_last_round (ctx, r, d, k, 4);
/* store data */
for (int i = 0; i < 4; i++)
dv[i + 4] = d[i];
/* GHASH final step */
aes_gcm_ghash_final (ctx);
}
static_always_inline void
aes_gcm_mask_bytes (aes_data_t *d, uword n_bytes)
{
const union
{
u8 b[64];
aes_data_t r;
} scale = {
.b = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
};
d[0] &= (aes_gcm_splat (n_bytes) > scale.r);
}
static_always_inline void
aes_gcm_calc_last (aes_gcm_ctx_t *ctx, aes_data_t *d, int n_blocks,
u32 n_bytes)
{
int n_lanes = (N_LANES == 1 ? n_blocks : (n_bytes + 15) / 16) + 1;
n_bytes -= (n_blocks - 1) * N;
int i;
aes_gcm_enc_ctr0_round (ctx, 0);
aes_gcm_enc_ctr0_round (ctx, 1);
if (n_bytes != N)
aes_gcm_mask_bytes (d + n_blocks - 1, n_bytes);
aes_gcm_ghash_mul_first (ctx, d[0], n_lanes);
aes_gcm_enc_ctr0_round (ctx, 2);
aes_gcm_enc_ctr0_round (ctx, 3);
if (n_blocks > 1)
aes_gcm_ghash_mul_next (ctx, d[1]);
aes_gcm_enc_ctr0_round (ctx, 4);
aes_gcm_enc_ctr0_round (ctx, 5);
if (n_blocks > 2)
aes_gcm_ghash_mul_next (ctx, d[2]);
aes_gcm_enc_ctr0_round (ctx, 6);
aes_gcm_enc_ctr0_round (ctx, 7);
if (n_blocks > 3)
aes_gcm_ghash_mul_next (ctx, d[3]);
aes_gcm_enc_ctr0_round (ctx, 8);
aes_gcm_enc_ctr0_round (ctx, 9);
aes_gcm_ghash_mul_bit_len (ctx);
aes_gcm_ghash_reduce (ctx);
for (i = 10; i < ctx->rounds; i++)
aes_gcm_enc_ctr0_round (ctx, i);
aes_gcm_ghash_reduce2 (ctx);
aes_gcm_ghash_final (ctx);
aes_gcm_enc_ctr0_round (ctx, i);
}
static_always_inline void
aes_gcm_enc (aes_gcm_ctx_t *ctx, const u8 *src, u8 *dst, u32 n_left)
{
aes_data_t d[4];
if (PREDICT_FALSE (n_left == 0))
{
int i;
for (i = 0; i < ctx->rounds + 1; i++)
aes_gcm_enc_ctr0_round (ctx, i);
return;
}
if (n_left < 4 * N)
{
ctx->last = 1;
if (n_left > 3 * N)
{
aes_gcm_calc (ctx, d, src, dst, 4, n_left, /* with_ghash */ 0);
aes_gcm_calc_last (ctx, d, 4, n_left);
}
else if (n_left > 2 * N)
{
aes_gcm_calc (ctx, d, src, dst, 3, n_left, /* with_ghash */ 0);
aes_gcm_calc_last (ctx, d, 3, n_left);
}
else if (n_left > N)
{
aes_gcm_calc (ctx, d, src, dst, 2, n_left, /* with_ghash */ 0);
aes_gcm_calc_last (ctx, d, 2, n_left);
}
else
{
aes_gcm_calc (ctx, d, src, dst, 1, n_left, /* with_ghash */ 0);
aes_gcm_calc_last (ctx, d, 1, n_left);
}
return;
}
aes_gcm_calc (ctx, d, src, dst, 4, 4 * N, /* with_ghash */ 0);
/* next */
n_left -= 4 * N;
dst += 4 * N;
src += 4 * N;
for (; n_left >= 8 * N; n_left -= 8 * N, src += 8 * N, dst += 8 * N)
aes_gcm_calc_double (ctx, d, src, dst, /* with_ghash */ 1);
if (n_left >= 4 * N)
{
aes_gcm_calc (ctx, d, src, dst, 4, 4 * N, /* with_ghash */ 1);
/* next */
n_left -= 4 * N;
dst += 4 * N;
src += 4 * N;
}
if (n_left == 0)
{
aes_gcm_calc_last (ctx, d, 4, 4 * N);
return;
}
ctx->last = 1;
if (n_left > 3 * N)
{
aes_gcm_calc (ctx, d, src, dst, 4, n_left, /* with_ghash */ 1);
aes_gcm_calc_last (ctx, d, 4, n_left);
}
else if (n_left > 2 * N)
{
aes_gcm_calc (ctx, d, src, dst, 3, n_left, /* with_ghash */ 1);
aes_gcm_calc_last (ctx, d, 3, n_left);
}
else if (n_left > N)
{
aes_gcm_calc (ctx, d, src, dst, 2, n_left, /* with_ghash */ 1);
aes_gcm_calc_last (ctx, d, 2, n_left);
}
else
{
aes_gcm_calc (ctx, d, src, dst, 1, n_left, /* with_ghash */ 1);
aes_gcm_calc_last (ctx, d, 1, n_left);
}
}
static_always_inline void
aes_gcm_dec (aes_gcm_ctx_t *ctx, const u8 *src, u8 *dst, uword n_left)
{
aes_data_t d[4] = {};
for (; n_left >= 8 * N; n_left -= 8 * N, dst += 8 * N, src += 8 * N)
aes_gcm_calc_double (ctx, d, src, dst, /* with_ghash */ 1);
if (n_left >= 4 * N)
{
aes_gcm_calc (ctx, d, src, dst, 4, 4 * N, /* with_ghash */ 1);
/* next */
n_left -= 4 * N;
dst += N * 4;
src += N * 4;
}
if (n_left == 0)
goto done;
ctx->last = 1;
if (n_left > 3 * N)
aes_gcm_calc (ctx, d, src, dst, 4, n_left, /* with_ghash */ 1);
else if (n_left > 2 * N)
aes_gcm_calc (ctx, d, src, dst, 3, n_left, /* with_ghash */ 1);
else if (n_left > N)
aes_gcm_calc (ctx, d, src, dst, 2, n_left, /* with_ghash */ 1);
else
aes_gcm_calc (ctx, d, src, dst, 1, n_left, /* with_ghash */ 1);
u8x16 r;
done:
r = (u8x16) ((u64x2){ ctx->data_bytes, ctx->aad_bytes } << 3);
ctx->T = ghash_mul (r ^ ctx->T, ctx->Hi[NUM_HI - 1]);
/* encrypt counter 0 E(Y0, k) */
for (int i = 0; i < ctx->rounds + 1; i += 1)
aes_gcm_enc_ctr0_round (ctx, i);
}
static_always_inline int
aes_gcm (const u8 *src, u8 *dst, const u8 *aad, u8 *ivp, u8 *tag,
u32 data_bytes, u32 aad_bytes, u8 tag_len,
const aes_gcm_key_data_t *kd, int aes_rounds, aes_gcm_op_t op)
{
u8 *addt = (u8 *) aad;
u32x4 Y0;
aes_gcm_ctx_t _ctx = { .counter = 2,
.rounds = aes_rounds,
.operation = op,
.data_bytes = data_bytes,
.aad_bytes = aad_bytes,
.Hi = kd->Hi },
*ctx = &_ctx;
/* initalize counter */
Y0 = (u32x4) (u64x2){ *(u64u *) ivp, 0 };
Y0[2] = *(u32u *) (ivp + 8);
Y0[3] = 1 << 24;
ctx->EY0 = (u8x16) Y0;
ctx->Ke = kd->Ke;
#if N_LANES == 4
ctx->Y = u32x16_splat_u32x4 (Y0) + (u32x16){
0, 0, 0, 1 << 24, 0, 0, 0, 2 << 24, 0, 0, 0, 3 << 24, 0, 0, 0, 4 << 24,
};
#elif N_LANES == 2
ctx->Y =
u32x8_splat_u32x4 (Y0) + (u32x8){ 0, 0, 0, 1 << 24, 0, 0, 0, 2 << 24 };
#else
ctx->Y = Y0 + (u32x4){ 0, 0, 0, 1 << 24 };
#endif
/* calculate ghash for AAD */
aes_gcm_ghash (ctx, addt, aad_bytes);
clib_prefetch_load (tag);
/* ghash and encrypt/edcrypt */
if (op == AES_GCM_OP_ENCRYPT)
aes_gcm_enc (ctx, src, dst, data_bytes);
else if (op == AES_GCM_OP_DECRYPT)
aes_gcm_dec (ctx, src, dst, data_bytes);
/* final tag is */
ctx->T = u8x16_reflect (ctx->T) ^ ctx->EY0;
/* tag_len 16 -> 0 */
tag_len &= 0xf;
if (op == AES_GCM_OP_ENCRYPT || op == AES_GCM_OP_GMAC)
{
/* store tag */
if (tag_len)
u8x16_store_partial (ctx->T, tag, tag_len);
else
((u8x16u *) tag)[0] = ctx->T;
}
else
{
/* check tag */
if (tag_len)
{
u16 mask = pow2_mask (tag_len);
u8x16 expected = u8x16_load_partial (tag, tag_len);
if ((u8x16_msb_mask (expected == ctx->T) & mask) == mask)
return 1;
}
else
{
if (u8x16_is_equal (ctx->T, *(u8x16u *) tag))
return 1;
}
}
return 0;
}
static_always_inline void
clib_aes_gcm_key_expand (aes_gcm_key_data_t *kd, const u8 *key,
aes_key_size_t ks)
{
u8x16 H;
u8x16 ek[AES_KEY_ROUNDS (AES_KEY_256) + 1];
aes_gcm_expaned_key_t *Ke = (aes_gcm_expaned_key_t *) kd->Ke;
/* expand AES key */
aes_key_expand (ek, key, ks);
for (int i = 0; i < AES_KEY_ROUNDS (ks) + 1; i++)
Ke[i].lanes[0] = Ke[i].lanes[1] = Ke[i].lanes[2] = Ke[i].lanes[3] = ek[i];
/* pre-calculate H */
H = aes_encrypt_block (u8x16_zero (), ek, ks);
H = u8x16_reflect (H);
ghash_precompute (H, (u8x16 *) kd->Hi, ARRAY_LEN (kd->Hi));
}
static_always_inline void
clib_aes128_gcm_enc (const aes_gcm_key_data_t *kd, const u8 *plaintext,
u32 data_bytes, const u8 *aad, u32 aad_bytes,
const u8 *iv, u32 tag_bytes, u8 *cyphertext, u8 *tag)
{
aes_gcm (plaintext, cyphertext, aad, (u8 *) iv, tag, data_bytes, aad_bytes,
tag_bytes, kd, AES_KEY_ROUNDS (AES_KEY_128), AES_GCM_OP_ENCRYPT);
}
static_always_inline void
clib_aes256_gcm_enc (const aes_gcm_key_data_t *kd, const u8 *plaintext,
u32 data_bytes, const u8 *aad, u32 aad_bytes,
const u8 *iv, u32 tag_bytes, u8 *cyphertext, u8 *tag)
{
aes_gcm (plaintext, cyphertext, aad, (u8 *) iv, tag, data_bytes, aad_bytes,
tag_bytes, kd, AES_KEY_ROUNDS (AES_KEY_256), AES_GCM_OP_ENCRYPT);
}
static_always_inline int
clib_aes128_gcm_dec (const aes_gcm_key_data_t *kd, const u8 *cyphertext,
u32 data_bytes, const u8 *aad, u32 aad_bytes,
const u8 *iv, const u8 *tag, u32 tag_bytes, u8 *plaintext)
{
return aes_gcm (cyphertext, plaintext, aad, (u8 *) iv, (u8 *) tag,
data_bytes, aad_bytes, tag_bytes, kd,
AES_KEY_ROUNDS (AES_KEY_128), AES_GCM_OP_DECRYPT);
}
static_always_inline int
clib_aes256_gcm_dec (const aes_gcm_key_data_t *kd, const u8 *cyphertext,
u32 data_bytes, const u8 *aad, u32 aad_bytes,
const u8 *iv, const u8 *tag, u32 tag_bytes, u8 *plaintext)
{
return aes_gcm (cyphertext, plaintext, aad, (u8 *) iv, (u8 *) tag,
data_bytes, aad_bytes, tag_bytes, kd,
AES_KEY_ROUNDS (AES_KEY_256), AES_GCM_OP_DECRYPT);
}
static_always_inline void
clib_aes128_gmac (const aes_gcm_key_data_t *kd, const u8 *data, u32 data_bytes,
const u8 *iv, u32 tag_bytes, u8 *tag)
{
aes_gcm (0, 0, data, (u8 *) iv, tag, 0, data_bytes, tag_bytes, kd,
AES_KEY_ROUNDS (AES_KEY_128), AES_GCM_OP_GMAC);
}
static_always_inline void
clib_aes256_gmac (const aes_gcm_key_data_t *kd, const u8 *data, u32 data_bytes,
const u8 *iv, u32 tag_bytes, u8 *tag)
{
aes_gcm (0, 0, data, (u8 *) iv, tag, 0, data_bytes, tag_bytes, kd,
AES_KEY_ROUNDS (AES_KEY_256), AES_GCM_OP_GMAC);
}
#endif /* __crypto_aes_gcm_h__ */