| /* |
| * Copyright (c) 2016-2019 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <vppinfra/sparse_vec.h> |
| #include <vnet/fib/ip4_fib.h> |
| #include <vnet/fib/ip6_fib.h> |
| #include <vnet/tcp/tcp.h> |
| #include <vnet/tcp/tcp_inlines.h> |
| #include <vnet/session/session.h> |
| #include <math.h> |
| |
| static vlib_error_desc_t tcp_input_error_counters[] = { |
| #define tcp_error(f, n, s, d) { #n, d, VL_COUNTER_SEVERITY_##s }, |
| #include <vnet/tcp/tcp_error.def> |
| #undef tcp_error |
| }; |
| |
| /* All TCP nodes have the same outgoing arcs */ |
| #define foreach_tcp_state_next \ |
| _ (DROP4, "ip4-drop") \ |
| _ (DROP6, "ip6-drop") \ |
| _ (TCP4_OUTPUT, "tcp4-output") \ |
| _ (TCP6_OUTPUT, "tcp6-output") |
| |
| typedef enum _tcp_established_next |
| { |
| #define _(s,n) TCP_ESTABLISHED_NEXT_##s, |
| foreach_tcp_state_next |
| #undef _ |
| TCP_ESTABLISHED_N_NEXT, |
| } tcp_established_next_t; |
| |
| typedef enum _tcp_rcv_process_next |
| { |
| #define _(s,n) TCP_RCV_PROCESS_NEXT_##s, |
| foreach_tcp_state_next |
| #undef _ |
| TCP_RCV_PROCESS_N_NEXT, |
| } tcp_rcv_process_next_t; |
| |
| typedef enum _tcp_syn_sent_next |
| { |
| #define _(s,n) TCP_SYN_SENT_NEXT_##s, |
| foreach_tcp_state_next |
| #undef _ |
| TCP_SYN_SENT_N_NEXT, |
| } tcp_syn_sent_next_t; |
| |
| typedef enum _tcp_listen_next |
| { |
| #define _(s,n) TCP_LISTEN_NEXT_##s, |
| foreach_tcp_state_next |
| #undef _ |
| TCP_LISTEN_N_NEXT, |
| } tcp_listen_next_t; |
| |
| /* Generic, state independent indices */ |
| typedef enum _tcp_state_next |
| { |
| #define _(s,n) TCP_NEXT_##s, |
| foreach_tcp_state_next |
| #undef _ |
| TCP_STATE_N_NEXT, |
| } tcp_state_next_t; |
| |
| #define tcp_next_output(is_ip4) (is_ip4 ? TCP_NEXT_TCP4_OUTPUT \ |
| : TCP_NEXT_TCP6_OUTPUT) |
| |
| #define tcp_next_drop(is_ip4) (is_ip4 ? TCP_NEXT_DROP4 \ |
| : TCP_NEXT_DROP6) |
| |
| /** |
| * Validate segment sequence number. As per RFC793: |
| * |
| * Segment Receive Test |
| * Length Window |
| * ------- ------- ------------------------------------------- |
| * 0 0 SEG.SEQ = RCV.NXT |
| * 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND |
| * >0 0 not acceptable |
| * >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND |
| * or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND |
| * |
| * This ultimately consists in checking if segment falls within the window. |
| * The one important difference compared to RFC793 is that we use rcv_las, |
| * or the rcv_nxt at last ack sent instead of rcv_nxt since that's the |
| * peer's reference when computing our receive window. |
| * |
| * This: |
| * seq_leq (end_seq, tc->rcv_las + tc->rcv_wnd) && seq_geq (seq, tc->rcv_las) |
| * however, is too strict when we have retransmits. Instead we just check that |
| * the seq is not beyond the right edge and that the end of the segment is not |
| * less than the left edge. |
| * |
| * N.B. rcv_nxt and rcv_wnd are both updated in this node if acks are sent, so |
| * use rcv_nxt in the right edge window test instead of rcv_las. |
| * |
| */ |
| always_inline u8 |
| tcp_segment_in_rcv_wnd (tcp_connection_t * tc, u32 seq, u32 end_seq) |
| { |
| return (seq_geq (end_seq, tc->rcv_las) |
| && seq_leq (seq, tc->rcv_nxt + tc->rcv_wnd)); |
| } |
| |
| /** |
| * RFC1323: Check against wrapped sequence numbers (PAWS). If we have |
| * timestamp to echo and it's less than tsval_recent, drop segment |
| * but still send an ACK in order to retain TCP's mechanism for detecting |
| * and recovering from half-open connections |
| * |
| * Or at least that's what the theory says. It seems that this might not work |
| * very well with packet reordering and fast retransmit. XXX |
| */ |
| always_inline int |
| tcp_segment_check_paws (tcp_connection_t * tc) |
| { |
| return tcp_opts_tstamp (&tc->rcv_opts) |
| && timestamp_lt (tc->rcv_opts.tsval, tc->tsval_recent); |
| } |
| |
| /** |
| * Update tsval recent |
| */ |
| always_inline void |
| tcp_update_timestamp (tcp_connection_t * tc, u32 seq, u32 seq_end) |
| { |
| /* |
| * RFC1323: If Last.ACK.sent falls within the range of sequence numbers |
| * of an incoming segment: |
| * SEG.SEQ <= Last.ACK.sent < SEG.SEQ + SEG.LEN |
| * then the TSval from the segment is copied to TS.Recent; |
| * otherwise, the TSval is ignored. |
| */ |
| if (tcp_opts_tstamp (&tc->rcv_opts) && seq_leq (seq, tc->rcv_las) |
| && seq_leq (tc->rcv_las, seq_end)) |
| { |
| ASSERT (timestamp_leq (tc->tsval_recent, tc->rcv_opts.tsval)); |
| tc->tsval_recent = tc->rcv_opts.tsval; |
| tc->tsval_recent_age = tcp_time_tstamp (tc->c_thread_index); |
| } |
| } |
| |
| static void |
| tcp_handle_rst (tcp_connection_t * tc) |
| { |
| switch (tc->rst_state) |
| { |
| case TCP_STATE_SYN_RCVD: |
| /* Cleanup everything. App wasn't notified yet */ |
| session_transport_delete_notify (&tc->connection); |
| tcp_connection_cleanup (tc); |
| break; |
| case TCP_STATE_SYN_SENT: |
| session_stream_connect_notify (&tc->connection, SESSION_E_REFUSED); |
| tcp_connection_cleanup (tc); |
| break; |
| case TCP_STATE_ESTABLISHED: |
| session_transport_reset_notify (&tc->connection); |
| session_transport_closed_notify (&tc->connection); |
| break; |
| case TCP_STATE_CLOSE_WAIT: |
| case TCP_STATE_FIN_WAIT_1: |
| case TCP_STATE_FIN_WAIT_2: |
| case TCP_STATE_CLOSING: |
| case TCP_STATE_LAST_ACK: |
| session_transport_closed_notify (&tc->connection); |
| break; |
| case TCP_STATE_CLOSED: |
| case TCP_STATE_TIME_WAIT: |
| break; |
| default: |
| TCP_DBG ("reset state: %u", tc->state); |
| } |
| } |
| |
| static void |
| tcp_program_reset_ntf (tcp_worker_ctx_t * wrk, tcp_connection_t * tc) |
| { |
| if (!tcp_disconnect_pending (tc)) |
| { |
| tc->rst_state = tc->state; |
| vec_add1 (wrk->pending_resets, tc->c_c_index); |
| tcp_disconnect_pending_on (tc); |
| } |
| } |
| |
| /** |
| * Handle reset packet |
| * |
| * Programs disconnect/reset notification that should be sent |
| * later by calling @ref tcp_handle_disconnects |
| */ |
| static void |
| tcp_rcv_rst (tcp_worker_ctx_t * wrk, tcp_connection_t * tc) |
| { |
| TCP_EVT (TCP_EVT_RST_RCVD, tc); |
| switch (tc->state) |
| { |
| case TCP_STATE_SYN_RCVD: |
| tcp_program_reset_ntf (wrk, tc); |
| tcp_connection_set_state (tc, TCP_STATE_CLOSED); |
| break; |
| case TCP_STATE_SYN_SENT: |
| /* Do not program ntf because the connection is half-open */ |
| tc->rst_state = tc->state; |
| tcp_handle_rst (tc); |
| break; |
| case TCP_STATE_ESTABLISHED: |
| tcp_connection_timers_reset (tc); |
| tcp_cong_recovery_off (tc); |
| tcp_program_reset_ntf (wrk, tc); |
| tcp_connection_set_state (tc, TCP_STATE_CLOSED); |
| tcp_program_cleanup (wrk, tc); |
| break; |
| case TCP_STATE_CLOSE_WAIT: |
| case TCP_STATE_FIN_WAIT_1: |
| case TCP_STATE_FIN_WAIT_2: |
| case TCP_STATE_CLOSING: |
| case TCP_STATE_LAST_ACK: |
| tcp_connection_timers_reset (tc); |
| tcp_cong_recovery_off (tc); |
| tcp_program_reset_ntf (wrk, tc); |
| /* Make sure we mark the session as closed. In some states we may |
| * be still trying to send data */ |
| tcp_connection_set_state (tc, TCP_STATE_CLOSED); |
| tcp_program_cleanup (wrk, tc); |
| break; |
| case TCP_STATE_CLOSED: |
| case TCP_STATE_TIME_WAIT: |
| break; |
| default: |
| TCP_DBG ("reset state: %u", tc->state); |
| } |
| } |
| |
| /** |
| * Validate incoming segment as per RFC793 p. 69 and RFC1323 p. 19 |
| * |
| * It first verifies if segment has a wrapped sequence number (PAWS) and then |
| * does the processing associated to the first four steps (ignoring security |
| * and precedence): sequence number, rst bit and syn bit checks. |
| * |
| * @return 0 if segments passes validation. |
| */ |
| static int |
| tcp_segment_validate (tcp_worker_ctx_t * wrk, tcp_connection_t * tc0, |
| vlib_buffer_t * b0, tcp_header_t * th0, u32 * error0) |
| { |
| /* We could get a burst of RSTs interleaved with acks */ |
| if (PREDICT_FALSE (tc0->state == TCP_STATE_CLOSED)) |
| { |
| tcp_send_reset (tc0); |
| *error0 = TCP_ERROR_CONNECTION_CLOSED; |
| goto error; |
| } |
| |
| if (PREDICT_FALSE (!tcp_ack (th0) && !tcp_rst (th0) && !tcp_syn (th0))) |
| { |
| *error0 = TCP_ERROR_SEGMENT_INVALID; |
| goto error; |
| } |
| |
| if (PREDICT_FALSE (tcp_options_parse (th0, &tc0->rcv_opts, 0))) |
| { |
| *error0 = TCP_ERROR_OPTIONS; |
| goto error; |
| } |
| |
| if (PREDICT_FALSE (tcp_segment_check_paws (tc0))) |
| { |
| *error0 = TCP_ERROR_PAWS; |
| TCP_EVT (TCP_EVT_PAWS_FAIL, tc0, vnet_buffer (b0)->tcp.seq_number, |
| vnet_buffer (b0)->tcp.seq_end); |
| |
| /* If it just so happens that a segment updates tsval_recent for a |
| * segment over 24 days old, invalidate tsval_recent. */ |
| if (timestamp_lt (tc0->tsval_recent_age + TCP_PAWS_IDLE, |
| tcp_time_tstamp (tc0->c_thread_index))) |
| { |
| tc0->tsval_recent = tc0->rcv_opts.tsval; |
| clib_warning ("paws failed: 24-day old segment"); |
| } |
| /* Drop after ack if not rst. Resets can fail paws check as per |
| * RFC 7323 sec. 5.2: When an <RST> segment is received, it MUST NOT |
| * be subjected to the PAWS check by verifying an acceptable value in |
| * SEG.TSval */ |
| else if (!tcp_rst (th0)) |
| { |
| tcp_program_ack (tc0); |
| TCP_EVT (TCP_EVT_DUPACK_SENT, tc0, vnet_buffer (b0)->tcp); |
| goto error; |
| } |
| } |
| |
| /* 1st: check sequence number */ |
| if (!tcp_segment_in_rcv_wnd (tc0, vnet_buffer (b0)->tcp.seq_number, |
| vnet_buffer (b0)->tcp.seq_end)) |
| { |
| /* SYN/SYN-ACK retransmit */ |
| if (tcp_syn (th0) |
| && vnet_buffer (b0)->tcp.seq_number == tc0->rcv_nxt - 1) |
| { |
| tcp_options_parse (th0, &tc0->rcv_opts, 1); |
| if (tc0->state == TCP_STATE_SYN_RCVD) |
| { |
| tcp_send_synack (tc0); |
| TCP_EVT (TCP_EVT_SYN_RCVD, tc0, 0); |
| *error0 = TCP_ERROR_SYNS_RCVD; |
| } |
| else |
| { |
| tcp_program_ack (tc0); |
| TCP_EVT (TCP_EVT_SYNACK_RCVD, tc0); |
| *error0 = TCP_ERROR_SYN_ACKS_RCVD; |
| } |
| goto error; |
| } |
| |
| /* If our window is 0 and the packet is in sequence, let it pass |
| * through for ack processing. It should be dropped later. */ |
| if (tc0->rcv_wnd < tc0->snd_mss |
| && tc0->rcv_nxt == vnet_buffer (b0)->tcp.seq_number) |
| goto check_reset; |
| |
| /* If we entered recovery and peer did so as well, there's a chance that |
| * dup acks won't be acceptable on either end because seq_end may be less |
| * than rcv_las. This can happen if acks are lost in both directions. */ |
| if (tcp_in_recovery (tc0) |
| && seq_geq (vnet_buffer (b0)->tcp.seq_number, |
| tc0->rcv_las - tc0->rcv_wnd) |
| && seq_leq (vnet_buffer (b0)->tcp.seq_end, |
| tc0->rcv_nxt + tc0->rcv_wnd)) |
| goto check_reset; |
| |
| *error0 = TCP_ERROR_RCV_WND; |
| |
| /* If we advertised a zero rcv_wnd and the segment is in the past or the |
| * next one that we expect, it is probably a window probe */ |
| if ((tc0->flags & TCP_CONN_ZERO_RWND_SENT) |
| && seq_lt (vnet_buffer (b0)->tcp.seq_end, |
| tc0->rcv_las + tc0->rcv_opts.mss)) |
| *error0 = TCP_ERROR_ZERO_RWND; |
| |
| tc0->errors.below_data_wnd += seq_lt (vnet_buffer (b0)->tcp.seq_end, |
| tc0->rcv_las); |
| |
| /* If not RST, send dup ack */ |
| if (!tcp_rst (th0)) |
| { |
| tcp_program_dupack (tc0); |
| TCP_EVT (TCP_EVT_DUPACK_SENT, tc0, vnet_buffer (b0)->tcp); |
| } |
| goto error; |
| |
| check_reset: |
| ; |
| } |
| |
| /* 2nd: check the RST bit */ |
| if (PREDICT_FALSE (tcp_rst (th0))) |
| { |
| tcp_rcv_rst (wrk, tc0); |
| *error0 = TCP_ERROR_RST_RCVD; |
| goto error; |
| } |
| |
| /* 3rd: check security and precedence (skip) */ |
| |
| /* 4th: check the SYN bit (in window) */ |
| if (PREDICT_FALSE (tcp_syn (th0))) |
| { |
| /* As per RFC5961 send challenge ack instead of reset */ |
| tcp_program_ack (tc0); |
| *error0 = TCP_ERROR_SPURIOUS_SYN; |
| goto error; |
| } |
| |
| /* If segment in window, save timestamp */ |
| tcp_update_timestamp (tc0, vnet_buffer (b0)->tcp.seq_number, |
| vnet_buffer (b0)->tcp.seq_end); |
| return 0; |
| |
| error: |
| return -1; |
| } |
| |
| always_inline int |
| tcp_rcv_ack_no_cc (tcp_connection_t * tc, vlib_buffer_t * b, u32 * error) |
| { |
| /* SND.UNA =< SEG.ACK =< SND.NXT */ |
| if (!(seq_leq (tc->snd_una, vnet_buffer (b)->tcp.ack_number) |
| && seq_leq (vnet_buffer (b)->tcp.ack_number, tc->snd_nxt))) |
| { |
| if (seq_leq (vnet_buffer (b)->tcp.ack_number, tc->snd_nxt) |
| && seq_gt (vnet_buffer (b)->tcp.ack_number, tc->snd_una)) |
| { |
| tc->snd_nxt = vnet_buffer (b)->tcp.ack_number; |
| goto acceptable; |
| } |
| *error = TCP_ERROR_ACK_INVALID; |
| return -1; |
| } |
| |
| acceptable: |
| tc->bytes_acked = vnet_buffer (b)->tcp.ack_number - tc->snd_una; |
| tc->snd_una = vnet_buffer (b)->tcp.ack_number; |
| *error = TCP_ERROR_ACK_OK; |
| return 0; |
| } |
| |
| /** |
| * Compute smoothed RTT as per VJ's '88 SIGCOMM and RFC6298 |
| * |
| * Note that although in the original article srtt and rttvar are scaled |
| * to minimize round-off errors, here we don't. Instead, we rely on |
| * better precision time measurements. |
| * |
| * A known limitation of the algorithm is that a drop in rtt results in a |
| * rttvar increase and bigger RTO. |
| * |
| * mrtt must be provided in @ref TCP_TICK multiples, i.e., in us. Note that |
| * timestamps are measured as ms ticks so they must be converted before |
| * calling this function. |
| */ |
| static void |
| tcp_estimate_rtt (tcp_connection_t * tc, u32 mrtt) |
| { |
| int err, diff; |
| |
| err = mrtt - tc->srtt; |
| tc->srtt = clib_max ((int) tc->srtt + (err >> 3), 1); |
| diff = (clib_abs (err) - (int) tc->rttvar) >> 2; |
| tc->rttvar = clib_max ((int) tc->rttvar + diff, 1); |
| } |
| |
| static inline void |
| tcp_estimate_rtt_us (tcp_connection_t * tc, f64 mrtt) |
| { |
| tc->mrtt_us = tc->mrtt_us + (mrtt - tc->mrtt_us) * 0.125; |
| } |
| |
| /** |
| * Update rtt estimate |
| * |
| * We have potentially three sources of rtt measurements: |
| * |
| * TSOPT difference between current and echoed timestamp. It has ms |
| * precision and can be computed per ack |
| * ACK timing one sequence number is tracked per rtt with us (micro second) |
| * precision. |
| * rate sample if enabled, all outstanding bytes are tracked with us |
| * precision. Every ack and sack are a rtt sample |
| * |
| * Middle boxes are known to fiddle with TCP options so we give higher |
| * priority to ACK timing. |
| * |
| * For now, rate sample rtts are only used under congestion. |
| */ |
| static int |
| tcp_update_rtt (tcp_connection_t * tc, tcp_rate_sample_t * rs, u32 ack) |
| { |
| u32 mrtt = 0; |
| |
| /* Karn's rule, part 1. Don't use retransmitted segments to estimate |
| * RTT because they're ambiguous. */ |
| if (tcp_in_cong_recovery (tc)) |
| { |
| /* Accept rtt estimates for samples that have not been retransmitted */ |
| if (!(tc->cfg_flags & TCP_CFG_F_RATE_SAMPLE) |
| || (rs->flags & TCP_BTS_IS_RXT)) |
| goto done; |
| if (rs->rtt_time) |
| tcp_estimate_rtt_us (tc, rs->rtt_time); |
| mrtt = rs->rtt_time * THZ; |
| goto estimate_rtt; |
| } |
| |
| if (tc->rtt_ts && seq_geq (ack, tc->rtt_seq)) |
| { |
| f64 sample = tcp_time_now_us (tc->c_thread_index) - tc->rtt_ts; |
| tcp_estimate_rtt_us (tc, sample); |
| mrtt = clib_max ((u32) (sample * THZ), 1); |
| /* Allow measuring of a new RTT */ |
| tc->rtt_ts = 0; |
| } |
| /* As per RFC7323 TSecr can be used for RTTM only if the segment advances |
| * snd_una, i.e., the left side of the send window: |
| * seq_lt (tc->snd_una, ack). This is a condition for calling update_rtt */ |
| else if (tcp_opts_tstamp (&tc->rcv_opts) && tc->rcv_opts.tsecr) |
| { |
| mrtt = clib_max (tcp_tstamp (tc) - tc->rcv_opts.tsecr, 1); |
| mrtt *= TCP_TSTP_TO_HZ; |
| } |
| |
| estimate_rtt: |
| |
| /* Ignore dubious measurements */ |
| if (mrtt == 0 || mrtt > TCP_RTT_MAX) |
| goto done; |
| |
| tcp_estimate_rtt (tc, mrtt); |
| |
| done: |
| |
| /* If we got here something must've been ACKed so make sure boff is 0, |
| * even if mrtt is not valid since we update the rto lower */ |
| tc->rto_boff = 0; |
| tcp_update_rto (tc); |
| |
| return 0; |
| } |
| |
| static void |
| tcp_estimate_initial_rtt (tcp_connection_t * tc) |
| { |
| u8 thread_index = vlib_num_workers ()? 1 : 0; |
| int mrtt; |
| |
| if (tc->rtt_ts) |
| { |
| tc->mrtt_us = tcp_time_now_us (thread_index) - tc->rtt_ts; |
| tc->mrtt_us = clib_max (tc->mrtt_us, 0.0001); |
| mrtt = clib_max ((u32) (tc->mrtt_us * THZ), 1); |
| tc->rtt_ts = 0; |
| } |
| else |
| { |
| mrtt = tcp_tstamp (tc) - tc->rcv_opts.tsecr; |
| mrtt = clib_max (mrtt, 1) * TCP_TSTP_TO_HZ; |
| /* Due to retransmits we don't know the initial mrtt */ |
| if (tc->rto_boff && mrtt > 1 * THZ) |
| mrtt = 1 * THZ; |
| tc->mrtt_us = (f64) mrtt *TCP_TICK; |
| } |
| |
| if (mrtt > 0 && mrtt < TCP_RTT_MAX) |
| { |
| /* First measurement as per RFC 6298 */ |
| tc->srtt = mrtt; |
| tc->rttvar = mrtt >> 1; |
| } |
| tcp_update_rto (tc); |
| } |
| |
| /** |
| * Dequeue bytes for connections that have received acks in last burst |
| */ |
| static void |
| tcp_handle_postponed_dequeues (tcp_worker_ctx_t * wrk) |
| { |
| u32 thread_index = wrk->vm->thread_index; |
| u32 *pending_deq_acked; |
| tcp_connection_t *tc; |
| int i; |
| |
| if (!vec_len (wrk->pending_deq_acked)) |
| return; |
| |
| pending_deq_acked = wrk->pending_deq_acked; |
| for (i = 0; i < vec_len (pending_deq_acked); i++) |
| { |
| tc = tcp_connection_get (pending_deq_acked[i], thread_index); |
| tc->flags &= ~TCP_CONN_DEQ_PENDING; |
| |
| if (PREDICT_FALSE (!tc->burst_acked)) |
| continue; |
| |
| /* Dequeue the newly ACKed bytes */ |
| session_tx_fifo_dequeue_drop (&tc->connection, tc->burst_acked); |
| tcp_validate_txf_size (tc, tc->snd_nxt - tc->snd_una); |
| |
| if (tcp_is_descheduled (tc)) |
| tcp_reschedule (tc); |
| |
| /* If everything has been acked, stop retransmit timer |
| * otherwise update. */ |
| tcp_retransmit_timer_update (&wrk->timer_wheel, tc); |
| |
| /* Update pacer based on our new cwnd estimate */ |
| tcp_connection_tx_pacer_update (tc); |
| |
| tc->burst_acked = 0; |
| } |
| _vec_len (wrk->pending_deq_acked) = 0; |
| } |
| |
| static void |
| tcp_program_dequeue (tcp_worker_ctx_t * wrk, tcp_connection_t * tc) |
| { |
| if (!(tc->flags & TCP_CONN_DEQ_PENDING)) |
| { |
| vec_add1 (wrk->pending_deq_acked, tc->c_c_index); |
| tc->flags |= TCP_CONN_DEQ_PENDING; |
| } |
| tc->burst_acked += tc->bytes_acked; |
| } |
| |
| /** |
| * Try to update snd_wnd based on feedback received from peer. |
| * |
| * If successful, and new window is 'effectively' 0, activate persist |
| * timer. |
| */ |
| static void |
| tcp_update_snd_wnd (tcp_connection_t * tc, u32 seq, u32 ack, u32 snd_wnd) |
| { |
| /* If (SND.WL1 < SEG.SEQ or (SND.WL1 = SEG.SEQ and SND.WL2 =< SEG.ACK)), set |
| * SND.WND <- SEG.WND, set SND.WL1 <- SEG.SEQ, and set SND.WL2 <- SEG.ACK */ |
| if (seq_lt (tc->snd_wl1, seq) |
| || (tc->snd_wl1 == seq && seq_leq (tc->snd_wl2, ack))) |
| { |
| tc->snd_wnd = snd_wnd; |
| tc->snd_wl1 = seq; |
| tc->snd_wl2 = ack; |
| TCP_EVT (TCP_EVT_SND_WND, tc); |
| |
| if (PREDICT_FALSE (tc->snd_wnd < tc->snd_mss)) |
| { |
| /* Set persist timer if not set and we just got 0 wnd */ |
| if (!tcp_timer_is_active (tc, TCP_TIMER_PERSIST) |
| && !tcp_timer_is_active (tc, TCP_TIMER_RETRANSMIT)) |
| { |
| tcp_worker_ctx_t *wrk = tcp_get_worker (tc->c_thread_index); |
| tcp_persist_timer_set (&wrk->timer_wheel, tc); |
| } |
| } |
| else |
| { |
| if (PREDICT_FALSE (tcp_timer_is_active (tc, TCP_TIMER_PERSIST))) |
| { |
| tcp_worker_ctx_t *wrk = tcp_get_worker (tc->c_thread_index); |
| tcp_persist_timer_reset (&wrk->timer_wheel, tc); |
| } |
| |
| if (PREDICT_FALSE (tcp_is_descheduled (tc))) |
| tcp_reschedule (tc); |
| |
| if (PREDICT_FALSE (!tcp_in_recovery (tc) && tc->rto_boff > 0)) |
| { |
| tc->rto_boff = 0; |
| tcp_update_rto (tc); |
| } |
| } |
| } |
| } |
| |
| /** |
| * Init loss recovery/fast recovery. |
| * |
| * Triggered by dup acks as opposed to timer timeout. Note that cwnd is |
| * updated in @ref tcp_cc_handle_event after fast retransmit |
| */ |
| static void |
| tcp_cc_init_congestion (tcp_connection_t * tc) |
| { |
| tcp_fastrecovery_on (tc); |
| tc->snd_congestion = tc->snd_nxt; |
| tc->cwnd_acc_bytes = 0; |
| tc->snd_rxt_bytes = 0; |
| tc->rxt_delivered = 0; |
| tc->prr_delivered = 0; |
| tc->prr_start = tc->snd_una; |
| tc->prev_ssthresh = tc->ssthresh; |
| tc->prev_cwnd = tc->cwnd; |
| |
| tc->snd_rxt_ts = tcp_tstamp (tc); |
| tcp_cc_congestion (tc); |
| |
| /* Post retransmit update cwnd to ssthresh and account for the |
| * three segments that have left the network and should've been |
| * buffered at the receiver XXX */ |
| if (!tcp_opts_sack_permitted (&tc->rcv_opts)) |
| tc->cwnd += TCP_DUPACK_THRESHOLD * tc->snd_mss; |
| |
| tc->fr_occurences += 1; |
| TCP_EVT (TCP_EVT_CC_EVT, tc, 4); |
| } |
| |
| static void |
| tcp_cc_congestion_undo (tcp_connection_t * tc) |
| { |
| tc->cwnd = tc->prev_cwnd; |
| tc->ssthresh = tc->prev_ssthresh; |
| tcp_cc_undo_recovery (tc); |
| ASSERT (tc->rto_boff == 0); |
| TCP_EVT (TCP_EVT_CC_EVT, tc, 5); |
| } |
| |
| static inline u8 |
| tcp_cc_is_spurious_timeout_rxt (tcp_connection_t * tc) |
| { |
| return (tcp_in_recovery (tc) && tc->rto_boff == 1 |
| && tc->snd_rxt_ts |
| && tcp_opts_tstamp (&tc->rcv_opts) |
| && timestamp_lt (tc->rcv_opts.tsecr, tc->snd_rxt_ts)); |
| } |
| |
| static inline u8 |
| tcp_cc_is_spurious_retransmit (tcp_connection_t * tc) |
| { |
| return (tcp_cc_is_spurious_timeout_rxt (tc)); |
| } |
| |
| static inline u8 |
| tcp_should_fastrecover (tcp_connection_t * tc, u8 has_sack) |
| { |
| if (!has_sack) |
| { |
| /* If of of the two conditions lower hold, reset dupacks because |
| * we're probably after timeout (RFC6582 heuristics). |
| * If Cumulative ack does not cover more than congestion threshold, |
| * and: |
| * 1) The following doesn't hold: The congestion window is greater |
| * than SMSS bytes and the difference between highest_ack |
| * and prev_highest_ack is at most 4*SMSS bytes |
| * 2) Echoed timestamp in the last non-dup ack does not equal the |
| * stored timestamp |
| */ |
| if (seq_leq (tc->snd_una, tc->snd_congestion) |
| && ((!(tc->cwnd > tc->snd_mss |
| && tc->bytes_acked <= 4 * tc->snd_mss)) |
| || (tc->rcv_opts.tsecr != tc->tsecr_last_ack))) |
| { |
| tc->rcv_dupacks = 0; |
| return 0; |
| } |
| } |
| return tc->sack_sb.lost_bytes || tc->rcv_dupacks >= tc->sack_sb.reorder; |
| } |
| |
| static int |
| tcp_cc_try_recover (tcp_connection_t *tc) |
| { |
| sack_scoreboard_hole_t *hole; |
| u8 is_spurious = 0; |
| |
| ASSERT (tcp_in_cong_recovery (tc)); |
| |
| if (tcp_cc_is_spurious_retransmit (tc)) |
| { |
| tcp_cc_congestion_undo (tc); |
| is_spurious = 1; |
| } |
| |
| tcp_connection_tx_pacer_reset (tc, tc->cwnd, 0 /* start bucket */ ); |
| tc->rcv_dupacks = 0; |
| |
| /* Previous recovery left us congested. Continue sending as part |
| * of the current recovery event with an updated snd_congestion */ |
| if (tc->sack_sb.sacked_bytes) |
| { |
| tc->snd_congestion = tc->snd_nxt; |
| return -1; |
| } |
| |
| tc->rxt_delivered = 0; |
| tc->snd_rxt_bytes = 0; |
| tc->snd_rxt_ts = 0; |
| tc->prr_delivered = 0; |
| tc->rtt_ts = 0; |
| tc->flags &= ~TCP_CONN_RXT_PENDING; |
| |
| hole = scoreboard_first_hole (&tc->sack_sb); |
| if (hole && hole->start == tc->snd_una && hole->end == tc->snd_nxt) |
| scoreboard_clear (&tc->sack_sb); |
| |
| if (!tcp_in_recovery (tc) && !is_spurious) |
| tcp_cc_recovered (tc); |
| |
| tcp_fastrecovery_off (tc); |
| tcp_fastrecovery_first_off (tc); |
| tcp_recovery_off (tc); |
| TCP_EVT (TCP_EVT_CC_EVT, tc, 3); |
| |
| ASSERT (tc->rto_boff == 0); |
| ASSERT (!tcp_in_cong_recovery (tc)); |
| ASSERT (tcp_scoreboard_is_sane_post_recovery (tc)); |
| |
| return 0; |
| } |
| |
| static void |
| tcp_cc_update (tcp_connection_t * tc, tcp_rate_sample_t * rs) |
| { |
| ASSERT (!tcp_in_cong_recovery (tc) || tcp_is_lost_fin (tc)); |
| |
| /* Congestion avoidance */ |
| tcp_cc_rcv_ack (tc, rs); |
| |
| /* If a cumulative ack, make sure dupacks is 0 */ |
| tc->rcv_dupacks = 0; |
| |
| /* When dupacks hits the threshold we only enter fast retransmit if |
| * cumulative ack covers more than snd_congestion. Should snd_una |
| * wrap this test may fail under otherwise valid circumstances. |
| * Therefore, proactively update snd_congestion when wrap detected. */ |
| if (PREDICT_FALSE |
| (seq_leq (tc->snd_congestion, tc->snd_una - tc->bytes_acked) |
| && seq_gt (tc->snd_congestion, tc->snd_una))) |
| tc->snd_congestion = tc->snd_una - 1; |
| } |
| |
| /** |
| * One function to rule them all ... and in the darkness bind them |
| */ |
| static void |
| tcp_cc_handle_event (tcp_connection_t * tc, tcp_rate_sample_t * rs, |
| u32 is_dack) |
| { |
| u8 has_sack = tcp_opts_sack_permitted (&tc->rcv_opts); |
| |
| /* If reneging, wait for timer based retransmits */ |
| if (PREDICT_FALSE (tcp_is_lost_fin (tc) || tc->sack_sb.is_reneging)) |
| return; |
| |
| /* |
| * If not in recovery, figure out if we should enter |
| */ |
| if (!tcp_in_cong_recovery (tc)) |
| { |
| ASSERT (is_dack); |
| |
| tc->rcv_dupacks++; |
| TCP_EVT (TCP_EVT_DUPACK_RCVD, tc, 1); |
| tcp_cc_rcv_cong_ack (tc, TCP_CC_DUPACK, rs); |
| |
| if (tcp_should_fastrecover (tc, has_sack)) |
| { |
| tcp_cc_init_congestion (tc); |
| |
| if (has_sack) |
| scoreboard_init_rxt (&tc->sack_sb, tc->snd_una); |
| |
| tcp_connection_tx_pacer_reset (tc, tc->cwnd, 0 /* start bucket */ ); |
| tcp_program_retransmit (tc); |
| } |
| |
| return; |
| } |
| |
| /* |
| * Already in recovery |
| */ |
| |
| /* |
| * See if we can exit and stop retransmitting |
| */ |
| if (seq_geq (tc->snd_una, tc->snd_congestion)) |
| { |
| /* If successfully recovered, treat ack as congestion avoidance ack |
| * and return. Otherwise, we're still congested so process feedback */ |
| if (!tcp_cc_try_recover (tc)) |
| { |
| tcp_cc_rcv_ack (tc, rs); |
| return; |
| } |
| } |
| |
| /* |
| * Process (re)transmit feedback. Output path uses this to decide how much |
| * more data to release into the network |
| */ |
| if (has_sack) |
| { |
| if (!tc->bytes_acked && tc->sack_sb.rxt_sacked) |
| tcp_fastrecovery_first_on (tc); |
| |
| tc->rxt_delivered += tc->sack_sb.rxt_sacked; |
| tc->prr_delivered += rs->delivered; |
| } |
| else |
| { |
| if (is_dack) |
| { |
| tc->rcv_dupacks += 1; |
| TCP_EVT (TCP_EVT_DUPACK_RCVD, tc, 1); |
| } |
| tc->rxt_delivered = clib_min (tc->rxt_delivered + tc->bytes_acked, |
| tc->snd_rxt_bytes); |
| if (is_dack) |
| tc->prr_delivered += clib_min (tc->snd_mss, |
| tc->snd_nxt - tc->snd_una); |
| else |
| tc->prr_delivered += tc->bytes_acked - clib_min (tc->bytes_acked, |
| tc->snd_mss * |
| tc->rcv_dupacks); |
| |
| /* If partial ack, assume that the first un-acked segment was lost */ |
| if (tc->bytes_acked || tc->rcv_dupacks == TCP_DUPACK_THRESHOLD) |
| tcp_fastrecovery_first_on (tc); |
| } |
| |
| tcp_program_retransmit (tc); |
| |
| /* |
| * Notify cc of the event |
| */ |
| |
| if (!tc->bytes_acked) |
| { |
| tcp_cc_rcv_cong_ack (tc, TCP_CC_DUPACK, rs); |
| return; |
| } |
| |
| /* RFC6675: If the incoming ACK is a cumulative acknowledgment, |
| * reset dupacks to 0. Also needed if in congestion recovery */ |
| tc->rcv_dupacks = 0; |
| |
| if (tcp_in_recovery (tc)) |
| tcp_cc_rcv_ack (tc, rs); |
| else |
| tcp_cc_rcv_cong_ack (tc, TCP_CC_PARTIALACK, rs); |
| } |
| |
| static void |
| tcp_handle_old_ack (tcp_connection_t * tc, tcp_rate_sample_t * rs) |
| { |
| if (!tcp_in_cong_recovery (tc)) |
| return; |
| |
| if (tcp_opts_sack_permitted (&tc->rcv_opts)) |
| tcp_rcv_sacks (tc, tc->snd_una); |
| |
| tc->bytes_acked = 0; |
| |
| if (tc->cfg_flags & TCP_CFG_F_RATE_SAMPLE) |
| tcp_bt_sample_delivery_rate (tc, rs); |
| |
| tcp_cc_handle_event (tc, rs, 1); |
| } |
| |
| /** |
| * Check if duplicate ack as per RFC5681 Sec. 2 |
| */ |
| always_inline u8 |
| tcp_ack_is_dupack (tcp_connection_t * tc, vlib_buffer_t * b, u32 prev_snd_wnd, |
| u32 prev_snd_una) |
| { |
| return ((vnet_buffer (b)->tcp.ack_number == prev_snd_una) |
| && seq_gt (tc->snd_nxt, tc->snd_una) |
| && (vnet_buffer (b)->tcp.seq_end == vnet_buffer (b)->tcp.seq_number) |
| && (prev_snd_wnd == tc->snd_wnd)); |
| } |
| |
| /** |
| * Checks if ack is a congestion control event. |
| */ |
| static u8 |
| tcp_ack_is_cc_event (tcp_connection_t * tc, vlib_buffer_t * b, |
| u32 prev_snd_wnd, u32 prev_snd_una, u8 * is_dack) |
| { |
| /* Check if ack is duplicate. Per RFC 6675, ACKs that SACK new data are |
| * defined to be 'duplicate' as well */ |
| *is_dack = tc->sack_sb.last_sacked_bytes |
| || tcp_ack_is_dupack (tc, b, prev_snd_wnd, prev_snd_una); |
| |
| return (*is_dack || tcp_in_cong_recovery (tc)); |
| } |
| |
| /** |
| * Process incoming ACK |
| */ |
| static int |
| tcp_rcv_ack (tcp_worker_ctx_t * wrk, tcp_connection_t * tc, vlib_buffer_t * b, |
| tcp_header_t * th, u32 * error) |
| { |
| u32 prev_snd_wnd, prev_snd_una; |
| tcp_rate_sample_t rs = { 0 }; |
| u8 is_dack; |
| |
| TCP_EVT (TCP_EVT_CC_STAT, tc); |
| |
| /* If the ACK acks something not yet sent (SEG.ACK > SND.NXT) */ |
| if (PREDICT_FALSE (seq_gt (vnet_buffer (b)->tcp.ack_number, tc->snd_nxt))) |
| { |
| /* We've probably entered recovery and the peer still has some |
| * of the data we've sent. Update snd_nxt and accept the ack */ |
| if (seq_leq (vnet_buffer (b)->tcp.ack_number, tc->snd_nxt) |
| && seq_gt (vnet_buffer (b)->tcp.ack_number, tc->snd_una)) |
| { |
| tc->snd_nxt = vnet_buffer (b)->tcp.ack_number; |
| goto process_ack; |
| } |
| |
| tc->errors.above_ack_wnd += 1; |
| *error = TCP_ERROR_ACK_FUTURE; |
| TCP_EVT (TCP_EVT_ACK_RCV_ERR, tc, 0, vnet_buffer (b)->tcp.ack_number); |
| return -1; |
| } |
| |
| /* If old ACK, probably it's an old dupack */ |
| if (PREDICT_FALSE (seq_lt (vnet_buffer (b)->tcp.ack_number, tc->snd_una))) |
| { |
| tc->errors.below_ack_wnd += 1; |
| *error = TCP_ERROR_ACK_OLD; |
| TCP_EVT (TCP_EVT_ACK_RCV_ERR, tc, 1, vnet_buffer (b)->tcp.ack_number); |
| |
| if (seq_lt (vnet_buffer (b)->tcp.ack_number, tc->snd_una - tc->rcv_wnd)) |
| return -1; |
| |
| tcp_handle_old_ack (tc, &rs); |
| |
| /* Don't drop yet */ |
| return 0; |
| } |
| |
| process_ack: |
| |
| /* |
| * Looks okay, process feedback |
| */ |
| |
| if (tcp_opts_sack_permitted (&tc->rcv_opts)) |
| tcp_rcv_sacks (tc, vnet_buffer (b)->tcp.ack_number); |
| |
| prev_snd_wnd = tc->snd_wnd; |
| prev_snd_una = tc->snd_una; |
| tcp_update_snd_wnd (tc, vnet_buffer (b)->tcp.seq_number, |
| vnet_buffer (b)->tcp.ack_number, |
| clib_net_to_host_u16 (th->window) << tc->snd_wscale); |
| tc->bytes_acked = vnet_buffer (b)->tcp.ack_number - tc->snd_una; |
| tc->snd_una = vnet_buffer (b)->tcp.ack_number; |
| tcp_validate_txf_size (tc, tc->bytes_acked); |
| |
| if (tc->cfg_flags & TCP_CFG_F_RATE_SAMPLE) |
| tcp_bt_sample_delivery_rate (tc, &rs); |
| else |
| rs.delivered = tc->bytes_acked + tc->sack_sb.last_sacked_bytes - |
| tc->sack_sb.last_bytes_delivered; |
| |
| if (tc->bytes_acked + tc->sack_sb.last_sacked_bytes) |
| { |
| tcp_update_rtt (tc, &rs, vnet_buffer (b)->tcp.ack_number); |
| if (tc->bytes_acked) |
| tcp_program_dequeue (wrk, tc); |
| } |
| |
| TCP_EVT (TCP_EVT_ACK_RCVD, tc); |
| |
| /* |
| * Check if we have congestion event |
| */ |
| |
| if (tcp_ack_is_cc_event (tc, b, prev_snd_wnd, prev_snd_una, &is_dack)) |
| { |
| tcp_cc_handle_event (tc, &rs, is_dack); |
| tc->dupacks_in += is_dack; |
| if (!tcp_in_cong_recovery (tc)) |
| { |
| *error = TCP_ERROR_ACK_OK; |
| return 0; |
| } |
| *error = TCP_ERROR_ACK_DUP; |
| if (vnet_buffer (b)->tcp.data_len || tcp_is_fin (th)) |
| return 0; |
| return -1; |
| } |
| |
| /* |
| * Update congestion control (slow start/congestion avoidance) |
| */ |
| tcp_cc_update (tc, &rs); |
| *error = TCP_ERROR_ACK_OK; |
| return 0; |
| } |
| |
| static void |
| tcp_program_disconnect (tcp_worker_ctx_t * wrk, tcp_connection_t * tc) |
| { |
| if (!tcp_disconnect_pending (tc)) |
| { |
| vec_add1 (wrk->pending_disconnects, tc->c_c_index); |
| tcp_disconnect_pending_on (tc); |
| } |
| } |
| |
| static void |
| tcp_handle_disconnects (tcp_worker_ctx_t * wrk) |
| { |
| u32 thread_index, *pending_disconnects, *pending_resets; |
| tcp_connection_t *tc; |
| int i; |
| |
| if (vec_len (wrk->pending_disconnects)) |
| { |
| thread_index = wrk->vm->thread_index; |
| pending_disconnects = wrk->pending_disconnects; |
| for (i = 0; i < vec_len (pending_disconnects); i++) |
| { |
| tc = tcp_connection_get (pending_disconnects[i], thread_index); |
| tcp_disconnect_pending_off (tc); |
| session_transport_closing_notify (&tc->connection); |
| } |
| _vec_len (wrk->pending_disconnects) = 0; |
| } |
| |
| if (vec_len (wrk->pending_resets)) |
| { |
| thread_index = wrk->vm->thread_index; |
| pending_resets = wrk->pending_resets; |
| for (i = 0; i < vec_len (pending_resets); i++) |
| { |
| tc = tcp_connection_get (pending_resets[i], thread_index); |
| tcp_disconnect_pending_off (tc); |
| tcp_handle_rst (tc); |
| } |
| _vec_len (wrk->pending_resets) = 0; |
| } |
| } |
| |
| static void |
| tcp_rcv_fin (tcp_worker_ctx_t * wrk, tcp_connection_t * tc, vlib_buffer_t * b, |
| u32 * error) |
| { |
| /* Reject out-of-order fins */ |
| if (vnet_buffer (b)->tcp.seq_end != tc->rcv_nxt) |
| return; |
| |
| /* Account for the FIN and send ack */ |
| tc->rcv_nxt += 1; |
| tc->flags |= TCP_CONN_FINRCVD; |
| tcp_program_ack (tc); |
| /* Enter CLOSE-WAIT and notify session. To avoid lingering |
| * in CLOSE-WAIT, set timer (reuse WAITCLOSE). */ |
| tcp_connection_set_state (tc, TCP_STATE_CLOSE_WAIT); |
| tcp_program_disconnect (wrk, tc); |
| tcp_timer_update (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.closewait_time); |
| TCP_EVT (TCP_EVT_FIN_RCVD, tc); |
| *error = TCP_ERROR_FIN_RCVD; |
| } |
| |
| /** Enqueue data for delivery to application */ |
| static int |
| tcp_session_enqueue_data (tcp_connection_t * tc, vlib_buffer_t * b, |
| u16 data_len) |
| { |
| int written, error = TCP_ERROR_ENQUEUED; |
| |
| ASSERT (seq_geq (vnet_buffer (b)->tcp.seq_number, tc->rcv_nxt)); |
| ASSERT (data_len); |
| written = session_enqueue_stream_connection (&tc->connection, b, 0, |
| 1 /* queue event */ , 1); |
| tc->bytes_in += written; |
| |
| TCP_EVT (TCP_EVT_INPUT, tc, 0, data_len, written); |
| |
| /* Update rcv_nxt */ |
| if (PREDICT_TRUE (written == data_len)) |
| { |
| tc->rcv_nxt += written; |
| } |
| /* If more data written than expected, account for out-of-order bytes. */ |
| else if (written > data_len) |
| { |
| tc->rcv_nxt += written; |
| TCP_EVT (TCP_EVT_CC_INPUT, tc, data_len, written); |
| } |
| else if (written > 0) |
| { |
| /* We've written something but FIFO is probably full now */ |
| tc->rcv_nxt += written; |
| error = TCP_ERROR_PARTIALLY_ENQUEUED; |
| } |
| else |
| { |
| /* Packet made it through for ack processing */ |
| if (tc->rcv_wnd < tc->snd_mss) |
| return TCP_ERROR_ZERO_RWND; |
| |
| return TCP_ERROR_FIFO_FULL; |
| } |
| |
| /* Update SACK list if need be */ |
| if (tcp_opts_sack_permitted (&tc->rcv_opts) && vec_len (tc->snd_sacks)) |
| { |
| /* Remove SACK blocks that have been delivered */ |
| tcp_update_sack_list (tc, tc->rcv_nxt, tc->rcv_nxt); |
| } |
| |
| return error; |
| } |
| |
| /** Enqueue out-of-order data */ |
| static int |
| tcp_session_enqueue_ooo (tcp_connection_t * tc, vlib_buffer_t * b, |
| u16 data_len) |
| { |
| session_t *s0; |
| int rv, offset; |
| |
| ASSERT (seq_gt (vnet_buffer (b)->tcp.seq_number, tc->rcv_nxt)); |
| ASSERT (data_len); |
| |
| /* Enqueue out-of-order data with relative offset */ |
| rv = session_enqueue_stream_connection (&tc->connection, b, |
| vnet_buffer (b)->tcp.seq_number - |
| tc->rcv_nxt, 0 /* queue event */ , |
| 0); |
| |
| /* Nothing written */ |
| if (rv) |
| { |
| TCP_EVT (TCP_EVT_INPUT, tc, 1, data_len, 0); |
| return TCP_ERROR_FIFO_FULL; |
| } |
| |
| TCP_EVT (TCP_EVT_INPUT, tc, 1, data_len, data_len); |
| tc->bytes_in += data_len; |
| |
| /* Update SACK list if in use */ |
| if (tcp_opts_sack_permitted (&tc->rcv_opts)) |
| { |
| ooo_segment_t *newest; |
| u32 start, end; |
| |
| s0 = session_get (tc->c_s_index, tc->c_thread_index); |
| |
| /* Get the newest segment from the fifo */ |
| newest = svm_fifo_newest_ooo_segment (s0->rx_fifo); |
| if (newest) |
| { |
| offset = ooo_segment_offset_prod (s0->rx_fifo, newest); |
| ASSERT (offset <= vnet_buffer (b)->tcp.seq_number - tc->rcv_nxt); |
| start = tc->rcv_nxt + offset; |
| end = start + ooo_segment_length (s0->rx_fifo, newest); |
| tcp_update_sack_list (tc, start, end); |
| svm_fifo_newest_ooo_segment_reset (s0->rx_fifo); |
| TCP_EVT (TCP_EVT_CC_SACKS, tc); |
| } |
| } |
| |
| return TCP_ERROR_ENQUEUED_OOO; |
| } |
| |
| static int |
| tcp_buffer_discard_bytes (vlib_buffer_t * b, u32 n_bytes_to_drop) |
| { |
| u32 discard, first = b->current_length; |
| vlib_main_t *vm = vlib_get_main (); |
| |
| /* Handle multi-buffer segments */ |
| if (n_bytes_to_drop > b->current_length) |
| { |
| if (!(b->flags & VLIB_BUFFER_NEXT_PRESENT)) |
| return -1; |
| do |
| { |
| discard = clib_min (n_bytes_to_drop, b->current_length); |
| vlib_buffer_advance (b, discard); |
| b = vlib_get_buffer (vm, b->next_buffer); |
| n_bytes_to_drop -= discard; |
| } |
| while (n_bytes_to_drop); |
| if (n_bytes_to_drop > first) |
| b->total_length_not_including_first_buffer -= n_bytes_to_drop - first; |
| } |
| else |
| vlib_buffer_advance (b, n_bytes_to_drop); |
| vnet_buffer (b)->tcp.data_len -= n_bytes_to_drop; |
| return 0; |
| } |
| |
| /** |
| * Receive buffer for connection and handle acks |
| * |
| * It handles both in order or out-of-order data. |
| */ |
| static int |
| tcp_segment_rcv (tcp_worker_ctx_t * wrk, tcp_connection_t * tc, |
| vlib_buffer_t * b) |
| { |
| u32 error, n_bytes_to_drop, n_data_bytes; |
| |
| vlib_buffer_advance (b, vnet_buffer (b)->tcp.data_offset); |
| n_data_bytes = vnet_buffer (b)->tcp.data_len; |
| ASSERT (n_data_bytes); |
| tc->data_segs_in += 1; |
| |
| /* Make sure we don't consume trailing bytes */ |
| if (PREDICT_FALSE (b->current_length > n_data_bytes)) |
| b->current_length = n_data_bytes; |
| |
| /* Handle out-of-order data */ |
| if (PREDICT_FALSE (vnet_buffer (b)->tcp.seq_number != tc->rcv_nxt)) |
| { |
| /* Old sequence numbers allowed through because they overlapped |
| * the rx window */ |
| if (seq_lt (vnet_buffer (b)->tcp.seq_number, tc->rcv_nxt)) |
| { |
| /* Completely in the past (possible retransmit). Ack |
| * retransmissions since we may not have any data to send */ |
| if (seq_leq (vnet_buffer (b)->tcp.seq_end, tc->rcv_nxt)) |
| { |
| tcp_program_dupack (tc); |
| tc->errors.below_data_wnd++; |
| error = TCP_ERROR_SEGMENT_OLD; |
| goto done; |
| } |
| |
| /* Chop off the bytes in the past and see if what is left |
| * can be enqueued in order */ |
| n_bytes_to_drop = tc->rcv_nxt - vnet_buffer (b)->tcp.seq_number; |
| n_data_bytes -= n_bytes_to_drop; |
| vnet_buffer (b)->tcp.seq_number = tc->rcv_nxt; |
| if (tcp_buffer_discard_bytes (b, n_bytes_to_drop)) |
| { |
| error = TCP_ERROR_SEGMENT_OLD; |
| goto done; |
| } |
| goto in_order; |
| } |
| |
| /* RFC2581: Enqueue and send DUPACK for fast retransmit */ |
| error = tcp_session_enqueue_ooo (tc, b, n_data_bytes); |
| tcp_program_dupack (tc); |
| TCP_EVT (TCP_EVT_DUPACK_SENT, tc, vnet_buffer (b)->tcp); |
| tc->errors.above_data_wnd += seq_gt (vnet_buffer (b)->tcp.seq_end, |
| tc->rcv_las + tc->rcv_wnd); |
| goto done; |
| } |
| |
| in_order: |
| |
| /* In order data, enqueue. Fifo figures out by itself if any out-of-order |
| * segments can be enqueued after fifo tail offset changes. */ |
| error = tcp_session_enqueue_data (tc, b, n_data_bytes); |
| tcp_program_ack (tc); |
| |
| done: |
| return error; |
| } |
| |
| typedef struct |
| { |
| tcp_header_t tcp_header; |
| tcp_connection_t tcp_connection; |
| } tcp_rx_trace_t; |
| |
| static u8 * |
| format_tcp_rx_trace (u8 * s, va_list * args) |
| { |
| CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *); |
| CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *); |
| tcp_rx_trace_t *t = va_arg (*args, tcp_rx_trace_t *); |
| tcp_connection_t *tc = &t->tcp_connection; |
| u32 indent = format_get_indent (s); |
| |
| s = format (s, "%U state %U\n%U%U", format_tcp_connection_id, tc, |
| format_tcp_state, tc->state, format_white_space, indent, |
| format_tcp_header, &t->tcp_header, 128); |
| |
| return s; |
| } |
| |
| static u8 * |
| format_tcp_rx_trace_short (u8 * s, va_list * args) |
| { |
| CLIB_UNUSED (vlib_main_t * vm) = va_arg (*args, vlib_main_t *); |
| CLIB_UNUSED (vlib_node_t * node) = va_arg (*args, vlib_node_t *); |
| tcp_rx_trace_t *t = va_arg (*args, tcp_rx_trace_t *); |
| |
| s = format (s, "%d -> %d (%U)", |
| clib_net_to_host_u16 (t->tcp_header.dst_port), |
| clib_net_to_host_u16 (t->tcp_header.src_port), format_tcp_state, |
| t->tcp_connection.state); |
| |
| return s; |
| } |
| |
| static void |
| tcp_set_rx_trace_data (tcp_rx_trace_t * t0, tcp_connection_t * tc0, |
| tcp_header_t * th0, vlib_buffer_t * b0, u8 is_ip4) |
| { |
| if (tc0) |
| { |
| clib_memcpy_fast (&t0->tcp_connection, tc0, |
| sizeof (t0->tcp_connection)); |
| } |
| else |
| { |
| th0 = tcp_buffer_hdr (b0); |
| } |
| clib_memcpy_fast (&t0->tcp_header, th0, sizeof (t0->tcp_header)); |
| } |
| |
| static void |
| tcp_established_trace_frame (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * frame, u8 is_ip4) |
| { |
| u32 *from, n_left; |
| |
| n_left = frame->n_vectors; |
| from = vlib_frame_vector_args (frame); |
| |
| while (n_left >= 1) |
| { |
| tcp_connection_t *tc0; |
| tcp_rx_trace_t *t0; |
| tcp_header_t *th0; |
| vlib_buffer_t *b0; |
| u32 bi0; |
| |
| bi0 = from[0]; |
| b0 = vlib_get_buffer (vm, bi0); |
| |
| if (b0->flags & VLIB_BUFFER_IS_TRACED) |
| { |
| t0 = vlib_add_trace (vm, node, b0, sizeof (*t0)); |
| tc0 = tcp_connection_get (vnet_buffer (b0)->tcp.connection_index, |
| vm->thread_index); |
| th0 = tcp_buffer_hdr (b0); |
| tcp_set_rx_trace_data (t0, tc0, th0, b0, is_ip4); |
| } |
| |
| from += 1; |
| n_left -= 1; |
| } |
| } |
| |
| always_inline void |
| tcp_node_inc_counter_i (vlib_main_t * vm, u32 tcp4_node, u32 tcp6_node, |
| u8 is_ip4, u32 evt, u32 val) |
| { |
| if (is_ip4) |
| vlib_node_increment_counter (vm, tcp4_node, evt, val); |
| else |
| vlib_node_increment_counter (vm, tcp6_node, evt, val); |
| } |
| |
| #define tcp_maybe_inc_counter(node_id, err, count) \ |
| { \ |
| if (next0 != tcp_next_drop (is_ip4)) \ |
| tcp_node_inc_counter_i (vm, tcp4_##node_id##_node.index, \ |
| tcp6_##node_id##_node.index, is_ip4, err, \ |
| 1); \ |
| } |
| #define tcp_inc_counter(node_id, err, count) \ |
| tcp_node_inc_counter_i (vm, tcp4_##node_id##_node.index, \ |
| tcp6_##node_id##_node.index, is_ip4, \ |
| err, count) |
| #define tcp_maybe_inc_err_counter(cnts, err) \ |
| { \ |
| cnts[err] += (next0 != tcp_next_drop (is_ip4)); \ |
| } |
| #define tcp_inc_err_counter(cnts, err, val) \ |
| { \ |
| cnts[err] += val; \ |
| } |
| #define tcp_store_err_counters(node_id, cnts) \ |
| { \ |
| int i; \ |
| for (i = 0; i < TCP_N_ERROR; i++) \ |
| if (cnts[i]) \ |
| tcp_inc_counter(node_id, i, cnts[i]); \ |
| } |
| |
| |
| always_inline uword |
| tcp46_established_inline (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * frame, int is_ip4) |
| { |
| u32 thread_index = vm->thread_index, errors = 0; |
| tcp_worker_ctx_t *wrk = tcp_get_worker (thread_index); |
| vlib_buffer_t *bufs[VLIB_FRAME_SIZE], **b; |
| u16 err_counters[TCP_N_ERROR] = { 0 }; |
| u32 n_left_from, *from; |
| |
| if (node->flags & VLIB_NODE_FLAG_TRACE) |
| tcp_established_trace_frame (vm, node, frame, is_ip4); |
| |
| from = vlib_frame_vector_args (frame); |
| n_left_from = frame->n_vectors; |
| |
| vlib_get_buffers (vm, from, bufs, n_left_from); |
| b = bufs; |
| |
| while (n_left_from > 0) |
| { |
| u32 error = TCP_ERROR_ACK_OK; |
| tcp_connection_t *tc; |
| tcp_header_t *th; |
| |
| if (n_left_from > 1) |
| { |
| vlib_prefetch_buffer_header (b[1], LOAD); |
| CLIB_PREFETCH (b[1]->data, 2 * CLIB_CACHE_LINE_BYTES, LOAD); |
| } |
| |
| tc = tcp_connection_get (vnet_buffer (b[0])->tcp.connection_index, |
| thread_index); |
| |
| if (PREDICT_FALSE (tc == 0)) |
| { |
| error = TCP_ERROR_INVALID_CONNECTION; |
| goto done; |
| } |
| |
| th = tcp_buffer_hdr (b[0]); |
| |
| /* TODO header prediction fast path */ |
| |
| /* 1-4: check SEQ, RST, SYN */ |
| if (PREDICT_FALSE (tcp_segment_validate (wrk, tc, b[0], th, &error))) |
| { |
| TCP_EVT (TCP_EVT_SEG_INVALID, tc, vnet_buffer (b[0])->tcp); |
| goto done; |
| } |
| |
| /* 5: check the ACK field */ |
| if (PREDICT_FALSE (tcp_rcv_ack (wrk, tc, b[0], th, &error))) |
| goto done; |
| |
| /* 6: check the URG bit TODO */ |
| |
| /* 7: process the segment text */ |
| if (vnet_buffer (b[0])->tcp.data_len) |
| error = tcp_segment_rcv (wrk, tc, b[0]); |
| |
| /* 8: check the FIN bit */ |
| if (PREDICT_FALSE (tcp_is_fin (th))) |
| tcp_rcv_fin (wrk, tc, b[0], &error); |
| |
| done: |
| tcp_inc_err_counter (err_counters, error, 1); |
| |
| n_left_from -= 1; |
| b += 1; |
| } |
| |
| errors = session_main_flush_enqueue_events (TRANSPORT_PROTO_TCP, |
| thread_index); |
| err_counters[TCP_ERROR_MSG_QUEUE_FULL] = errors; |
| tcp_store_err_counters (established, err_counters); |
| tcp_handle_postponed_dequeues (wrk); |
| tcp_handle_disconnects (wrk); |
| vlib_buffer_free (vm, from, frame->n_vectors); |
| |
| return frame->n_vectors; |
| } |
| |
| VLIB_NODE_FN (tcp4_established_node) (vlib_main_t * vm, |
| vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_established_inline (vm, node, from_frame, 1 /* is_ip4 */ ); |
| } |
| |
| VLIB_NODE_FN (tcp6_established_node) (vlib_main_t * vm, |
| vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_established_inline (vm, node, from_frame, 0 /* is_ip4 */ ); |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp4_established_node) = |
| { |
| .name = "tcp4-established", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_ESTABLISHED_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_ESTABLISHED_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp6_established_node) = |
| { |
| .name = "tcp6-established", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_ESTABLISHED_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_ESTABLISHED_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| |
| static u8 |
| tcp_lookup_is_valid (tcp_connection_t * tc, vlib_buffer_t * b, |
| tcp_header_t * hdr) |
| { |
| transport_connection_t *tmp = 0; |
| u64 handle; |
| |
| if (!tc) |
| return 1; |
| |
| /* Proxy case */ |
| if (tc->c_lcl_port == 0 && tc->state == TCP_STATE_LISTEN) |
| return 1; |
| |
| u8 is_ip_valid = 0, val_l, val_r; |
| |
| if (tc->connection.is_ip4) |
| { |
| ip4_header_t *ip4_hdr = (ip4_header_t *) vlib_buffer_get_current (b); |
| |
| val_l = !ip4_address_compare (&ip4_hdr->dst_address, |
| &tc->connection.lcl_ip.ip4); |
| val_l = val_l || ip_is_zero (&tc->connection.lcl_ip, 1); |
| val_r = !ip4_address_compare (&ip4_hdr->src_address, |
| &tc->connection.rmt_ip.ip4); |
| val_r = val_r || tc->state == TCP_STATE_LISTEN; |
| is_ip_valid = val_l && val_r; |
| } |
| else |
| { |
| ip6_header_t *ip6_hdr = (ip6_header_t *) vlib_buffer_get_current (b); |
| |
| val_l = !ip6_address_compare (&ip6_hdr->dst_address, |
| &tc->connection.lcl_ip.ip6); |
| val_l = val_l || ip_is_zero (&tc->connection.lcl_ip, 0); |
| val_r = !ip6_address_compare (&ip6_hdr->src_address, |
| &tc->connection.rmt_ip.ip6); |
| val_r = val_r || tc->state == TCP_STATE_LISTEN; |
| is_ip_valid = val_l && val_r; |
| } |
| |
| u8 is_valid = (tc->c_lcl_port == hdr->dst_port |
| && (tc->state == TCP_STATE_LISTEN |
| || tc->c_rmt_port == hdr->src_port) && is_ip_valid); |
| |
| if (!is_valid) |
| { |
| handle = session_lookup_half_open_handle (&tc->connection); |
| tmp = session_lookup_half_open_connection (handle & 0xFFFFFFFF, |
| tc->c_proto, tc->c_is_ip4); |
| |
| if (tmp) |
| { |
| if (tmp->lcl_port == hdr->dst_port |
| && tmp->rmt_port == hdr->src_port) |
| { |
| TCP_DBG ("half-open is valid!"); |
| is_valid = 1; |
| } |
| } |
| } |
| return is_valid; |
| } |
| |
| /** |
| * Lookup transport connection |
| */ |
| static tcp_connection_t * |
| tcp_lookup_connection (u32 fib_index, vlib_buffer_t * b, u8 thread_index, |
| u8 is_ip4) |
| { |
| tcp_header_t *tcp; |
| transport_connection_t *tconn; |
| tcp_connection_t *tc; |
| u8 is_filtered = 0; |
| if (is_ip4) |
| { |
| ip4_header_t *ip4; |
| ip4 = vlib_buffer_get_current (b); |
| tcp = ip4_next_header (ip4); |
| tconn = session_lookup_connection_wt4 (fib_index, |
| &ip4->dst_address, |
| &ip4->src_address, |
| tcp->dst_port, |
| tcp->src_port, |
| TRANSPORT_PROTO_TCP, |
| thread_index, &is_filtered); |
| tc = tcp_get_connection_from_transport (tconn); |
| ASSERT (tcp_lookup_is_valid (tc, b, tcp)); |
| } |
| else |
| { |
| ip6_header_t *ip6; |
| ip6 = vlib_buffer_get_current (b); |
| tcp = ip6_next_header (ip6); |
| tconn = session_lookup_connection_wt6 (fib_index, |
| &ip6->dst_address, |
| &ip6->src_address, |
| tcp->dst_port, |
| tcp->src_port, |
| TRANSPORT_PROTO_TCP, |
| thread_index, &is_filtered); |
| tc = tcp_get_connection_from_transport (tconn); |
| ASSERT (tcp_lookup_is_valid (tc, b, tcp)); |
| } |
| return tc; |
| } |
| |
| static tcp_connection_t * |
| tcp_lookup_listener (vlib_buffer_t * b, u32 fib_index, int is_ip4) |
| { |
| session_t *s; |
| |
| if (is_ip4) |
| { |
| ip4_header_t *ip4 = vlib_buffer_get_current (b); |
| tcp_header_t *tcp = tcp_buffer_hdr (b); |
| s = session_lookup_listener4 (fib_index, |
| &ip4->dst_address, |
| tcp->dst_port, TRANSPORT_PROTO_TCP, 1); |
| } |
| else |
| { |
| ip6_header_t *ip6 = vlib_buffer_get_current (b); |
| tcp_header_t *tcp = tcp_buffer_hdr (b); |
| s = session_lookup_listener6 (fib_index, |
| &ip6->dst_address, |
| tcp->dst_port, TRANSPORT_PROTO_TCP, 1); |
| |
| } |
| if (PREDICT_TRUE (s != 0)) |
| return tcp_get_connection_from_transport (transport_get_listener |
| (TRANSPORT_PROTO_TCP, |
| s->connection_index)); |
| else |
| return 0; |
| } |
| |
| static void |
| tcp46_syn_sent_trace_frame (vlib_main_t *vm, vlib_node_runtime_t *node, |
| u32 *from, u32 n_bufs) |
| { |
| tcp_connection_t *tc = 0; |
| tcp_rx_trace_t *t; |
| vlib_buffer_t *b; |
| int i; |
| |
| for (i = 0; i < n_bufs; i++) |
| { |
| b = vlib_get_buffer (vm, from[i]); |
| if (!(b->flags & VLIB_BUFFER_IS_TRACED)) |
| continue; |
| tc = |
| tcp_half_open_connection_get (vnet_buffer (b)->tcp.connection_index); |
| t = vlib_add_trace (vm, node, b, sizeof (*t)); |
| tcp_set_rx_trace_data (t, tc, tcp_buffer_hdr (b), b, 1); |
| } |
| } |
| |
| always_inline void |
| tcp_check_tx_offload (tcp_connection_t * tc, int is_ipv4) |
| { |
| vnet_main_t *vnm = vnet_get_main (); |
| const dpo_id_t *dpo; |
| const load_balance_t *lb; |
| vnet_hw_interface_t *hw_if; |
| u32 sw_if_idx, lb_idx; |
| |
| if (is_ipv4) |
| { |
| ip4_address_t *dst_addr = &(tc->c_rmt_ip.ip4); |
| lb_idx = ip4_fib_forwarding_lookup (tc->c_fib_index, dst_addr); |
| } |
| else |
| { |
| ip6_address_t *dst_addr = &(tc->c_rmt_ip.ip6); |
| lb_idx = ip6_fib_table_fwding_lookup (tc->c_fib_index, dst_addr); |
| } |
| |
| lb = load_balance_get (lb_idx); |
| if (PREDICT_FALSE (lb->lb_n_buckets > 1)) |
| return; |
| dpo = load_balance_get_bucket_i (lb, 0); |
| |
| sw_if_idx = dpo_get_urpf (dpo); |
| if (PREDICT_FALSE (sw_if_idx == ~0)) |
| return; |
| |
| hw_if = vnet_get_sup_hw_interface (vnm, sw_if_idx); |
| if (hw_if->caps & VNET_HW_IF_CAP_TCP_GSO) |
| tc->cfg_flags |= TCP_CFG_F_TSO; |
| } |
| |
| always_inline uword |
| tcp46_syn_sent_inline (vlib_main_t *vm, vlib_node_runtime_t *node, |
| vlib_frame_t *frame, int is_ip4) |
| { |
| u32 n_left_from, *from, thread_index = vm->thread_index, errors = 0; |
| tcp_worker_ctx_t *wrk = tcp_get_worker (thread_index); |
| vlib_buffer_t *bufs[VLIB_FRAME_SIZE], **b; |
| |
| from = vlib_frame_vector_args (frame); |
| n_left_from = frame->n_vectors; |
| |
| if (PREDICT_FALSE (node->flags & VLIB_NODE_FLAG_TRACE)) |
| tcp46_syn_sent_trace_frame (vm, node, from, n_left_from); |
| |
| vlib_get_buffers (vm, from, bufs, n_left_from); |
| b = bufs; |
| |
| while (n_left_from > 0) |
| { |
| u32 ack, seq, error = TCP_ERROR_NONE; |
| tcp_connection_t *tc, *new_tc; |
| tcp_header_t *tcp; |
| |
| tc = tcp_half_open_connection_get ( |
| vnet_buffer (b[0])->tcp.connection_index); |
| if (PREDICT_FALSE (tc == 0)) |
| { |
| error = TCP_ERROR_INVALID_CONNECTION; |
| goto drop; |
| } |
| |
| /* Half-open completed or cancelled recently but the connection |
| * was't removed yet by the owning thread */ |
| if (PREDICT_FALSE (tc->flags & TCP_CONN_HALF_OPEN_DONE)) |
| { |
| error = TCP_ERROR_SPURIOUS_SYN_ACK; |
| goto drop; |
| } |
| |
| ack = vnet_buffer (b[0])->tcp.ack_number; |
| seq = vnet_buffer (b[0])->tcp.seq_number; |
| tcp = tcp_buffer_hdr (b[0]); |
| |
| /* Crude check to see if the connection handle does not match |
| * the packet. Probably connection just switched to established */ |
| if (PREDICT_FALSE (tcp->dst_port != tc->c_lcl_port || |
| tcp->src_port != tc->c_rmt_port)) |
| { |
| error = TCP_ERROR_INVALID_CONNECTION; |
| goto drop; |
| } |
| |
| if (PREDICT_FALSE (!tcp_ack (tcp) && !tcp_rst (tcp) && !tcp_syn (tcp))) |
| { |
| error = TCP_ERROR_SEGMENT_INVALID; |
| goto drop; |
| } |
| |
| /* SYNs consume sequence numbers */ |
| vnet_buffer (b[0])->tcp.seq_end += tcp_is_syn (tcp); |
| |
| /* |
| * 1. check the ACK bit |
| */ |
| |
| /* |
| * If the ACK bit is set |
| * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset (unless |
| * the RST bit is set, if so drop the segment and return) |
| * <SEQ=SEG.ACK><CTL=RST> |
| * and discard the segment. Return. |
| * If SND.UNA =< SEG.ACK =< SND.NXT then the ACK is acceptable. |
| */ |
| if (tcp_ack (tcp)) |
| { |
| if (seq_leq (ack, tc->iss) || seq_gt (ack, tc->snd_nxt)) |
| { |
| if (!tcp_rst (tcp)) |
| tcp_send_reset_w_pkt (tc, b[0], thread_index, is_ip4); |
| error = TCP_ERROR_RCV_WND; |
| goto drop; |
| } |
| |
| /* Make sure ACK is valid */ |
| if (seq_gt (tc->snd_una, ack)) |
| { |
| error = TCP_ERROR_ACK_INVALID; |
| goto drop; |
| } |
| } |
| |
| /* |
| * 2. check the RST bit |
| */ |
| |
| if (tcp_rst (tcp)) |
| { |
| /* If ACK is acceptable, signal client that peer is not |
| * willing to accept connection and drop connection*/ |
| if (tcp_ack (tcp)) |
| tcp_rcv_rst (wrk, tc); |
| error = TCP_ERROR_RST_RCVD; |
| goto drop; |
| } |
| |
| /* |
| * 3. check the security and precedence (skipped) |
| */ |
| |
| /* |
| * 4. check the SYN bit |
| */ |
| |
| /* No SYN flag. Drop. */ |
| if (!tcp_syn (tcp)) |
| { |
| error = TCP_ERROR_SEGMENT_INVALID; |
| goto drop; |
| } |
| |
| /* Parse options */ |
| if (tcp_options_parse (tcp, &tc->rcv_opts, 1)) |
| { |
| error = TCP_ERROR_OPTIONS; |
| goto drop; |
| } |
| |
| /* Valid SYN or SYN-ACK. Move connection from half-open pool to |
| * current thread pool. */ |
| new_tc = tcp_connection_alloc_w_base (thread_index, &tc); |
| new_tc->rcv_nxt = vnet_buffer (b[0])->tcp.seq_end; |
| new_tc->irs = seq; |
| new_tc->timers[TCP_TIMER_RETRANSMIT_SYN] = TCP_TIMER_HANDLE_INVALID; |
| |
| if (tcp_opts_tstamp (&new_tc->rcv_opts)) |
| { |
| new_tc->tsval_recent = new_tc->rcv_opts.tsval; |
| new_tc->tsval_recent_age = tcp_time_tstamp (thread_index); |
| } |
| |
| if (tcp_opts_wscale (&new_tc->rcv_opts)) |
| new_tc->snd_wscale = new_tc->rcv_opts.wscale; |
| else |
| new_tc->rcv_wscale = 0; |
| |
| new_tc->snd_wnd = clib_net_to_host_u16 (tcp->window) |
| << new_tc->snd_wscale; |
| new_tc->snd_wl1 = seq; |
| new_tc->snd_wl2 = ack; |
| |
| tcp_connection_init_vars (new_tc); |
| |
| /* SYN-ACK: See if we can switch to ESTABLISHED state */ |
| if (PREDICT_TRUE (tcp_ack (tcp))) |
| { |
| /* Our SYN is ACKed: we have iss < ack = snd_una */ |
| |
| /* TODO Dequeue acknowledged segments if we support Fast Open */ |
| new_tc->snd_una = ack; |
| new_tc->state = TCP_STATE_ESTABLISHED; |
| |
| /* Make sure las is initialized for the wnd computation */ |
| new_tc->rcv_las = new_tc->rcv_nxt; |
| |
| /* Notify app that we have connection. If session layer can't |
| * allocate session send reset */ |
| if (session_stream_connect_notify (&new_tc->connection, |
| SESSION_E_NONE)) |
| { |
| tcp_send_reset_w_pkt (new_tc, b[0], thread_index, is_ip4); |
| tcp_connection_cleanup (new_tc); |
| error = TCP_ERROR_CREATE_SESSION_FAIL; |
| goto cleanup_ho; |
| } |
| |
| transport_fifos_init_ooo (&new_tc->connection); |
| new_tc->tx_fifo_size = transport_tx_fifo_size (&new_tc->connection); |
| /* Update rtt with the syn-ack sample */ |
| tcp_estimate_initial_rtt (new_tc); |
| TCP_EVT (TCP_EVT_SYNACK_RCVD, new_tc); |
| error = TCP_ERROR_SYN_ACKS_RCVD; |
| } |
| /* SYN: Simultaneous open. Change state to SYN-RCVD and send SYN-ACK */ |
| else |
| { |
| new_tc->state = TCP_STATE_SYN_RCVD; |
| |
| /* Notify app that we have connection */ |
| if (session_stream_connect_notify (&new_tc->connection, |
| SESSION_E_NONE)) |
| { |
| tcp_connection_cleanup (new_tc); |
| tcp_send_reset_w_pkt (tc, b[0], thread_index, is_ip4); |
| TCP_EVT (TCP_EVT_RST_SENT, tc); |
| error = TCP_ERROR_CREATE_SESSION_FAIL; |
| goto cleanup_ho; |
| } |
| |
| transport_fifos_init_ooo (&new_tc->connection); |
| new_tc->tx_fifo_size = transport_tx_fifo_size (&new_tc->connection); |
| new_tc->rtt_ts = 0; |
| tcp_init_snd_vars (new_tc); |
| tcp_send_synack (new_tc); |
| error = TCP_ERROR_SYNS_RCVD; |
| goto cleanup_ho; |
| } |
| |
| if (!(new_tc->cfg_flags & TCP_CFG_F_NO_TSO)) |
| tcp_check_tx_offload (new_tc, is_ip4); |
| |
| /* Read data, if any */ |
| if (PREDICT_FALSE (vnet_buffer (b[0])->tcp.data_len)) |
| { |
| clib_warning ("rcvd data in syn-sent"); |
| error = tcp_segment_rcv (wrk, new_tc, b[0]); |
| if (error == TCP_ERROR_ACK_OK) |
| error = TCP_ERROR_SYN_ACKS_RCVD; |
| } |
| else |
| { |
| /* Send ack now instead of programming it because connection was |
| * just established and it's not optional. */ |
| tcp_send_ack (new_tc); |
| } |
| |
| cleanup_ho: |
| |
| /* If this is not the owning thread, wait for syn retransmit to |
| * expire and cleanup then */ |
| if (tcp_half_open_connection_cleanup (tc)) |
| tc->flags |= TCP_CONN_HALF_OPEN_DONE; |
| |
| drop: |
| |
| b += 1; |
| n_left_from -= 1; |
| tcp_inc_counter (syn_sent, error, 1); |
| } |
| |
| errors = |
| session_main_flush_enqueue_events (TRANSPORT_PROTO_TCP, thread_index); |
| tcp_inc_counter (syn_sent, TCP_ERROR_MSG_QUEUE_FULL, errors); |
| vlib_buffer_free (vm, from, frame->n_vectors); |
| tcp_handle_disconnects (wrk); |
| |
| return frame->n_vectors; |
| } |
| |
| VLIB_NODE_FN (tcp4_syn_sent_node) (vlib_main_t * vm, |
| vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_syn_sent_inline (vm, node, from_frame, 1 /* is_ip4 */ ); |
| } |
| |
| VLIB_NODE_FN (tcp6_syn_sent_node) (vlib_main_t * vm, |
| vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_syn_sent_inline (vm, node, from_frame, 0 /* is_ip4 */ ); |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp4_syn_sent_node) = |
| { |
| .name = "tcp4-syn-sent", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_SYN_SENT_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_SYN_SENT_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp6_syn_sent_node) = |
| { |
| .name = "tcp6-syn-sent", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_SYN_SENT_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_SYN_SENT_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| static void |
| tcp46_rcv_process_trace_frame (vlib_main_t *vm, vlib_node_runtime_t *node, |
| u32 *from, u32 n_bufs) |
| { |
| u32 thread_index = vm->thread_index; |
| tcp_connection_t *tc = 0; |
| tcp_rx_trace_t *t; |
| vlib_buffer_t *b; |
| int i; |
| |
| for (i = 0; i < n_bufs; i++) |
| { |
| b = vlib_get_buffer (vm, from[i]); |
| if (!(b->flags & VLIB_BUFFER_IS_TRACED)) |
| continue; |
| tc = tcp_connection_get (vnet_buffer (b)->tcp.connection_index, |
| thread_index); |
| t = vlib_add_trace (vm, node, b, sizeof (*t)); |
| tcp_set_rx_trace_data (t, tc, tcp_buffer_hdr (b), b, 1); |
| } |
| } |
| |
| /** |
| * Handles reception for all states except LISTEN, SYN-SENT and ESTABLISHED |
| * as per RFC793 p. 64 |
| */ |
| always_inline uword |
| tcp46_rcv_process_inline (vlib_main_t *vm, vlib_node_runtime_t *node, |
| vlib_frame_t *frame, int is_ip4) |
| { |
| u32 thread_index = vm->thread_index, errors, n_left_from, *from, max_deq; |
| tcp_worker_ctx_t *wrk = tcp_get_worker (thread_index); |
| vlib_buffer_t *bufs[VLIB_FRAME_SIZE], **b; |
| |
| from = vlib_frame_vector_args (frame); |
| n_left_from = frame->n_vectors; |
| |
| if (PREDICT_FALSE (node->flags & VLIB_NODE_FLAG_TRACE)) |
| tcp46_rcv_process_trace_frame (vm, node, from, n_left_from); |
| |
| vlib_get_buffers (vm, from, bufs, n_left_from); |
| b = bufs; |
| |
| while (n_left_from > 0) |
| { |
| u32 error = TCP_ERROR_NONE; |
| tcp_header_t *tcp = 0; |
| tcp_connection_t *tc; |
| u8 is_fin; |
| |
| tc = tcp_connection_get (vnet_buffer (b[0])->tcp.connection_index, |
| thread_index); |
| if (PREDICT_FALSE (tc == 0)) |
| { |
| error = TCP_ERROR_INVALID_CONNECTION; |
| goto drop; |
| } |
| |
| tcp = tcp_buffer_hdr (b[0]); |
| is_fin = tcp_is_fin (tcp); |
| |
| if (CLIB_DEBUG) |
| { |
| if (!(tc->connection.flags & TRANSPORT_CONNECTION_F_NO_LOOKUP)) |
| { |
| tcp_connection_t *tmp; |
| tmp = tcp_lookup_connection (tc->c_fib_index, b[0], thread_index, |
| is_ip4); |
| if (tmp->state != tc->state) |
| { |
| if (tc->state != TCP_STATE_CLOSED) |
| clib_warning ("state changed"); |
| goto drop; |
| } |
| } |
| } |
| |
| /* |
| * Special treatment for CLOSED |
| */ |
| if (PREDICT_FALSE (tc->state == TCP_STATE_CLOSED)) |
| { |
| error = TCP_ERROR_CONNECTION_CLOSED; |
| goto drop; |
| } |
| |
| /* |
| * For all other states (except LISTEN) |
| */ |
| |
| /* 1-4: check SEQ, RST, SYN */ |
| if (PREDICT_FALSE (tcp_segment_validate (wrk, tc, b[0], tcp, &error))) |
| goto drop; |
| |
| /* 5: check the ACK field */ |
| switch (tc->state) |
| { |
| case TCP_STATE_SYN_RCVD: |
| |
| /* Make sure the segment is exactly right */ |
| if (tc->rcv_nxt != vnet_buffer (b[0])->tcp.seq_number || is_fin) |
| { |
| tcp_send_reset_w_pkt (tc, b[0], thread_index, is_ip4); |
| error = TCP_ERROR_SEGMENT_INVALID; |
| goto drop; |
| } |
| |
| /* |
| * If the segment acknowledgment is not acceptable, form a |
| * reset segment, |
| * <SEQ=SEG.ACK><CTL=RST> |
| * and send it. |
| */ |
| if (tcp_rcv_ack_no_cc (tc, b[0], &error)) |
| { |
| tcp_send_reset_w_pkt (tc, b[0], thread_index, is_ip4); |
| error = TCP_ERROR_SEGMENT_INVALID; |
| goto drop; |
| } |
| |
| /* Update rtt and rto */ |
| tcp_estimate_initial_rtt (tc); |
| tcp_connection_tx_pacer_update (tc); |
| |
| /* Switch state to ESTABLISHED */ |
| tc->state = TCP_STATE_ESTABLISHED; |
| TCP_EVT (TCP_EVT_STATE_CHANGE, tc); |
| |
| if (!(tc->cfg_flags & TCP_CFG_F_NO_TSO)) |
| tcp_check_tx_offload (tc, is_ip4); |
| |
| /* Initialize session variables */ |
| tc->snd_una = vnet_buffer (b[0])->tcp.ack_number; |
| tc->snd_wnd = clib_net_to_host_u16 (tcp->window) |
| << tc->rcv_opts.wscale; |
| tc->snd_wl1 = vnet_buffer (b[0])->tcp.seq_number; |
| tc->snd_wl2 = vnet_buffer (b[0])->tcp.ack_number; |
| |
| /* Reset SYN-ACK retransmit and SYN_RCV establish timers */ |
| tcp_retransmit_timer_reset (&wrk->timer_wheel, tc); |
| if (session_stream_accept_notify (&tc->connection)) |
| { |
| error = TCP_ERROR_MSG_QUEUE_FULL; |
| tcp_send_reset (tc); |
| session_transport_delete_notify (&tc->connection); |
| tcp_connection_cleanup (tc); |
| goto drop; |
| } |
| error = TCP_ERROR_ACK_OK; |
| break; |
| case TCP_STATE_ESTABLISHED: |
| /* We can get packets in established state here because they |
| * were enqueued before state change */ |
| if (tcp_rcv_ack (wrk, tc, b[0], tcp, &error)) |
| goto drop; |
| |
| break; |
| case TCP_STATE_FIN_WAIT_1: |
| /* In addition to the processing for the ESTABLISHED state, if |
| * our FIN is now acknowledged then enter FIN-WAIT-2 and |
| * continue processing in that state. */ |
| if (tcp_rcv_ack (wrk, tc, b[0], tcp, &error)) |
| goto drop; |
| |
| /* Still have to send the FIN */ |
| if (tc->flags & TCP_CONN_FINPNDG) |
| { |
| /* TX fifo finally drained */ |
| max_deq = transport_max_tx_dequeue (&tc->connection); |
| if (max_deq <= tc->burst_acked) |
| tcp_send_fin (tc); |
| /* If a fin was received and data was acked extend wait */ |
| else if ((tc->flags & TCP_CONN_FINRCVD) && tc->bytes_acked) |
| tcp_timer_update (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.closewait_time); |
| } |
| /* If FIN is ACKed */ |
| else if (tc->snd_una == tc->snd_nxt) |
| { |
| /* Stop all retransmit timers because we have nothing more |
| * to send. */ |
| tcp_connection_timers_reset (tc); |
| |
| /* We already have a FIN but didn't transition to CLOSING |
| * because of outstanding tx data. Close the connection. */ |
| if (tc->flags & TCP_CONN_FINRCVD) |
| { |
| tcp_connection_set_state (tc, TCP_STATE_CLOSED); |
| session_transport_closed_notify (&tc->connection); |
| tcp_program_cleanup (wrk, tc); |
| goto drop; |
| } |
| |
| tcp_connection_set_state (tc, TCP_STATE_FIN_WAIT_2); |
| /* Enable waitclose because we're willing to wait for peer's |
| * FIN but not indefinitely. */ |
| tcp_timer_set (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.finwait2_time); |
| |
| /* Don't try to deq the FIN acked */ |
| if (tc->burst_acked > 1) |
| session_tx_fifo_dequeue_drop (&tc->connection, |
| tc->burst_acked - 1); |
| tc->burst_acked = 0; |
| } |
| break; |
| case TCP_STATE_FIN_WAIT_2: |
| /* In addition to the processing for the ESTABLISHED state, if |
| * the retransmission queue is empty, the user's CLOSE can be |
| * acknowledged ("ok") but do not delete the TCB. */ |
| if (tcp_rcv_ack_no_cc (tc, b[0], &error)) |
| goto drop; |
| tc->burst_acked = 0; |
| break; |
| case TCP_STATE_CLOSE_WAIT: |
| /* Do the same processing as for the ESTABLISHED state. */ |
| if (tcp_rcv_ack (wrk, tc, b[0], tcp, &error)) |
| goto drop; |
| |
| if (!(tc->flags & TCP_CONN_FINPNDG)) |
| break; |
| |
| /* Still have outstanding tx data */ |
| max_deq = transport_max_tx_dequeue (&tc->connection); |
| if (max_deq > tc->burst_acked) |
| break; |
| |
| tcp_send_fin (tc); |
| tcp_connection_timers_reset (tc); |
| tcp_connection_set_state (tc, TCP_STATE_LAST_ACK); |
| tcp_timer_set (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.lastack_time); |
| break; |
| case TCP_STATE_CLOSING: |
| /* In addition to the processing for the ESTABLISHED state, if |
| * the ACK acknowledges our FIN then enter the TIME-WAIT state, |
| * otherwise ignore the segment. */ |
| if (tcp_rcv_ack_no_cc (tc, b[0], &error)) |
| goto drop; |
| |
| if (tc->snd_una != tc->snd_nxt) |
| goto drop; |
| |
| tcp_connection_timers_reset (tc); |
| tcp_connection_set_state (tc, TCP_STATE_TIME_WAIT); |
| tcp_timer_set (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.timewait_time); |
| session_transport_closed_notify (&tc->connection); |
| goto drop; |
| |
| break; |
| case TCP_STATE_LAST_ACK: |
| /* The only thing that [should] arrive in this state is an |
| * acknowledgment of our FIN. If our FIN is now acknowledged, |
| * delete the TCB, enter the CLOSED state, and return. */ |
| |
| if (tcp_rcv_ack_no_cc (tc, b[0], &error)) |
| goto drop; |
| |
| /* Apparently our ACK for the peer's FIN was lost */ |
| if (is_fin && tc->snd_una != tc->snd_nxt) |
| { |
| tcp_send_fin (tc); |
| goto drop; |
| } |
| |
| tcp_connection_set_state (tc, TCP_STATE_CLOSED); |
| session_transport_closed_notify (&tc->connection); |
| |
| /* Don't free the connection from the data path since |
| * we can't ensure that we have no packets already enqueued |
| * to output. Rely instead on the waitclose timer */ |
| tcp_connection_timers_reset (tc); |
| tcp_program_cleanup (tcp_get_worker (tc->c_thread_index), tc); |
| |
| goto drop; |
| |
| break; |
| case TCP_STATE_TIME_WAIT: |
| /* The only thing that can arrive in this state is a |
| * retransmission of the remote FIN. Acknowledge it, and restart |
| * the 2 MSL timeout. */ |
| |
| if (tcp_rcv_ack_no_cc (tc, b[0], &error)) |
| goto drop; |
| |
| if (!is_fin) |
| goto drop; |
| |
| tcp_program_ack (tc); |
| tcp_timer_update (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.timewait_time); |
| goto drop; |
| |
| break; |
| default: |
| ASSERT (0); |
| } |
| |
| /* 6: check the URG bit TODO */ |
| |
| /* 7: process the segment text */ |
| switch (tc->state) |
| { |
| case TCP_STATE_ESTABLISHED: |
| case TCP_STATE_FIN_WAIT_1: |
| case TCP_STATE_FIN_WAIT_2: |
| if (vnet_buffer (b[0])->tcp.data_len) |
| error = tcp_segment_rcv (wrk, tc, b[0]); |
| /* Don't accept out of order fins lower */ |
| if (vnet_buffer (b[0])->tcp.seq_end != tc->rcv_nxt) |
| goto drop; |
| break; |
| case TCP_STATE_CLOSE_WAIT: |
| case TCP_STATE_CLOSING: |
| case TCP_STATE_LAST_ACK: |
| case TCP_STATE_TIME_WAIT: |
| /* This should not occur, since a FIN has been received from the |
| * remote side. Ignore the segment text. */ |
| break; |
| } |
| |
| /* 8: check the FIN bit */ |
| if (!is_fin) |
| goto drop; |
| |
| TCP_EVT (TCP_EVT_FIN_RCVD, tc); |
| |
| switch (tc->state) |
| { |
| case TCP_STATE_ESTABLISHED: |
| /* Account for the FIN and send ack */ |
| tc->rcv_nxt += 1; |
| tcp_program_ack (tc); |
| tcp_connection_set_state (tc, TCP_STATE_CLOSE_WAIT); |
| tcp_program_disconnect (wrk, tc); |
| tcp_timer_update (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.closewait_time); |
| break; |
| case TCP_STATE_SYN_RCVD: |
| /* Send FIN-ACK, enter LAST-ACK and because the app was not |
| * notified yet, set a cleanup timer instead of relying on |
| * disconnect notify and the implicit close call. */ |
| tcp_connection_timers_reset (tc); |
| tc->rcv_nxt += 1; |
| tcp_send_fin (tc); |
| tcp_connection_set_state (tc, TCP_STATE_LAST_ACK); |
| tcp_timer_set (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.lastack_time); |
| break; |
| case TCP_STATE_CLOSE_WAIT: |
| case TCP_STATE_CLOSING: |
| case TCP_STATE_LAST_ACK: |
| /* move along .. */ |
| break; |
| case TCP_STATE_FIN_WAIT_1: |
| tc->rcv_nxt += 1; |
| |
| if (tc->flags & TCP_CONN_FINPNDG) |
| { |
| /* If data is outstanding, stay in FIN_WAIT_1 and try to finish |
| * sending it. Since we already received a fin, do not wait |
| * for too long. */ |
| tc->flags |= TCP_CONN_FINRCVD; |
| tcp_timer_update (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.closewait_time); |
| } |
| else |
| { |
| tcp_connection_set_state (tc, TCP_STATE_CLOSING); |
| tcp_program_ack (tc); |
| /* Wait for ACK for our FIN but not forever */ |
| tcp_timer_update (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.closing_time); |
| } |
| break; |
| case TCP_STATE_FIN_WAIT_2: |
| /* Got FIN, send ACK! Be more aggressive with resource cleanup */ |
| tc->rcv_nxt += 1; |
| tcp_connection_set_state (tc, TCP_STATE_TIME_WAIT); |
| tcp_connection_timers_reset (tc); |
| tcp_timer_set (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.timewait_time); |
| tcp_program_ack (tc); |
| session_transport_closed_notify (&tc->connection); |
| break; |
| case TCP_STATE_TIME_WAIT: |
| /* Remain in the TIME-WAIT state. Restart the time-wait |
| * timeout. |
| */ |
| tcp_timer_update (&wrk->timer_wheel, tc, TCP_TIMER_WAITCLOSE, |
| tcp_cfg.timewait_time); |
| break; |
| } |
| error = TCP_ERROR_FIN_RCVD; |
| |
| drop: |
| |
| b += 1; |
| n_left_from -= 1; |
| tcp_inc_counter (rcv_process, error, 1); |
| } |
| |
| errors = session_main_flush_enqueue_events (TRANSPORT_PROTO_TCP, |
| thread_index); |
| tcp_inc_counter (rcv_process, TCP_ERROR_MSG_QUEUE_FULL, errors); |
| tcp_handle_postponed_dequeues (wrk); |
| tcp_handle_disconnects (wrk); |
| vlib_buffer_free (vm, from, frame->n_vectors); |
| |
| return frame->n_vectors; |
| } |
| |
| VLIB_NODE_FN (tcp4_rcv_process_node) (vlib_main_t * vm, |
| vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_rcv_process_inline (vm, node, from_frame, 1 /* is_ip4 */ ); |
| } |
| |
| VLIB_NODE_FN (tcp6_rcv_process_node) (vlib_main_t * vm, |
| vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_rcv_process_inline (vm, node, from_frame, 0 /* is_ip4 */ ); |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp4_rcv_process_node) = |
| { |
| .name = "tcp4-rcv-process", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_RCV_PROCESS_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_RCV_PROCESS_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp6_rcv_process_node) = |
| { |
| .name = "tcp6-rcv-process", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_RCV_PROCESS_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_RCV_PROCESS_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| static void |
| tcp46_listen_trace_frame (vlib_main_t *vm, vlib_node_runtime_t *node, |
| u32 *to_next, u32 n_bufs) |
| { |
| tcp_connection_t *tc = 0; |
| tcp_rx_trace_t *t; |
| vlib_buffer_t *b; |
| int i; |
| |
| for (i = 0; i < n_bufs; i++) |
| { |
| b = vlib_get_buffer (vm, to_next[i]); |
| if (!(b->flags & VLIB_BUFFER_IS_TRACED)) |
| continue; |
| if (vnet_buffer (b)->tcp.flags == TCP_STATE_LISTEN) |
| tc = tcp_listener_get (vnet_buffer (b)->tcp.connection_index); |
| t = vlib_add_trace (vm, node, b, sizeof (*t)); |
| tcp_set_rx_trace_data (t, tc, tcp_buffer_hdr (b), b, 1); |
| } |
| } |
| |
| /** |
| * SYN received in TIME-WAIT state. |
| * |
| * RFC 1122: |
| * "When a connection is [...] on TIME-WAIT state [...] |
| * [a TCP] MAY accept a new SYN from the remote TCP to |
| * reopen the connection directly, if it: |
| * |
| * (1) assigns its initial sequence number for the new |
| * connection to be larger than the largest sequence |
| * number it used on the previous connection incarnation, |
| * and |
| * |
| * (2) returns to TIME-WAIT state if the SYN turns out |
| * to be an old duplicate". |
| * |
| * The function returns true if the syn can be accepted during |
| * connection time-wait (port reuse). In this case the function |
| * also calculates what the iss should be for the new connection. |
| */ |
| always_inline int |
| syn_during_timewait (tcp_connection_t *tc, vlib_buffer_t *b, u32 *iss) |
| { |
| int paws_reject = tcp_segment_check_paws (tc); |
| u32 tw_iss; |
| |
| *iss = 0; |
| /* Check that the SYN arrived out of window. We accept it */ |
| if (!paws_reject && |
| (seq_geq (vnet_buffer (b)->tcp.seq_number, tc->rcv_nxt) || |
| (tcp_opts_tstamp (&tc->rcv_opts) && |
| timestamp_lt (tc->tsval_recent, tc->rcv_opts.tsval)))) |
| { |
| /* Set the iss of the new connection to be the largest sequence number |
| * the old peer would have accepted and add some random number |
| */ |
| tw_iss = tc->snd_nxt + tcp_available_snd_wnd (tc) + |
| (uword) (tcp_time_now_us (tc->c_thread_index) * 1e6) % 65535; |
| if (tw_iss == 0) |
| tw_iss++; |
| *iss = tw_iss; |
| |
| return 1; |
| } |
| else |
| { |
| TCP_DBG ( |
| "ERROR not accepting SYN in timewait,paws_reject=%d, seq_num =%ld, " |
| "rcv_nxt=%ld, tstamp_present=%d, tsval_recent = %d, tsval = %d\n", |
| paws_reject, vnet_buffer (b)->tcp.seq_number, tc->rcv_nxt, |
| tcp_opts_tstamp (&tc->rcv_opts), tc->tsval_recent, tc->rcv_opts.tsval); |
| return 0; |
| } |
| } |
| |
| /** |
| * LISTEN state processing as per RFC 793 p. 65 |
| */ |
| always_inline uword |
| tcp46_listen_inline (vlib_main_t *vm, vlib_node_runtime_t *node, |
| vlib_frame_t *frame, int is_ip4) |
| { |
| u32 n_left_from, *from, n_syns = 0; |
| vlib_buffer_t *bufs[VLIB_FRAME_SIZE], **b; |
| u32 thread_index = vm->thread_index; |
| u32 tw_iss = 0; |
| |
| from = vlib_frame_vector_args (frame); |
| n_left_from = frame->n_vectors; |
| |
| if (PREDICT_FALSE (node->flags & VLIB_NODE_FLAG_TRACE)) |
| tcp46_listen_trace_frame (vm, node, from, n_left_from); |
| |
| vlib_get_buffers (vm, from, bufs, n_left_from); |
| b = bufs; |
| |
| while (n_left_from > 0) |
| { |
| u32 error = TCP_ERROR_NONE; |
| tcp_connection_t *lc, *child; |
| |
| /* Flags initialized with connection state after lookup */ |
| if (vnet_buffer (b[0])->tcp.flags == TCP_STATE_LISTEN) |
| { |
| lc = tcp_listener_get (vnet_buffer (b[0])->tcp.connection_index); |
| } |
| else /* We are in TimeWait state*/ |
| { |
| tcp_connection_t *tc; |
| tc = tcp_connection_get (vnet_buffer (b[0])->tcp.connection_index, |
| thread_index); |
| if (tc->state != TCP_STATE_TIME_WAIT) |
| { |
| error = TCP_ERROR_CREATE_EXISTS; |
| goto done; |
| } |
| |
| if (PREDICT_FALSE (!syn_during_timewait (tc, b[0], &tw_iss))) |
| { |
| /* This SYN can't be accepted */ |
| error = TCP_ERROR_CREATE_EXISTS; |
| goto done; |
| } |
| |
| lc = tcp_lookup_listener (b[0], tc->c_fib_index, is_ip4); |
| /* clean up the old session */ |
| tcp_connection_del (tc); |
| /* listener was cleaned up */ |
| if (!lc) |
| { |
| error = TCP_ERROR_NO_LISTENER; |
| goto done; |
| } |
| } |
| |
| /* Make sure connection wasn't just created */ |
| child = |
| tcp_lookup_connection (lc->c_fib_index, b[0], thread_index, is_ip4); |
| if (PREDICT_FALSE (child->state != TCP_STATE_LISTEN)) |
| { |
| error = TCP_ERROR_CREATE_EXISTS; |
| goto done; |
| } |
| |
| /* Create child session. For syn-flood protection use filter */ |
| |
| /* 1. first check for an RST: handled by input dispatch */ |
| |
| /* 2. second check for an ACK: handled by input dispatch */ |
| |
| /* 3. check for a SYN (did that already) */ |
| |
| /* Create child session and send SYN-ACK */ |
| child = tcp_connection_alloc (thread_index); |
| |
| if (tcp_options_parse (tcp_buffer_hdr (b[0]), &child->rcv_opts, 1)) |
| { |
| error = TCP_ERROR_OPTIONS; |
| tcp_connection_free (child); |
| goto done; |
| } |
| |
| tcp_init_w_buffer (child, b[0], is_ip4); |
| |
| child->state = TCP_STATE_SYN_RCVD; |
| child->c_fib_index = lc->c_fib_index; |
| child->cc_algo = lc->cc_algo; |
| |
| /* In the regular case, the tw_iss will be zero, but |
| * in the special case of syn arriving in time_wait state, the value |
| * will be set according to rfc 1122 |
| */ |
| child->iss = tw_iss; |
| tcp_connection_init_vars (child); |
| child->rto = TCP_RTO_MIN; |
| |
| /* |
| * This initializes elog track, must be done before synack. |
| * We also do it before possible tcp_connection_cleanup() as it |
| * generates TCP_EVT_DELETE event. |
| */ |
| TCP_EVT (TCP_EVT_SYN_RCVD, child, 1); |
| |
| if (session_stream_accept (&child->connection, lc->c_s_index, |
| lc->c_thread_index, 0 /* notify */ )) |
| { |
| tcp_connection_cleanup (child); |
| error = TCP_ERROR_CREATE_SESSION_FAIL; |
| goto done; |
| } |
| |
| transport_fifos_init_ooo (&child->connection); |
| child->tx_fifo_size = transport_tx_fifo_size (&child->connection); |
| |
| tcp_send_synack (child); |
| |
| done: |
| |
| b += 1; |
| n_left_from -= 1; |
| n_syns += (error == TCP_ERROR_NONE); |
| } |
| |
| tcp_inc_counter (listen, TCP_ERROR_SYNS_RCVD, n_syns); |
| vlib_buffer_free (vm, from, frame->n_vectors); |
| |
| return frame->n_vectors; |
| } |
| |
| VLIB_NODE_FN (tcp4_listen_node) (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_listen_inline (vm, node, from_frame, 1 /* is_ip4 */ ); |
| } |
| |
| VLIB_NODE_FN (tcp6_listen_node) (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_listen_inline (vm, node, from_frame, 0 /* is_ip4 */ ); |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp4_listen_node) = |
| { |
| .name = "tcp4-listen", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_LISTEN_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_LISTEN_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp6_listen_node) = |
| { |
| .name = "tcp6-listen", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_LISTEN_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_LISTEN_NEXT_##s] = n, |
| foreach_tcp_state_next |
| #undef _ |
| }, |
| .format_trace = format_tcp_rx_trace_short, |
| }; |
| /* *INDENT-ON* */ |
| |
| typedef enum _tcp_input_next |
| { |
| TCP_INPUT_NEXT_DROP, |
| TCP_INPUT_NEXT_LISTEN, |
| TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_INPUT_NEXT_SYN_SENT, |
| TCP_INPUT_NEXT_ESTABLISHED, |
| TCP_INPUT_NEXT_RESET, |
| TCP_INPUT_NEXT_PUNT, |
| TCP_INPUT_N_NEXT |
| } tcp_input_next_t; |
| |
| #define foreach_tcp4_input_next \ |
| _ (DROP, "ip4-drop") \ |
| _ (LISTEN, "tcp4-listen") \ |
| _ (RCV_PROCESS, "tcp4-rcv-process") \ |
| _ (SYN_SENT, "tcp4-syn-sent") \ |
| _ (ESTABLISHED, "tcp4-established") \ |
| _ (RESET, "tcp4-reset") \ |
| _ (PUNT, "ip4-punt") |
| |
| #define foreach_tcp6_input_next \ |
| _ (DROP, "ip6-drop") \ |
| _ (LISTEN, "tcp6-listen") \ |
| _ (RCV_PROCESS, "tcp6-rcv-process") \ |
| _ (SYN_SENT, "tcp6-syn-sent") \ |
| _ (ESTABLISHED, "tcp6-established") \ |
| _ (RESET, "tcp6-reset") \ |
| _ (PUNT, "ip6-punt") |
| |
| #define filter_flags (TCP_FLAG_SYN|TCP_FLAG_ACK|TCP_FLAG_RST|TCP_FLAG_FIN) |
| |
| static void |
| tcp_input_trace_frame (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_buffer_t ** bs, u32 n_bufs, u8 is_ip4) |
| { |
| tcp_connection_t *tc; |
| tcp_header_t *tcp; |
| tcp_rx_trace_t *t; |
| int i; |
| |
| for (i = 0; i < n_bufs; i++) |
| { |
| if (bs[i]->flags & VLIB_BUFFER_IS_TRACED) |
| { |
| t = vlib_add_trace (vm, node, bs[i], sizeof (*t)); |
| tc = tcp_connection_get (vnet_buffer (bs[i])->tcp.connection_index, |
| vm->thread_index); |
| tcp = vlib_buffer_get_current (bs[i]); |
| tcp_set_rx_trace_data (t, tc, tcp, bs[i], is_ip4); |
| } |
| } |
| } |
| |
| static void |
| tcp_input_set_error_next (tcp_main_t * tm, u16 * next, u32 * error, u8 is_ip4) |
| { |
| if (*error == TCP_ERROR_FILTERED || *error == TCP_ERROR_WRONG_THREAD) |
| { |
| *next = TCP_INPUT_NEXT_DROP; |
| } |
| else if ((is_ip4 && tm->punt_unknown4) || (!is_ip4 && tm->punt_unknown6)) |
| { |
| *next = TCP_INPUT_NEXT_PUNT; |
| *error = TCP_ERROR_PUNT; |
| } |
| else |
| { |
| *next = TCP_INPUT_NEXT_RESET; |
| *error = TCP_ERROR_NO_LISTENER; |
| } |
| } |
| |
| static inline void |
| tcp_input_dispatch_buffer (tcp_main_t * tm, tcp_connection_t * tc, |
| vlib_buffer_t * b, u16 * next, |
| vlib_node_runtime_t * error_node) |
| { |
| tcp_header_t *tcp; |
| u32 error; |
| u8 flags; |
| |
| tcp = tcp_buffer_hdr (b); |
| flags = tcp->flags & filter_flags; |
| *next = tm->dispatch_table[tc->state][flags].next; |
| error = tm->dispatch_table[tc->state][flags].error; |
| tc->segs_in += 1; |
| |
| /* Track connection state when packet was received. It is required |
| * for @ref tcp46_listen_inline to detect whether we reached |
| * the node as a result of a SYN packet received while in time-wait |
| * state. In this case the connection_index in vnet buffer will point |
| * to the existing tcp connection and not the listener |
| */ |
| vnet_buffer (b)->tcp.flags = tc->state; |
| |
| if (PREDICT_FALSE (error != TCP_ERROR_NONE)) |
| { |
| b->error = error_node->errors[error]; |
| if (error == TCP_ERROR_DISPATCH) |
| clib_warning ("tcp conn %u disp error state %U flags %U", |
| tc->c_c_index, format_tcp_state, tc->state, |
| format_tcp_flags, (int) flags); |
| } |
| } |
| |
| always_inline uword |
| tcp46_input_inline (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * frame, int is_ip4, u8 is_nolookup) |
| { |
| u32 n_left_from, *from, thread_index = vm->thread_index; |
| tcp_main_t *tm = vnet_get_tcp_main (); |
| vlib_buffer_t *bufs[VLIB_FRAME_SIZE], **b; |
| u16 nexts[VLIB_FRAME_SIZE], *next; |
| |
| tcp_update_time_now (tcp_get_worker (thread_index)); |
| |
| from = vlib_frame_vector_args (frame); |
| n_left_from = frame->n_vectors; |
| vlib_get_buffers (vm, from, bufs, n_left_from); |
| |
| b = bufs; |
| next = nexts; |
| |
| while (n_left_from >= 4) |
| { |
| u32 error0 = TCP_ERROR_NO_LISTENER, error1 = TCP_ERROR_NO_LISTENER; |
| tcp_connection_t *tc0, *tc1; |
| |
| { |
| vlib_prefetch_buffer_header (b[2], STORE); |
| CLIB_PREFETCH (b[2]->data, 2 * CLIB_CACHE_LINE_BYTES, LOAD); |
| |
| vlib_prefetch_buffer_header (b[3], STORE); |
| CLIB_PREFETCH (b[3]->data, 2 * CLIB_CACHE_LINE_BYTES, LOAD); |
| } |
| |
| next[0] = next[1] = TCP_INPUT_NEXT_DROP; |
| |
| tc0 = tcp_input_lookup_buffer (b[0], thread_index, &error0, is_ip4, |
| is_nolookup); |
| tc1 = tcp_input_lookup_buffer (b[1], thread_index, &error1, is_ip4, |
| is_nolookup); |
| |
| if (PREDICT_TRUE (!tc0 + !tc1 == 0)) |
| { |
| ASSERT (tcp_lookup_is_valid (tc0, b[0], tcp_buffer_hdr (b[0]))); |
| ASSERT (tcp_lookup_is_valid (tc1, b[1], tcp_buffer_hdr (b[1]))); |
| |
| vnet_buffer (b[0])->tcp.connection_index = tc0->c_c_index; |
| vnet_buffer (b[1])->tcp.connection_index = tc1->c_c_index; |
| |
| tcp_input_dispatch_buffer (tm, tc0, b[0], &next[0], node); |
| tcp_input_dispatch_buffer (tm, tc1, b[1], &next[1], node); |
| } |
| else |
| { |
| if (PREDICT_TRUE (tc0 != 0)) |
| { |
| ASSERT (tcp_lookup_is_valid (tc0, b[0], tcp_buffer_hdr (b[0]))); |
| vnet_buffer (b[0])->tcp.connection_index = tc0->c_c_index; |
| tcp_input_dispatch_buffer (tm, tc0, b[0], &next[0], node); |
| } |
| else |
| { |
| tcp_input_set_error_next (tm, &next[0], &error0, is_ip4); |
| b[0]->error = node->errors[error0]; |
| } |
| |
| if (PREDICT_TRUE (tc1 != 0)) |
| { |
| ASSERT (tcp_lookup_is_valid (tc1, b[1], tcp_buffer_hdr (b[1]))); |
| vnet_buffer (b[1])->tcp.connection_index = tc1->c_c_index; |
| tcp_input_dispatch_buffer (tm, tc1, b[1], &next[1], node); |
| } |
| else |
| { |
| tcp_input_set_error_next (tm, &next[1], &error1, is_ip4); |
| b[1]->error = node->errors[error1]; |
| } |
| } |
| |
| b += 2; |
| next += 2; |
| n_left_from -= 2; |
| } |
| while (n_left_from > 0) |
| { |
| tcp_connection_t *tc0; |
| u32 error0 = TCP_ERROR_NO_LISTENER; |
| |
| if (n_left_from > 1) |
| { |
| vlib_prefetch_buffer_header (b[1], STORE); |
| CLIB_PREFETCH (b[1]->data, 2 * CLIB_CACHE_LINE_BYTES, LOAD); |
| } |
| |
| next[0] = TCP_INPUT_NEXT_DROP; |
| tc0 = tcp_input_lookup_buffer (b[0], thread_index, &error0, is_ip4, |
| is_nolookup); |
| if (PREDICT_TRUE (tc0 != 0)) |
| { |
| ASSERT (tcp_lookup_is_valid (tc0, b[0], tcp_buffer_hdr (b[0]))); |
| vnet_buffer (b[0])->tcp.connection_index = tc0->c_c_index; |
| tcp_input_dispatch_buffer (tm, tc0, b[0], &next[0], node); |
| } |
| else |
| { |
| tcp_input_set_error_next (tm, &next[0], &error0, is_ip4); |
| b[0]->error = node->errors[error0]; |
| } |
| |
| b += 1; |
| next += 1; |
| n_left_from -= 1; |
| } |
| |
| if (PREDICT_FALSE (node->flags & VLIB_NODE_FLAG_TRACE)) |
| tcp_input_trace_frame (vm, node, bufs, frame->n_vectors, is_ip4); |
| |
| vlib_buffer_enqueue_to_next (vm, node, from, nexts, frame->n_vectors); |
| return frame->n_vectors; |
| } |
| |
| VLIB_NODE_FN (tcp4_input_nolookup_node) (vlib_main_t * vm, |
| vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_input_inline (vm, node, from_frame, 1 /* is_ip4 */ , |
| 1 /* is_nolookup */ ); |
| } |
| |
| VLIB_NODE_FN (tcp6_input_nolookup_node) (vlib_main_t * vm, |
| vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_input_inline (vm, node, from_frame, 0 /* is_ip4 */ , |
| 1 /* is_nolookup */ ); |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp4_input_nolookup_node) = |
| { |
| .name = "tcp4-input-nolookup", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_INPUT_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_INPUT_NEXT_##s] = n, |
| foreach_tcp4_input_next |
| #undef _ |
| }, |
| .format_buffer = format_tcp_header, |
| .format_trace = format_tcp_rx_trace, |
| }; |
| /* *INDENT-ON* */ |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp6_input_nolookup_node) = |
| { |
| .name = "tcp6-input-nolookup", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_INPUT_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_INPUT_NEXT_##s] = n, |
| foreach_tcp6_input_next |
| #undef _ |
| }, |
| .format_buffer = format_tcp_header, |
| .format_trace = format_tcp_rx_trace, |
| }; |
| /* *INDENT-ON* */ |
| |
| VLIB_NODE_FN (tcp4_input_node) (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_input_inline (vm, node, from_frame, 1 /* is_ip4 */ , |
| 0 /* is_nolookup */ ); |
| } |
| |
| VLIB_NODE_FN (tcp6_input_node) (vlib_main_t * vm, vlib_node_runtime_t * node, |
| vlib_frame_t * from_frame) |
| { |
| return tcp46_input_inline (vm, node, from_frame, 0 /* is_ip4 */ , |
| 0 /* is_nolookup */ ); |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp4_input_node) = |
| { |
| .name = "tcp4-input", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_INPUT_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_INPUT_NEXT_##s] = n, |
| foreach_tcp4_input_next |
| #undef _ |
| }, |
| .format_buffer = format_tcp_header, |
| .format_trace = format_tcp_rx_trace, |
| }; |
| /* *INDENT-ON* */ |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (tcp6_input_node) = |
| { |
| .name = "tcp6-input", |
| /* Takes a vector of packets. */ |
| .vector_size = sizeof (u32), |
| .n_errors = TCP_N_ERROR, |
| .error_counters = tcp_input_error_counters, |
| .n_next_nodes = TCP_INPUT_N_NEXT, |
| .next_nodes = |
| { |
| #define _(s,n) [TCP_INPUT_NEXT_##s] = n, |
| foreach_tcp6_input_next |
| #undef _ |
| }, |
| .format_buffer = format_tcp_header, |
| .format_trace = format_tcp_rx_trace, |
| }; |
| /* *INDENT-ON* */ |
| |
| #ifndef CLIB_MARCH_VARIANT |
| void |
| tcp_check_gso (tcp_connection_t *tc) |
| { |
| tcp_check_tx_offload (tc, tc->c_is_ip4); |
| } |
| |
| static void |
| tcp_dispatch_table_init (tcp_main_t * tm) |
| { |
| int i, j; |
| for (i = 0; i < ARRAY_LEN (tm->dispatch_table); i++) |
| for (j = 0; j < ARRAY_LEN (tm->dispatch_table[i]); j++) |
| { |
| tm->dispatch_table[i][j].next = TCP_INPUT_NEXT_DROP; |
| tm->dispatch_table[i][j].error = TCP_ERROR_DISPATCH; |
| } |
| |
| #define _(t,f,n,e) \ |
| do { \ |
| tm->dispatch_table[TCP_STATE_##t][f].next = (n); \ |
| tm->dispatch_table[TCP_STATE_##t][f].error = (e); \ |
| } while (0) |
| |
| /* RFC 793: In LISTEN if RST drop and if ACK return RST */ |
| _(LISTEN, 0, TCP_INPUT_NEXT_DROP, TCP_ERROR_SEGMENT_INVALID); |
| _(LISTEN, TCP_FLAG_ACK, TCP_INPUT_NEXT_RESET, TCP_ERROR_ACK_INVALID); |
| _(LISTEN, TCP_FLAG_RST, TCP_INPUT_NEXT_DROP, TCP_ERROR_INVALID_CONNECTION); |
| _(LISTEN, TCP_FLAG_SYN, TCP_INPUT_NEXT_LISTEN, TCP_ERROR_NONE); |
| _(LISTEN, TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RESET, |
| TCP_ERROR_ACK_INVALID); |
| _(LISTEN, TCP_FLAG_SYN | TCP_FLAG_RST, TCP_INPUT_NEXT_DROP, |
| TCP_ERROR_SEGMENT_INVALID); |
| _(LISTEN, TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_DROP, |
| TCP_ERROR_SEGMENT_INVALID); |
| _(LISTEN, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_DROP, |
| TCP_ERROR_INVALID_CONNECTION); |
| _(LISTEN, TCP_FLAG_FIN, TCP_INPUT_NEXT_RESET, TCP_ERROR_SEGMENT_INVALID); |
| _(LISTEN, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RESET, |
| TCP_ERROR_SEGMENT_INVALID); |
| _(LISTEN, TCP_FLAG_FIN | TCP_FLAG_RST, TCP_INPUT_NEXT_DROP, |
| TCP_ERROR_SEGMENT_INVALID); |
| _(LISTEN, TCP_FLAG_FIN | TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_DROP, |
| TCP_ERROR_SEGMENT_INVALID); |
| _(LISTEN, TCP_FLAG_FIN | TCP_FLAG_SYN, TCP_INPUT_NEXT_DROP, |
| TCP_ERROR_SEGMENT_INVALID); |
| _(LISTEN, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_DROP, |
| TCP_ERROR_SEGMENT_INVALID); |
| _(LISTEN, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST, TCP_INPUT_NEXT_DROP, |
| TCP_ERROR_SEGMENT_INVALID); |
| _(LISTEN, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_DROP, TCP_ERROR_SEGMENT_INVALID); |
| /* ACK for for a SYN-ACK -> tcp-rcv-process. */ |
| _(SYN_RCVD, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_SYN | TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_FIN | TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_FIN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_FIN | TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(SYN_RCVD, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(SYN_RCVD, 0, TCP_INPUT_NEXT_DROP, TCP_ERROR_SEGMENT_INVALID); |
| /* SYN-ACK for a SYN */ |
| _(SYN_SENT, TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_SYN_SENT, |
| TCP_ERROR_NONE); |
| _(SYN_SENT, TCP_FLAG_ACK, TCP_INPUT_NEXT_SYN_SENT, TCP_ERROR_NONE); |
| _(SYN_SENT, TCP_FLAG_RST, TCP_INPUT_NEXT_SYN_SENT, TCP_ERROR_NONE); |
| _(SYN_SENT, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_SYN_SENT, |
| TCP_ERROR_NONE); |
| _(SYN_SENT, TCP_FLAG_FIN, TCP_INPUT_NEXT_SYN_SENT, TCP_ERROR_NONE); |
| _(SYN_SENT, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_SYN_SENT, |
| TCP_ERROR_NONE); |
| /* ACK for for established connection -> tcp-established. */ |
| _(ESTABLISHED, TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| /* FIN for for established connection -> tcp-established. */ |
| _(ESTABLISHED, TCP_FLAG_FIN, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED, |
| TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_FIN | TCP_FLAG_RST, TCP_INPUT_NEXT_ESTABLISHED, |
| TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_FIN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_FIN | TCP_FLAG_SYN, TCP_INPUT_NEXT_ESTABLISHED, |
| TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST, |
| TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_RST, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED, |
| TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_SYN, TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_ESTABLISHED, |
| TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_SYN | TCP_FLAG_RST, TCP_INPUT_NEXT_ESTABLISHED, |
| TCP_ERROR_NONE); |
| _(ESTABLISHED, TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_ESTABLISHED, TCP_ERROR_NONE); |
| _(ESTABLISHED, 0, TCP_INPUT_NEXT_DROP, TCP_ERROR_SEGMENT_INVALID); |
| /* ACK or FIN-ACK to our FIN */ |
| _(FIN_WAIT_1, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_ACK | TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| /* FIN in reply to our FIN from the other side */ |
| _(FIN_WAIT_1, 0, TCP_INPUT_NEXT_DROP, TCP_ERROR_SEGMENT_INVALID); |
| _(FIN_WAIT_1, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_FIN | TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_FIN | TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_FIN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_SYN | TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_1, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(CLOSING, 0, TCP_INPUT_NEXT_DROP, TCP_ERROR_SEGMENT_INVALID); |
| _(CLOSING, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_SYN | TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_FIN | TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_FIN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_FIN | TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSING, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| /* FIN confirming that the peer (app) has closed */ |
| _(FIN_WAIT_2, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_2, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_2, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(FIN_WAIT_2, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(FIN_WAIT_2, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(FIN_WAIT_2, TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSE_WAIT, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSE_WAIT, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(CLOSE_WAIT, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(CLOSE_WAIT, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(CLOSE_WAIT, TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(LAST_ACK, 0, TCP_INPUT_NEXT_DROP, TCP_ERROR_SEGMENT_INVALID); |
| _(LAST_ACK, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_FIN | TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_FIN | TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_FIN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_FIN | TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_SYN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_SYN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_SYN | TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(LAST_ACK, TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_ACK, |
| TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(TIME_WAIT, TCP_FLAG_SYN, TCP_INPUT_NEXT_LISTEN, TCP_ERROR_NONE); |
| _(TIME_WAIT, TCP_FLAG_FIN, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(TIME_WAIT, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(TIME_WAIT, TCP_FLAG_RST, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| _(TIME_WAIT, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, |
| TCP_ERROR_NONE); |
| _(TIME_WAIT, TCP_FLAG_ACK, TCP_INPUT_NEXT_RCV_PROCESS, TCP_ERROR_NONE); |
| /* RFC793 CLOSED: An incoming segment containing a RST is discarded. An |
| * incoming segment not containing a RST causes a RST to be sent in |
| * response.*/ |
| _(CLOSED, TCP_FLAG_RST, TCP_INPUT_NEXT_DROP, TCP_ERROR_CONNECTION_CLOSED); |
| _(CLOSED, TCP_FLAG_RST | TCP_FLAG_ACK, TCP_INPUT_NEXT_DROP, |
| TCP_ERROR_CONNECTION_CLOSED); |
| _(CLOSED, TCP_FLAG_ACK, TCP_INPUT_NEXT_RESET, TCP_ERROR_CONNECTION_CLOSED); |
| _(CLOSED, TCP_FLAG_SYN, TCP_INPUT_NEXT_RESET, TCP_ERROR_CONNECTION_CLOSED); |
| _(CLOSED, TCP_FLAG_FIN | TCP_FLAG_ACK, TCP_INPUT_NEXT_RESET, |
| TCP_ERROR_CONNECTION_CLOSED); |
| #undef _ |
| } |
| |
| static clib_error_t * |
| tcp_input_init (vlib_main_t * vm) |
| { |
| clib_error_t *error = 0; |
| tcp_main_t *tm = vnet_get_tcp_main (); |
| |
| if ((error = vlib_call_init_function (vm, tcp_init))) |
| return error; |
| |
| /* Initialize dispatch table. */ |
| tcp_dispatch_table_init (tm); |
| |
| return error; |
| } |
| |
| VLIB_INIT_FUNCTION (tcp_input_init); |
| |
| #endif /* CLIB_MARCH_VARIANT */ |
| |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |