| /* |
| * Copyright (c) 2015 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| /* |
| Copyright (c) 2005 Eliot Dresselhaus |
| |
| Permission is hereby granted, free of charge, to any person obtaining |
| a copy of this software and associated documentation files (the |
| "Software"), to deal in the Software without restriction, including |
| without limitation the rights to use, copy, modify, merge, publish, |
| distribute, sublicense, and/or sell copies of the Software, and to |
| permit persons to whom the Software is furnished to do so, subject to |
| the following conditions: |
| |
| The above copyright notice and this permission notice shall be |
| included in all copies or substantial portions of the Software. |
| |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /* This is all stolen from Bob Jenkins and reworked for clib. Thanks |
| once again Bob for the great work. */ |
| |
| /* |
| ------------------------------------------------------------------------------ |
| perfect.c: code to generate code for a hash for perfect hashing. |
| (c) Bob Jenkins, September 1996, December 1999 |
| You may use this code in any way you wish, and it is free. No warranty. |
| I hereby place this in the public domain. |
| Source is http://burtleburtle.net/bob/c/perfect.c |
| |
| This generates a minimal perfect hash function. That means, given a |
| set of n keys, this determines a hash function that maps each of |
| those keys into a value in 0..n-1 with no collisions. |
| |
| The perfect hash function first uses a normal hash function on the key |
| to determine (a,b) such that the pair (a,b) is distinct for all |
| keys, then it computes a^scramble[tab[b]] to get the final perfect hash. |
| tab[] is an array of 1-byte values and scramble[] is a 256-term array of |
| 2-byte or 4-byte values. If there are n keys, the length of tab[] is a |
| power of two between n/3 and n. |
| |
| I found the idea of computing distinct (a,b) values in "Practical minimal |
| perfect hash functions for large databases", Fox, Heath, Chen, and Daoud, |
| Communications of the ACM, January 1992. They found the idea in Chichelli |
| (CACM Jan 1980). Beyond that, our methods differ. |
| |
| The key is hashed to a pair (a,b) where a in 0..*alen*-1 and b in |
| 0..*blen*-1. A fast hash function determines both a and b |
| simultaneously. Any decent hash function is likely to produce |
| hashes so that (a,b) is distinct for all pairs. I try the hash |
| using different values of *salt* until all pairs are distinct. |
| |
| The final hash is (a XOR scramble[tab[b]]). *scramble* is a |
| predetermined mapping of 0..255 into 0..smax-1. *tab* is an |
| array that we fill in in such a way as to make the hash perfect. |
| |
| First we fill in all values of *tab* that are used by more than one |
| key. We try all possible values for each position until one works. |
| |
| This leaves m unmapped keys and m values that something could hash to. |
| If you treat unmapped keys as lefthand nodes and unused hash values |
| as righthand nodes, and draw a line connecting each key to each hash |
| value it could map to, you get a bipartite graph. We attempt to |
| find a perfect matching in this graph. If we succeed, we have |
| determined a perfect hash for the whole set of keys. |
| |
| *scramble* is used because (a^tab[i]) clusters keys around *a*. |
| ------------------------------------------------------------------------------ |
| */ |
| |
| #include <vppinfra/bitmap.h> |
| #include <vppinfra/format.h> |
| #include <vppinfra/phash.h> |
| #include <vppinfra/random.h> |
| |
| static void init_keys_direct_u32 (phash_main_t * pm) |
| { |
| int n_keys_left, b_mask, a_shift; |
| u32 seed; |
| phash_key_t * k; |
| |
| seed = pm->hash_seed; |
| b_mask = (1 << pm->b_bits) - 1; |
| a_shift = BITS (seed) - pm->a_bits; |
| |
| k = pm->keys; |
| n_keys_left = vec_len (pm->keys); |
| |
| while (n_keys_left >= 2) |
| { |
| u32 x0, y0, z0; |
| u32 x1, y1, z1; |
| |
| x0 = y0 = z0 = seed; |
| x1 = y1 = z1 = seed; |
| x0 += (u32) k[0].key; |
| x1 += (u32) k[1].key; |
| |
| hash_mix32 (x0, y0, z0); |
| hash_mix32 (x1, y1, z1); |
| |
| k[0].b = z0 & b_mask; |
| k[1].b = z1 & b_mask; |
| k[0].a = z0 >> a_shift; |
| k[1].a = z1 >> a_shift; |
| if (PREDICT_FALSE (a_shift >= BITS (z0))) |
| k[0].a = k[1].a = 0; |
| |
| k += 2; |
| n_keys_left -= 2; |
| } |
| |
| if (n_keys_left >= 1) |
| { |
| u32 x0, y0, z0; |
| |
| x0 = y0 = z0 = seed; |
| x0 += k[0].key; |
| |
| hash_mix32 (x0, y0, z0); |
| |
| k[0].b = z0 & b_mask; |
| k[0].a = z0 >> a_shift; |
| if (PREDICT_FALSE (a_shift >= BITS (z0))) |
| k[0].a = 0; |
| |
| k += 1; |
| n_keys_left -= 1; |
| } |
| } |
| |
| static void init_keys_direct_u64 (phash_main_t * pm) |
| { |
| int n_keys_left, b_mask, a_shift; |
| u64 seed; |
| phash_key_t * k; |
| |
| seed = pm->hash_seed; |
| b_mask = (1 << pm->b_bits) - 1; |
| a_shift = BITS (seed) - pm->a_bits; |
| |
| k = pm->keys; |
| n_keys_left = vec_len (pm->keys); |
| |
| while (n_keys_left >= 2) |
| { |
| u64 x0, y0, z0; |
| u64 x1, y1, z1; |
| |
| x0 = y0 = z0 = seed; |
| x1 = y1 = z1 = seed; |
| x0 += (u64) k[0].key; |
| x1 += (u64) k[1].key; |
| |
| hash_mix64 (x0, y0, z0); |
| hash_mix64 (x1, y1, z1); |
| |
| k[0].b = z0 & b_mask; |
| k[1].b = z1 & b_mask; |
| k[0].a = z0 >> a_shift; |
| k[1].a = z1 >> a_shift; |
| if (PREDICT_FALSE (a_shift >= BITS (z0))) |
| k[0].a = k[1].a = 0; |
| |
| k += 2; |
| n_keys_left -= 2; |
| } |
| |
| if (n_keys_left >= 1) |
| { |
| u64 x0, y0, z0; |
| |
| x0 = y0 = z0 = seed; |
| x0 += k[0].key; |
| |
| hash_mix64 (x0, y0, z0); |
| |
| k[0].b = z0 & b_mask; |
| k[0].a = z0 >> a_shift; |
| if (PREDICT_FALSE (a_shift >= BITS (z0))) |
| k[0].a = 0; |
| |
| k += 1; |
| n_keys_left -= 1; |
| } |
| } |
| |
| static void init_keys_indirect_u32 (phash_main_t * pm) |
| { |
| int n_keys_left, b_mask, a_shift; |
| u32 seed; |
| phash_key_t * k; |
| |
| seed = pm->hash_seed; |
| b_mask = (1 << pm->b_bits) - 1; |
| a_shift = BITS (seed) - pm->a_bits; |
| |
| k = pm->keys; |
| n_keys_left = vec_len (pm->keys); |
| |
| while (n_keys_left >= 2) |
| { |
| u32 xyz[6]; |
| u32 x0, y0, z0; |
| u32 x1, y1, z1; |
| |
| pm->key_seed2 (pm->private, k[0].key, k[1].key, &xyz); |
| |
| x0 = y0 = z0 = seed; |
| x1 = y1 = z1 = seed; |
| x0 += xyz[0]; y0 += xyz[1]; z0 += xyz[2]; |
| x1 += xyz[3]; y1 += xyz[4]; z1 += xyz[5]; |
| |
| hash_mix32 (x0, y0, z0); |
| hash_mix32 (x1, y1, z1); |
| |
| k[0].b = z0 & b_mask; |
| k[1].b = z1 & b_mask; |
| k[0].a = z0 >> a_shift; |
| k[1].a = z1 >> a_shift; |
| if (PREDICT_FALSE (a_shift >= BITS (z0))) |
| k[0].a = k[1].a = 0; |
| |
| k += 2; |
| n_keys_left -= 2; |
| } |
| |
| if (n_keys_left >= 1) |
| { |
| u32 xyz[3]; |
| u32 x0, y0, z0; |
| |
| pm->key_seed1 (pm->private, k[0].key, &xyz); |
| |
| x0 = y0 = z0 = seed; |
| x0 += xyz[0]; y0 += xyz[1]; z0 += xyz[2]; |
| |
| hash_mix32 (x0, y0, z0); |
| |
| k[0].b = z0 & b_mask; |
| k[0].a = z0 >> a_shift; |
| if (PREDICT_FALSE (a_shift >= BITS (z0))) |
| k[0].a = 0; |
| |
| k += 1; |
| n_keys_left -= 1; |
| } |
| } |
| |
| static void init_keys_indirect_u64 (phash_main_t * pm) |
| { |
| int n_keys_left, b_mask, a_shift; |
| u64 seed; |
| phash_key_t * k; |
| |
| seed = pm->hash_seed; |
| b_mask = (1 << pm->b_bits) - 1; |
| a_shift = BITS (seed) - pm->a_bits; |
| |
| k = pm->keys; |
| n_keys_left = vec_len (pm->keys); |
| |
| while (n_keys_left >= 2) |
| { |
| u64 xyz[6]; |
| u64 x0, y0, z0; |
| u64 x1, y1, z1; |
| |
| pm->key_seed2 (pm->private, k[0].key, k[1].key, &xyz); |
| |
| x0 = y0 = z0 = seed; |
| x1 = y1 = z1 = seed; |
| x0 += xyz[0]; y0 += xyz[1]; z0 += xyz[2]; |
| x1 += xyz[3]; y1 += xyz[4]; z1 += xyz[5]; |
| |
| hash_mix64 (x0, y0, z0); |
| hash_mix64 (x1, y1, z1); |
| |
| k[0].b = z0 & b_mask; |
| k[1].b = z1 & b_mask; |
| k[0].a = z0 >> a_shift; |
| k[1].a = z1 >> a_shift; |
| if (PREDICT_FALSE (a_shift >= BITS (z0))) |
| k[0].a = k[1].a = 0; |
| |
| k += 2; |
| n_keys_left -= 2; |
| } |
| |
| if (n_keys_left >= 1) |
| { |
| u64 xyz[3]; |
| u64 x0, y0, z0; |
| |
| pm->key_seed1 (pm->private, k[0].key, &xyz); |
| |
| x0 = y0 = z0 = seed; |
| x0 += xyz[0]; y0 += xyz[1]; z0 += xyz[2]; |
| |
| hash_mix64 (x0, y0, z0); |
| |
| k[0].b = z0 & b_mask; |
| k[0].a = z0 >> a_shift; |
| if (PREDICT_FALSE (a_shift >= BITS (z0))) |
| k[0].a = 0; |
| |
| k += 1; |
| n_keys_left -= 1; |
| } |
| } |
| |
| /* |
| * insert keys into table according to key->b |
| * check if the initial hash might work |
| */ |
| static int init_tabb (phash_main_t * pm) |
| { |
| int no_collisions; |
| phash_tabb_t * tb; |
| phash_key_t * k, * l; |
| |
| if (pm->key_seed1) |
| { |
| if (pm->flags & PHASH_FLAG_MIX64) |
| init_keys_indirect_u64 (pm); |
| else |
| init_keys_indirect_u32 (pm); |
| } |
| else |
| { |
| if (pm->flags & PHASH_FLAG_MIX64) |
| init_keys_direct_u64 (pm); |
| else |
| init_keys_direct_u32 (pm); |
| } |
| |
| if (! pm->tabb) |
| vec_resize (pm->tabb, 1 << pm->b_bits); |
| else |
| vec_foreach (tb, pm->tabb) |
| phash_tabb_free (tb); |
| |
| /* Two keys with the same (a,b) guarantees a collision */ |
| no_collisions = 1; |
| vec_foreach (k, pm->keys) |
| { |
| u32 i, * ki; |
| |
| tb = pm->tabb + k->b; |
| ki = tb->keys; |
| for (i = 0; i < vec_len (ki); i++) |
| { |
| l = pm->keys + ki[i]; |
| if (k->a == l->a) |
| { |
| /* Given keys are supposed to be unique. */ |
| if (pm->key_is_equal |
| && pm->key_is_equal (pm->private, l->key, k->key)) |
| clib_error ("duplicate keys"); |
| no_collisions = 0; |
| goto done; |
| } |
| } |
| |
| vec_add1 (tb->keys, k - pm->keys); |
| } |
| |
| done: |
| return no_collisions; |
| } |
| |
| /* Try to apply an augmenting list */ |
| static int apply (phash_main_t * pm, u32 tail, u32 rollback) |
| { |
| phash_key_t * k; |
| phash_tabb_t * pb; |
| phash_tabq_t * q_child, * q_parent; |
| u32 ki, i, hash, child, parent; |
| u32 stabb; /* scramble[tab[b]] */ |
| int no_collision; |
| |
| no_collision = 1; |
| |
| /* Walk from child to parent until root is reached. */ |
| for (child = tail - 1; child; child = parent) |
| { |
| q_child = &pm->tabq[child]; |
| parent = q_child->parent_q; |
| q_parent = &pm->tabq[parent]; |
| |
| /* find parent's list of siblings */ |
| ASSERT (q_parent->b_q < vec_len (pm->tabb)); |
| pb = pm->tabb + q_parent->b_q; |
| |
| /* erase old hash values */ |
| stabb = pm->scramble[pb->val_b]; |
| for (i = 0; i < vec_len (pb->keys); i++) |
| { |
| ki = pb->keys[i]; |
| k = pm->keys + ki; |
| hash = k->a ^ stabb; |
| |
| /* Erase hash for all of child's siblings. */ |
| if (ki == pm->tabh[hash]) |
| pm->tabh[hash] = ~0; |
| } |
| |
| /* change pb->val_b, which will change the hashes of all parent siblings */ |
| pb->val_b = rollback ? q_child->oldval_q : q_child->newval_q; |
| |
| /* set new hash values */ |
| stabb = pm->scramble[pb->val_b]; |
| for (i = 0; i < vec_len (pb->keys); i++) |
| { |
| ki = pb->keys[i]; |
| k = pm->keys + ki; |
| |
| hash = k->a ^ stabb; |
| if (rollback) |
| { |
| if (parent == 0) continue; /* root never had a hash */ |
| } |
| else if (pm->tabh[hash] != ~0) |
| { |
| /* Very rare case: roll back any changes. */ |
| apply (pm, tail, /* rollback changes */ 1); |
| no_collision = 0; |
| goto done; |
| } |
| pm->tabh[hash] = ki; |
| } |
| } |
| |
| done: |
| return no_collision; |
| } |
| |
| |
| /* |
| ------------------------------------------------------------------------------- |
| augment(): Add item to the mapping. |
| |
| Construct a spanning tree of *b*s with *item* as root, where each |
| parent can have all its hashes changed (by some new val_b) with |
| at most one collision, and each child is the b of that collision. |
| |
| I got this from Tarjan's "Data Structures and Network Algorithms". The |
| path from *item* to a *b* that can be remapped with no collision is |
| an "augmenting path". Change values of tab[b] along the path so that |
| the unmapped key gets mapped and the unused hash value gets used. |
| |
| Assuming 1 key per b, if m out of n hash values are still unused, |
| you should expect the transitive closure to cover n/m nodes before |
| an unused node is found. Sum(i=1..n)(n/i) is about nlogn, so expect |
| this approach to take about nlogn time to map all single-key b's. |
| ------------------------------------------------------------------------------- |
| |
| high_water: a value higher than any now in tabb[].water_b. |
| */ |
| static int augment (phash_main_t * pm, u32 b_root, u32 high_water) |
| { |
| u32 q; /* current position walking through the queue */ |
| u32 tail; /* tail of the queue. 0 is the head of the queue. */ |
| phash_tabb_t * tb_parent, * tb_child, * tb_hit; |
| phash_key_t * k_parent, * k_child; |
| u32 v, v_limit; /* possible value for myb->val_b */ |
| u32 i, ki, hash; |
| |
| v_limit = 1 << ((pm->flags & PHASH_FLAG_USE_SCRAMBLE) ? pm->s_bits : BITS (u8)); |
| |
| /* Initialize the root of the spanning tree. */ |
| pm->tabq[0].b_q = b_root; |
| tail = 1; |
| |
| /* construct the spanning tree by walking the queue, add children to tail */ |
| for (q = 0; q < tail; q++) |
| { |
| if ((pm->flags & PHASH_FLAG_FAST_MODE) |
| && ! (pm->flags & PHASH_FLAG_MINIMAL) |
| && q == 1) |
| break; /* don't do transitive closure */ |
| |
| tb_parent = pm->tabb + pm->tabq[q].b_q; /* the b for this node */ |
| |
| for (v = 0; v < v_limit; v++) |
| { |
| tb_child = 0; |
| |
| for (i = 0; i < vec_len (tb_parent->keys); i++) |
| { |
| ki = tb_parent->keys[i]; |
| k_parent = pm->keys + ki; |
| |
| hash = k_parent->a ^ pm->scramble[v]; |
| if (hash >= pm->hash_max) |
| goto try_next_v; /* hash code out of bounds => we can't use this v */ |
| |
| ki = pm->tabh[hash]; |
| if (ki == ~0) |
| continue; |
| |
| k_child = pm->keys + ki; |
| tb_hit = pm->tabb + k_child->b; |
| |
| if (tb_child) |
| { |
| /* Hit at most one child b. */ |
| if (tb_child == tb_hit) |
| goto try_next_v; |
| } |
| else |
| { |
| /* Remember this as child b. */ |
| tb_child = tb_hit; |
| if (tb_hit->water_b == high_water) |
| goto try_next_v; /* already explored */ |
| } |
| } |
| |
| /* tb_parent with v has either one or zero collisions. */ |
| |
| /* add childb to the queue of reachable things */ |
| if (tb_child) |
| tb_child->water_b = high_water; |
| pm->tabq[tail].b_q = tb_child ? tb_child - pm->tabb : ~0; |
| pm->tabq[tail].newval_q = v; /* how to make parent (myb) use this hash */ |
| pm->tabq[tail].oldval_q = tb_parent->val_b; /* need this for rollback */ |
| pm->tabq[tail].parent_q = q; |
| ++tail; |
| |
| /* Found a v with no collisions? */ |
| if (! tb_child) |
| { |
| /* Try to apply the augmenting path. */ |
| if (apply (pm, tail, /* rollback */ 0)) |
| return 1; /* success, item was added to the perfect hash */ |
| --tail; /* don't know how to handle such a child! */ |
| } |
| |
| try_next_v: |
| ; |
| } |
| } |
| return 0; |
| } |
| |
| |
| static phash_tabb_t * sort_tabb; |
| |
| static int phash_tabb_compare (void *a1, void *a2) |
| { |
| u32 *b1 = a1; |
| u32 *b2 = a2; |
| phash_tabb_t * tb1, * tb2; |
| |
| tb1 = sort_tabb + b1[0]; |
| tb2 = sort_tabb + b2[0]; |
| |
| return ((int) vec_len (tb2->keys) - (int) vec_len(tb1->keys)); |
| } |
| |
| /* find a mapping that makes this a perfect hash */ |
| static int perfect (phash_main_t * pm) |
| { |
| u32 i; |
| |
| /* clear any state from previous attempts */ |
| if (vec_bytes(pm->tabh)) |
| memset (pm->tabh, ~0, vec_bytes (pm->tabh)); |
| |
| vec_validate (pm->tabb_sort, vec_len (pm->tabb) - 1); |
| for (i = 0; i < vec_len (pm->tabb_sort); i++) |
| pm->tabb_sort[i] = i; |
| |
| sort_tabb = pm->tabb; |
| |
| vec_sort_with_function (pm->tabb_sort, phash_tabb_compare); |
| |
| /* In descending order by number of keys, map all *b*s */ |
| for (i = 0; i < vec_len (pm->tabb_sort); i++) |
| { |
| if (! augment(pm, pm->tabb_sort[i], i + 1)) |
| return 0; |
| } |
| |
| /* Success! We found a perfect hash of all keys into 0..nkeys-1. */ |
| return 1; |
| } |
| |
| |
| /* |
| * Find initial a_bits = log2 (a_max), b_bits = log2 (b_max). |
| * Initial a_max and b_max values were found empirically. Some factors: |
| * |
| * If s_max<256 there is no scramble, so tab[b] needs to cover 0..s_max-1. |
| * |
| * a_max and b_max must be powers of 2 because the values in 0..a_max-1 and |
| * 0..b_max-1 are produced by applying a bitmask to the initial hash function. |
| * |
| * a_max must be less than s_max, in fact less than n_keys, because otherwise |
| * there would often be no i such that a^scramble[i] is in 0..n_keys-1 for |
| * all the *a*s associated with a given *b*, so there would be no legal |
| * value to assign to tab[b]. This only matters when we're doing a minimal |
| * perfect hash. |
| * |
| * It takes around 800 trials to find distinct (a,b) with nkey=s_max*(5/8) |
| * and a_max*b_max = s_max*s_max/32. |
| * |
| * Values of b_max less than s_max/4 never work, and s_max/2 always works. |
| * |
| * We want b_max as small as possible because it is the number of bytes in |
| * the huge array we must create for the perfect hash. |
| * |
| * When nkey <= s_max*(5/8), b_max=s_max/4 works much more often with |
| * a_max=s_max/8 than with a_max=s_max/4. Above s_max*(5/8), b_max=s_max/4 |
| * doesn't seem to care whether a_max=s_max/8 or a_max=s_max/4. I think it |
| * has something to do with 5/8 = 1/8 * 5. For example examine 80000, |
| * 85000, and 90000 keys with different values of a_max. This only matters |
| * if we're doing a minimal perfect hash. |
| * |
| * When a_max*b_max <= 1<<U32BITS, the initial hash must produce one integer. |
| * Bigger than that it must produce two integers, which increases the |
| * cost of the hash per character hashed. |
| */ |
| static void guess_initial_parameters (phash_main_t * pm) |
| { |
| u32 s_bits, s_max, a_max, b_max, n_keys; |
| int is_minimal, is_fast_mode; |
| const u32 b_max_use_scramble_threshold = 4096; |
| |
| is_minimal = (pm->flags & PHASH_FLAG_MINIMAL) != 0; |
| is_fast_mode = (pm->flags & PHASH_FLAG_FAST_MODE) != 0; |
| |
| n_keys = vec_len (pm->keys); |
| s_bits = max_log2 (n_keys); |
| s_max = 1 << s_bits; |
| a_max = 0; |
| |
| if (is_minimal) |
| { |
| switch (s_bits) |
| { |
| case 0: |
| a_max = 1; |
| b_max = 1; |
| case 1: case 2: case 3: case 4: case 5: case 6: case 7: case 8: |
| a_max = is_minimal ? s_max / 2 : s_max; |
| b_max = s_max/2; |
| break; |
| case 9: case 10: case 11: case 12: case 13: |
| case 14: case 15: case 16: case 17: |
| if (is_fast_mode) |
| { |
| a_max = s_max/2; |
| b_max = s_max/4; |
| } |
| else if (s_max/4 < b_max_use_scramble_threshold) |
| { |
| if (n_keys <= s_max*0.52) |
| a_max = b_max = s_max/8; |
| else |
| a_max = b_max = s_max/4; |
| } |
| else |
| { |
| a_max = ((n_keys <= s_max*(5.0/8.0)) ? s_max/8 : |
| (n_keys <= s_max*(3.0/4.0)) ? s_max/4 : s_max/2); |
| b_max = s_max/4; /* always give the small size a shot */ |
| } |
| break; |
| case 18: |
| if (is_fast_mode) |
| a_max = b_max = s_max/2; |
| else |
| { |
| a_max = s_max/8; /* never require the multiword hash */ |
| b_max = (n_keys <= s_max*(5.0/8.0)) ? s_max/4 : s_max/2; |
| } |
| break; |
| case 19: |
| case 20: |
| a_max = (n_keys <= s_max*(5.0/8.0)) ? s_max/8 : s_max/2; |
| b_max = (n_keys <= s_max*(5.0/8.0)) ? s_max/4 : s_max/2; |
| break; |
| default: |
| /* Just find a hash as quick as possible. |
| We'll be thrashing virtual memory at this size. */ |
| a_max = b_max = s_max/2; |
| break; |
| } |
| } |
| else |
| { |
| /* Non-minimal perfect hash. */ |
| if (is_fast_mode && n_keys > s_max*0.8) |
| { |
| s_max *= 2; |
| s_bits += 1; |
| } |
| |
| if (s_max/4 <= (1 << 14)) |
| b_max = ((n_keys <= s_max*0.56) ? s_max/32 : |
| (n_keys <= s_max*0.74) ? s_max/16 : s_max/8); |
| else |
| b_max = ((n_keys <= s_max*0.6) ? s_max/16 : |
| (n_keys <= s_max*0.8) ? s_max/8 : s_max/4); |
| |
| if (is_fast_mode && b_max < s_max/8) |
| b_max = s_max/8; |
| |
| if (a_max < 1) a_max = 1; |
| if (b_max < 1) b_max = 1; |
| } |
| |
| ASSERT (s_max == (1 << s_bits)); |
| ASSERT (is_pow2 (a_max)); |
| ASSERT (is_pow2 (b_max)); |
| pm->s_bits = s_bits; |
| pm->a_bits = min_log2 (a_max); |
| pm->b_bits = min_log2 (b_max); |
| if (b_max >= b_max_use_scramble_threshold) |
| pm->flags |= PHASH_FLAG_USE_SCRAMBLE; |
| } |
| |
| /* compute p(x), where p is a permutation of 0..(1<<nbits)-1 */ |
| /* permute(0)=0. This is intended and useful. */ |
| always_inline u32 scramble_permute (u32 x, u32 nbits) |
| { |
| int i; |
| int mask = (1 << nbits) - 1; |
| int const2 = 1+nbits/2; |
| int const3 = 1+nbits/3; |
| int const4 = 1+nbits/4; |
| int const5 = 1+nbits/5; |
| for (i = 0; i < 20; i++) |
| { |
| x = (x + (x << const2)) & mask; |
| x = (x ^ (x >> const3)); |
| x = (x + (x << const4)) & mask; |
| x = (x ^ (x >> const5)); |
| } |
| return x; |
| } |
| |
| /* initialize scramble[] with distinct random values in 0..smax-1 */ |
| static void scramble_init (phash_main_t * pm) |
| { |
| u32 i; |
| |
| /* fill scramble[] with distinct random integers in 0..smax-1 */ |
| vec_validate (pm->scramble, (1 << (pm->s_bits < 8 ? 8 : pm->s_bits)) - 1); |
| for (i = 0; i < vec_len (pm->scramble); i++) |
| pm->scramble[i] = scramble_permute (i, pm->s_bits); |
| } |
| |
| /* Try to find a perfect hash function. */ |
| clib_error_t * |
| phash_find_perfect_hash (phash_main_t * pm) |
| { |
| clib_error_t * error = 0; |
| u32 max_a_bits, n_tries_this_a_b, want_minimal; |
| |
| /* guess initial values for s_max, a_max and b_max */ |
| guess_initial_parameters (pm); |
| |
| want_minimal = pm->flags & PHASH_FLAG_MINIMAL; |
| |
| new_s: |
| if (pm->b_bits == 0) |
| pm->a_bits = pm->s_bits; |
| |
| max_a_bits = pm->s_bits - want_minimal; |
| if (max_a_bits < 1) |
| max_a_bits = 1; |
| |
| pm->hash_max = want_minimal ? vec_len (pm->keys) : (1 << pm->s_bits); |
| |
| scramble_init (pm); |
| |
| /* Allocate working memory. */ |
| vec_free (pm->tabh); |
| vec_validate_init_empty (pm->tabh, pm->hash_max - 1, ~0); |
| vec_free (pm->tabq); |
| vec_validate (pm->tabq, 1 << pm->b_bits); |
| |
| /* Actually find the perfect hash */ |
| n_tries_this_a_b = 0; |
| while (1) |
| { |
| /* Choose random hash seeds until keys become unique. */ |
| pm->hash_seed = random_u64 (&pm->random_seed); |
| pm->n_seed_trials++; |
| if (init_tabb (pm)) |
| { |
| /* Found unique (A, B). */ |
| |
| /* Hash may already be perfect. */ |
| if (pm->b_bits == 0) |
| goto done; |
| |
| pm->n_perfect_calls++; |
| if (perfect (pm)) |
| goto done; |
| |
| goto increase_b; |
| } |
| |
| /* Keep trying with different seed value. */ |
| n_tries_this_a_b++; |
| if (n_tries_this_a_b < 2048) |
| continue; |
| |
| /* Try to put more bits in (A,B) to make distinct (A,B) more likely */ |
| if (pm->a_bits < max_a_bits) |
| pm->a_bits++; |
| else if (pm->b_bits < pm->s_bits) |
| { |
| increase_b: |
| vec_resize (pm->tabb, vec_len (pm->tabb)); |
| vec_resize (pm->tabq, vec_len (pm->tabq)); |
| pm->b_bits++; |
| } |
| else |
| { |
| /* Can't increase (A, B) any more, so try increasing S. */ |
| goto new_s; |
| } |
| } |
| |
| done: |
| /* Construct mapping table for hash lookups. */ |
| if (! error) |
| { |
| u32 b, v; |
| |
| pm->a_shift = ((pm->flags & PHASH_FLAG_MIX64) ? 64 : 32) - pm->a_bits; |
| pm->b_mask = (1 << pm->b_bits) - 1; |
| |
| vec_resize (pm->tab, vec_len (pm->tabb)); |
| for (b = 0; b < vec_len (pm->tabb); b++) |
| { |
| v = pm->tabb[b].val_b; |
| |
| /* Apply scramble now for small enough value of b_bits. */ |
| if (! (pm->flags & PHASH_FLAG_USE_SCRAMBLE)) |
| v = pm->scramble[v]; |
| |
| pm->tab[b] = v; |
| } |
| } |
| |
| /* Free working memory. */ |
| phash_main_free_working_memory (pm); |
| |
| return error; |
| } |
| |
| /* Slow hash computation for general keys. */ |
| uword phash_hash_slow (phash_main_t * pm, uword key) |
| { |
| u32 a, b, v; |
| |
| if (pm->flags & PHASH_FLAG_MIX64) |
| { |
| u64 x0, y0, z0; |
| |
| x0 = y0 = z0 = pm->hash_seed; |
| |
| if (pm->key_seed1) |
| { |
| u64 xyz[3]; |
| pm->key_seed1 (pm->private, key, &xyz); |
| x0 += xyz[0]; y0 += xyz[1]; z0 += xyz[2]; |
| } |
| else |
| x0 += key; |
| |
| hash_mix64 (x0, y0, z0); |
| |
| a = z0 >> pm->a_shift; |
| b = z0 & pm->b_mask; |
| } |
| else |
| { |
| u32 x0, y0, z0; |
| |
| x0 = y0 = z0 = pm->hash_seed; |
| |
| if (pm->key_seed1) |
| { |
| u32 xyz[3]; |
| pm->key_seed1 (pm->private, key, &xyz); |
| x0 += xyz[0]; y0 += xyz[1]; z0 += xyz[2]; |
| } |
| else |
| x0 += key; |
| |
| hash_mix32 (x0, y0, z0); |
| |
| a = z0 >> pm->a_shift; |
| b = z0 & pm->b_mask; |
| } |
| |
| v = pm->tab[b]; |
| if (pm->flags & PHASH_FLAG_USE_SCRAMBLE) |
| v = pm->scramble[v]; |
| return a ^ v; |
| } |
| |
| /* Verify that perfect hash is perfect. */ |
| clib_error_t * |
| phash_validate (phash_main_t * pm) |
| { |
| phash_key_t * k; |
| uword * unique_bitmap = 0; |
| clib_error_t * error = 0; |
| |
| vec_foreach (k, pm->keys) |
| { |
| uword h = phash_hash_slow (pm, k->key); |
| |
| if (h >= pm->hash_max) |
| { |
| error = clib_error_return (0, "hash out of range %wd", h); |
| goto done; |
| } |
| |
| if (clib_bitmap_get (unique_bitmap, h)) |
| { |
| error = clib_error_return (0, "hash non-unique"); |
| goto done; |
| } |
| |
| unique_bitmap = clib_bitmap_ori (unique_bitmap, h); |
| } |
| |
| done: |
| clib_bitmap_free (unique_bitmap); |
| return error; |
| } |