| /* |
| * Copyright (c) 2015 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| /* |
| * buffer_node.h: VLIB buffer handling node helper macros/inlines |
| * |
| * Copyright (c) 2008 Eliot Dresselhaus |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining |
| * a copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sublicense, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be |
| * included in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #ifndef included_vlib_buffer_node_h |
| #define included_vlib_buffer_node_h |
| |
| /** \file |
| vlib buffer/node functions |
| */ |
| |
| /** \brief Finish enqueueing two buffers forward in the graph. |
| Standard dual loop boilerplate element. This is a MACRO, |
| with MULTIPLE SIDE EFFECTS. In the ideal case, |
| <code>next_index == next0 == next1</code>, |
| which means that the speculative enqueue at the top of the dual loop |
| has correctly dealt with both packets. In that case, the macro does |
| nothing at all. |
| |
| @param vm vlib_main_t pointer, varies by thread |
| @param node current node vlib_node_runtime_t pointer |
| @param next_index speculated next index used for both packets |
| @param to_next speculated vector pointer used for both packets |
| @param n_left_to_next number of slots left in speculated vector |
| @param bi0 first buffer index |
| @param bi1 second buffer index |
| @param next0 actual next index to be used for the first packet |
| @param next1 actual next index to be used for the second packet |
| |
| @return @c next_index -- speculative next index to be used for future packets |
| @return @c to_next -- speculative frame to be used for future packets |
| @return @c n_left_to_next -- number of slots left in speculative frame |
| */ |
| |
| #define vlib_validate_buffer_enqueue_x2(vm,node,next_index,to_next,n_left_to_next,bi0,bi1,next0,next1) \ |
| do { \ |
| ASSERT (bi0 != 0); \ |
| ASSERT (bi1 != 0); \ |
| int enqueue_code = (next0 != next_index) + 2*(next1 != next_index); \ |
| \ |
| if (PREDICT_FALSE (enqueue_code != 0)) \ |
| { \ |
| switch (enqueue_code) \ |
| { \ |
| case 1: \ |
| /* A B A */ \ |
| to_next[-2] = bi1; \ |
| to_next -= 1; \ |
| n_left_to_next += 1; \ |
| vlib_set_next_frame_buffer (vm, node, next0, bi0); \ |
| break; \ |
| \ |
| case 2: \ |
| /* A A B */ \ |
| to_next -= 1; \ |
| n_left_to_next += 1; \ |
| vlib_set_next_frame_buffer (vm, node, next1, bi1); \ |
| break; \ |
| \ |
| case 3: \ |
| /* A B B or A B C */ \ |
| to_next -= 2; \ |
| n_left_to_next += 2; \ |
| vlib_set_next_frame_buffer (vm, node, next0, bi0); \ |
| vlib_set_next_frame_buffer (vm, node, next1, bi1); \ |
| if (next0 == next1) \ |
| { \ |
| vlib_put_next_frame (vm, node, next_index, \ |
| n_left_to_next); \ |
| next_index = next1; \ |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); \ |
| } \ |
| } \ |
| } \ |
| } while (0) |
| |
| |
| /** \brief Finish enqueueing four buffers forward in the graph. |
| Standard quad loop boilerplate element. This is a MACRO, |
| with MULTIPLE SIDE EFFECTS. In the ideal case, |
| <code>next_index == next0 == next1 == next2 == next3</code>, |
| which means that the speculative enqueue at the top of the quad loop |
| has correctly dealt with all four packets. In that case, the macro does |
| nothing at all. |
| |
| @param vm vlib_main_t pointer, varies by thread |
| @param node current node vlib_node_runtime_t pointer |
| @param next_index speculated next index used for both packets |
| @param to_next speculated vector pointer used for both packets |
| @param n_left_to_next number of slots left in speculated vector |
| @param bi0 first buffer index |
| @param bi1 second buffer index |
| @param bi2 third buffer index |
| @param bi3 fourth buffer index |
| @param next0 actual next index to be used for the first packet |
| @param next1 actual next index to be used for the second packet |
| @param next2 actual next index to be used for the third packet |
| @param next3 actual next index to be used for the fourth packet |
| |
| @return @c next_index -- speculative next index to be used for future packets |
| @return @c to_next -- speculative frame to be used for future packets |
| @return @c n_left_to_next -- number of slots left in speculative frame |
| */ |
| |
| #define vlib_validate_buffer_enqueue_x4(vm,node,next_index,to_next,n_left_to_next,bi0,bi1,bi2,bi3,next0,next1,next2,next3) \ |
| do { \ |
| ASSERT (bi0 != 0); \ |
| ASSERT (bi1 != 0); \ |
| ASSERT (bi2 != 0); \ |
| ASSERT (bi3 != 0); \ |
| /* After the fact: check the [speculative] enqueue to "next" */ \ |
| u32 fix_speculation = (next_index ^ next0) | (next_index ^ next1) \ |
| | (next_index ^ next2) | (next_index ^ next3); \ |
| if (PREDICT_FALSE(fix_speculation)) \ |
| { \ |
| /* rewind... */ \ |
| to_next -= 4; \ |
| n_left_to_next += 4; \ |
| \ |
| /* If bi0 belongs to "next", send it there */ \ |
| if (next_index == next0) \ |
| { \ |
| to_next[0] = bi0; \ |
| to_next++; \ |
| n_left_to_next --; \ |
| } \ |
| else /* send it where it needs to go */ \ |
| vlib_set_next_frame_buffer (vm, node, next0, bi0); \ |
| \ |
| if (next_index == next1) \ |
| { \ |
| to_next[0] = bi1; \ |
| to_next++; \ |
| n_left_to_next --; \ |
| } \ |
| else \ |
| vlib_set_next_frame_buffer (vm, node, next1, bi1); \ |
| \ |
| if (next_index == next2) \ |
| { \ |
| to_next[0] = bi2; \ |
| to_next++; \ |
| n_left_to_next --; \ |
| } \ |
| else \ |
| vlib_set_next_frame_buffer (vm, node, next2, bi2); \ |
| \ |
| if (next_index == next3) \ |
| { \ |
| to_next[0] = bi3; \ |
| to_next++; \ |
| n_left_to_next --; \ |
| } \ |
| else \ |
| { \ |
| vlib_set_next_frame_buffer (vm, node, next3, bi3); \ |
| \ |
| /* Change speculation: last 2 packets went to the same node*/ \ |
| if (next2 == next3) \ |
| { \ |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); \ |
| next_index = next3; \ |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); \ |
| } \ |
| } \ |
| } \ |
| } while(0); |
| |
| /** \brief Finish enqueueing one buffer forward in the graph. |
| Standard single loop boilerplate element. This is a MACRO, |
| with MULTIPLE SIDE EFFECTS. In the ideal case, |
| <code>next_index == next0</code>, |
| which means that the speculative enqueue at the top of the single loop |
| has correctly dealt with the packet in hand. In that case, the macro does |
| nothing at all. |
| |
| @param vm vlib_main_t pointer, varies by thread |
| @param node current node vlib_node_runtime_t pointer |
| @param next_index speculated next index used for both packets |
| @param to_next speculated vector pointer used for both packets |
| @param n_left_to_next number of slots left in speculated vector |
| @param bi0 first buffer index |
| @param next0 actual next index to be used for the first packet |
| |
| @return @c next_index -- speculative next index to be used for future packets |
| @return @c to_next -- speculative frame to be used for future packets |
| @return @c n_left_to_next -- number of slots left in speculative frame |
| */ |
| #define vlib_validate_buffer_enqueue_x1(vm,node,next_index,to_next,n_left_to_next,bi0,next0) \ |
| do { \ |
| ASSERT (bi0 != 0); \ |
| if (PREDICT_FALSE (next0 != next_index)) \ |
| { \ |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next + 1); \ |
| next_index = next0; \ |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); \ |
| \ |
| to_next[0] = bi0; \ |
| to_next += 1; \ |
| n_left_to_next -= 1; \ |
| } \ |
| } while (0) |
| |
| always_inline uword |
| generic_buffer_node_inline (vlib_main_t * vm, |
| vlib_node_runtime_t * node, |
| vlib_frame_t * frame, |
| uword sizeof_trace, |
| void *opaque1, |
| uword opaque2, |
| void (*two_buffers) (vlib_main_t * vm, |
| void *opaque1, |
| uword opaque2, |
| vlib_buffer_t * b0, |
| vlib_buffer_t * b1, |
| u32 * next0, u32 * next1), |
| void (*one_buffer) (vlib_main_t * vm, |
| void *opaque1, uword opaque2, |
| vlib_buffer_t * b0, |
| u32 * next0)) |
| { |
| u32 n_left_from, *from, *to_next; |
| u32 next_index; |
| |
| from = vlib_frame_vector_args (frame); |
| n_left_from = frame->n_vectors; |
| next_index = node->cached_next_index; |
| |
| if (node->flags & VLIB_NODE_FLAG_TRACE) |
| vlib_trace_frame_buffers_only (vm, node, from, frame->n_vectors, |
| /* stride */ 1, sizeof_trace); |
| |
| while (n_left_from > 0) |
| { |
| u32 n_left_to_next; |
| |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| |
| while (n_left_from >= 4 && n_left_to_next >= 2) |
| { |
| vlib_buffer_t *p0, *p1; |
| u32 pi0, next0; |
| u32 pi1, next1; |
| |
| /* Prefetch next iteration. */ |
| { |
| vlib_buffer_t *p2, *p3; |
| |
| p2 = vlib_get_buffer (vm, from[2]); |
| p3 = vlib_get_buffer (vm, from[3]); |
| |
| vlib_prefetch_buffer_header (p2, LOAD); |
| vlib_prefetch_buffer_header (p3, LOAD); |
| |
| clib_prefetch_load (p2->data); |
| clib_prefetch_load (p3->data); |
| } |
| |
| pi0 = to_next[0] = from[0]; |
| pi1 = to_next[1] = from[1]; |
| from += 2; |
| to_next += 2; |
| n_left_from -= 2; |
| n_left_to_next -= 2; |
| |
| p0 = vlib_get_buffer (vm, pi0); |
| p1 = vlib_get_buffer (vm, pi1); |
| |
| two_buffers (vm, opaque1, opaque2, p0, p1, &next0, &next1); |
| |
| vlib_validate_buffer_enqueue_x2 (vm, node, next_index, |
| to_next, n_left_to_next, |
| pi0, pi1, next0, next1); |
| } |
| |
| while (n_left_from > 0 && n_left_to_next > 0) |
| { |
| vlib_buffer_t *p0; |
| u32 pi0, next0; |
| |
| pi0 = from[0]; |
| to_next[0] = pi0; |
| from += 1; |
| to_next += 1; |
| n_left_from -= 1; |
| n_left_to_next -= 1; |
| |
| p0 = vlib_get_buffer (vm, pi0); |
| |
| one_buffer (vm, opaque1, opaque2, p0, &next0); |
| |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, |
| to_next, n_left_to_next, |
| pi0, next0); |
| } |
| |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| |
| return frame->n_vectors; |
| } |
| |
| /* Minimum size for the 'buffers' and 'nexts' arrays to be used when calling |
| * vlib_buffer_enqueue_to_next(). |
| * Because of optimizations, vlib_buffer_enqueue_to_next() will access |
| * past 'count' elements in the 'buffers' and 'nexts' arrays, IOW it |
| * will overflow. |
| * Those overflow elements are ignored in the final result so they do not |
| * need to be properly initialized, however if the array is allocated right |
| * before the end of a page and the next page is not mapped, accessing the |
| * overflow elements will trigger a segfault. */ |
| #define VLIB_BUFFER_ENQUEUE_MIN_SIZE(n) round_pow2 ((n), 64) |
| |
| static_always_inline void |
| vlib_buffer_enqueue_to_next (vlib_main_t * vm, vlib_node_runtime_t * node, |
| u32 * buffers, u16 * nexts, uword count) |
| { |
| vlib_buffer_enqueue_to_next_fn_t *fn; |
| fn = vlib_buffer_func_main.buffer_enqueue_to_next_fn; |
| (fn) (vm, node, buffers, nexts, count); |
| } |
| |
| static_always_inline void |
| vlib_buffer_enqueue_to_next_with_aux (vlib_main_t *vm, |
| vlib_node_runtime_t *node, u32 *buffers, |
| u32 *aux_data, u16 *nexts, uword count) |
| { |
| vlib_buffer_enqueue_to_next_with_aux_fn_t *fn; |
| fn = vlib_buffer_func_main.buffer_enqueue_to_next_with_aux_fn; |
| (fn) (vm, node, buffers, aux_data, nexts, count); |
| } |
| |
| static_always_inline void |
| vlib_buffer_enqueue_to_next_vec (vlib_main_t *vm, vlib_node_runtime_t *node, |
| u32 **buffers, u16 **nexts, uword count) |
| { |
| const u32 bl = vec_len (*buffers), nl = vec_len (*nexts); |
| const u32 c = VLIB_BUFFER_ENQUEUE_MIN_SIZE (count); |
| ASSERT (bl >= count && nl >= count); |
| vec_validate (*buffers, c); |
| vec_validate (*nexts, c); |
| vlib_buffer_enqueue_to_next (vm, node, *buffers, *nexts, count); |
| vec_set_len (*buffers, bl); |
| vec_set_len (*nexts, nl); |
| } |
| |
| static_always_inline void |
| vlib_buffer_enqueue_to_single_next (vlib_main_t * vm, |
| vlib_node_runtime_t * node, u32 * buffers, |
| u16 next_index, u32 count) |
| { |
| vlib_buffer_enqueue_to_single_next_fn_t *fn; |
| fn = vlib_buffer_func_main.buffer_enqueue_to_single_next_fn; |
| (fn) (vm, node, buffers, next_index, count); |
| } |
| |
| static_always_inline void |
| vlib_buffer_enqueue_to_single_next_with_aux (vlib_main_t *vm, |
| vlib_node_runtime_t *node, |
| u32 *buffers, u32 *aux_data, |
| u16 next_index, u32 count) |
| { |
| vlib_buffer_enqueue_to_single_next_with_aux_fn_t *fn; |
| fn = vlib_buffer_func_main.buffer_enqueue_to_single_next_with_aux_fn; |
| (fn) (vm, node, buffers, aux_data, next_index, count); |
| } |
| |
| static_always_inline u32 |
| vlib_buffer_enqueue_to_thread (vlib_main_t *vm, vlib_node_runtime_t *node, |
| u32 frame_queue_index, u32 *buffer_indices, |
| u16 *thread_indices, u32 n_packets, |
| int drop_on_congestion) |
| { |
| vlib_buffer_enqueue_to_thread_fn_t *fn; |
| fn = vlib_buffer_func_main.buffer_enqueue_to_thread_fn; |
| return (fn) (vm, node, frame_queue_index, buffer_indices, thread_indices, |
| n_packets, drop_on_congestion); |
| } |
| |
| static_always_inline u32 |
| vlib_buffer_enqueue_to_thread_with_aux (vlib_main_t *vm, |
| vlib_node_runtime_t *node, |
| u32 frame_queue_index, |
| u32 *buffer_indices, u32 *aux, |
| u16 *thread_indices, u32 n_packets, |
| int drop_on_congestion) |
| { |
| vlib_buffer_enqueue_to_thread_with_aux_fn_t *fn; |
| fn = vlib_buffer_func_main.buffer_enqueue_to_thread_with_aux_fn; |
| return (fn) (vm, node, frame_queue_index, buffer_indices, aux, |
| thread_indices, n_packets, drop_on_congestion); |
| } |
| |
| #endif /* included_vlib_buffer_node_h */ |
| |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |