| /* |
| * ethernet/arp.c: IP v4 ARP node |
| * |
| * Copyright (c) 2010 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <vnet/ip/ip.h> |
| #include <vnet/ip/ip6.h> |
| #include <vnet/ethernet/ethernet.h> |
| #include <vnet/ethernet/arp_packet.h> |
| #include <vnet/l2/l2_input.h> |
| #include <vppinfra/mhash.h> |
| #include <vnet/fib/ip4_fib.h> |
| #include <vnet/fib/fib_entry_src.h> |
| #include <vnet/adj/adj_nbr.h> |
| #include <vnet/adj/adj_mcast.h> |
| #include <vnet/mpls/mpls.h> |
| |
| /** |
| * @file |
| * @brief IPv4 ARP. |
| * |
| * This file contains code to manage the IPv4 ARP tables (IP Address |
| * to MAC Address lookup). |
| */ |
| |
| |
| void vl_api_rpc_call_main_thread (void *fp, u8 * data, u32 data_length); |
| |
| /** |
| * @brief Per-interface ARP configuration and state |
| */ |
| typedef struct ethernet_arp_interface_t_ |
| { |
| /** |
| * Hash table of ARP entries. |
| * Since this hash table is per-interface, the key is only the IPv4 address. |
| */ |
| uword *arp_entries; |
| } ethernet_arp_interface_t; |
| |
| typedef struct |
| { |
| u32 lo_addr; |
| u32 hi_addr; |
| u32 fib_index; |
| } ethernet_proxy_arp_t; |
| |
| typedef struct |
| { |
| u32 next_index; |
| uword node_index; |
| uword type_opaque; |
| uword data; |
| /* Used for arp event notification only */ |
| void *data_callback; |
| u32 pid; |
| } pending_resolution_t; |
| |
| typedef struct |
| { |
| /* Hash tables mapping name to opcode. */ |
| uword *opcode_by_name; |
| |
| /* lite beer "glean" adjacency handling */ |
| uword *pending_resolutions_by_address; |
| pending_resolution_t *pending_resolutions; |
| |
| /* Mac address change notification */ |
| uword *mac_changes_by_address; |
| pending_resolution_t *mac_changes; |
| |
| ethernet_arp_ip4_entry_t *ip4_entry_pool; |
| |
| /* ARP attack mitigation */ |
| u32 arp_delete_rotor; |
| u32 limit_arp_cache_size; |
| |
| /** Per interface state */ |
| ethernet_arp_interface_t *ethernet_arp_by_sw_if_index; |
| |
| /* Proxy arp vector */ |
| ethernet_proxy_arp_t *proxy_arps; |
| |
| uword wc_ip4_arp_publisher_node; |
| uword wc_ip4_arp_publisher_et; |
| } ethernet_arp_main_t; |
| |
| static ethernet_arp_main_t ethernet_arp_main; |
| |
| typedef struct |
| { |
| u32 sw_if_index; |
| ethernet_arp_ip4_over_ethernet_address_t a; |
| int is_static; |
| int is_no_fib_entry; |
| int flags; |
| #define ETHERNET_ARP_ARGS_REMOVE (1<<0) |
| #define ETHERNET_ARP_ARGS_FLUSH (1<<1) |
| #define ETHERNET_ARP_ARGS_POPULATE (1<<2) |
| #define ETHERNET_ARP_ARGS_WC_PUB (1<<3) |
| } vnet_arp_set_ip4_over_ethernet_rpc_args_t; |
| |
| static const u8 vrrp_prefix[] = { 0x00, 0x00, 0x5E, 0x00, 0x01 }; |
| |
| /* Node index for send_garp_na_process */ |
| u32 send_garp_na_process_node_index; |
| |
| static void |
| set_ip4_over_ethernet_rpc_callback (vnet_arp_set_ip4_over_ethernet_rpc_args_t |
| * a); |
| |
| static u8 * |
| format_ethernet_arp_hardware_type (u8 * s, va_list * va) |
| { |
| ethernet_arp_hardware_type_t h = va_arg (*va, ethernet_arp_hardware_type_t); |
| char *t = 0; |
| switch (h) |
| { |
| #define _(n,f) case n: t = #f; break; |
| foreach_ethernet_arp_hardware_type; |
| #undef _ |
| |
| default: |
| return format (s, "unknown 0x%x", h); |
| } |
| |
| return format (s, "%s", t); |
| } |
| |
| static u8 * |
| format_ethernet_arp_opcode (u8 * s, va_list * va) |
| { |
| ethernet_arp_opcode_t o = va_arg (*va, ethernet_arp_opcode_t); |
| char *t = 0; |
| switch (o) |
| { |
| #define _(f) case ETHERNET_ARP_OPCODE_##f: t = #f; break; |
| foreach_ethernet_arp_opcode; |
| #undef _ |
| |
| default: |
| return format (s, "unknown 0x%x", o); |
| } |
| |
| return format (s, "%s", t); |
| } |
| |
| static uword |
| unformat_ethernet_arp_opcode_host_byte_order (unformat_input_t * input, |
| va_list * args) |
| { |
| int *result = va_arg (*args, int *); |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| int x, i; |
| |
| /* Numeric opcode. */ |
| if (unformat (input, "0x%x", &x) || unformat (input, "%d", &x)) |
| { |
| if (x >= (1 << 16)) |
| return 0; |
| *result = x; |
| return 1; |
| } |
| |
| /* Named type. */ |
| if (unformat_user (input, unformat_vlib_number_by_name, |
| am->opcode_by_name, &i)) |
| { |
| *result = i; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static uword |
| unformat_ethernet_arp_opcode_net_byte_order (unformat_input_t * input, |
| va_list * args) |
| { |
| int *result = va_arg (*args, int *); |
| if (!unformat_user |
| (input, unformat_ethernet_arp_opcode_host_byte_order, result)) |
| return 0; |
| |
| *result = clib_host_to_net_u16 ((u16) * result); |
| return 1; |
| } |
| |
| static u8 * |
| format_ethernet_arp_header (u8 * s, va_list * va) |
| { |
| ethernet_arp_header_t *a = va_arg (*va, ethernet_arp_header_t *); |
| u32 max_header_bytes = va_arg (*va, u32); |
| u32 indent; |
| u16 l2_type, l3_type; |
| |
| if (max_header_bytes != 0 && sizeof (a[0]) > max_header_bytes) |
| return format (s, "ARP header truncated"); |
| |
| l2_type = clib_net_to_host_u16 (a->l2_type); |
| l3_type = clib_net_to_host_u16 (a->l3_type); |
| |
| indent = format_get_indent (s); |
| |
| s = format (s, "%U, type %U/%U, address size %d/%d", |
| format_ethernet_arp_opcode, clib_net_to_host_u16 (a->opcode), |
| format_ethernet_arp_hardware_type, l2_type, |
| format_ethernet_type, l3_type, |
| a->n_l2_address_bytes, a->n_l3_address_bytes); |
| |
| if (l2_type == ETHERNET_ARP_HARDWARE_TYPE_ethernet |
| && l3_type == ETHERNET_TYPE_IP4) |
| { |
| s = format (s, "\n%U%U/%U -> %U/%U", |
| format_white_space, indent, |
| format_ethernet_address, a->ip4_over_ethernet[0].ethernet, |
| format_ip4_address, &a->ip4_over_ethernet[0].ip4, |
| format_ethernet_address, a->ip4_over_ethernet[1].ethernet, |
| format_ip4_address, &a->ip4_over_ethernet[1].ip4); |
| } |
| else |
| { |
| uword n2 = a->n_l2_address_bytes; |
| uword n3 = a->n_l3_address_bytes; |
| s = format (s, "\n%U%U/%U -> %U/%U", |
| format_white_space, indent, |
| format_hex_bytes, a->data + 0 * n2 + 0 * n3, n2, |
| format_hex_bytes, a->data + 1 * n2 + 0 * n3, n3, |
| format_hex_bytes, a->data + 1 * n2 + 1 * n3, n2, |
| format_hex_bytes, a->data + 2 * n2 + 1 * n3, n3); |
| } |
| |
| return s; |
| } |
| |
| u8 * |
| format_ethernet_arp_ip4_entry (u8 * s, va_list * va) |
| { |
| vnet_main_t *vnm = va_arg (*va, vnet_main_t *); |
| ethernet_arp_ip4_entry_t *e = va_arg (*va, ethernet_arp_ip4_entry_t *); |
| vnet_sw_interface_t *si; |
| u8 *flags = 0; |
| |
| if (!e) |
| return format (s, "%=12s%=16s%=6s%=20s%=24s", "Time", "IP4", |
| "Flags", "Ethernet", "Interface"); |
| |
| si = vnet_get_sw_interface (vnm, e->sw_if_index); |
| |
| if (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_STATIC) |
| flags = format (flags, "S"); |
| |
| if (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_DYNAMIC) |
| flags = format (flags, "D"); |
| |
| if (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_NO_FIB_ENTRY) |
| flags = format (flags, "N"); |
| |
| s = format (s, "%=12U%=16U%=6s%=20U%U", |
| format_vlib_cpu_time, vnm->vlib_main, e->cpu_time_last_updated, |
| format_ip4_address, &e->ip4_address, |
| flags ? (char *) flags : "", |
| format_ethernet_address, e->ethernet_address, |
| format_vnet_sw_interface_name, vnm, si); |
| |
| vec_free (flags); |
| return s; |
| } |
| |
| typedef struct |
| { |
| u8 packet_data[64]; |
| } ethernet_arp_input_trace_t; |
| |
| static u8 * |
| format_ethernet_arp_input_trace (u8 * s, va_list * va) |
| { |
| CLIB_UNUSED (vlib_main_t * vm) = va_arg (*va, vlib_main_t *); |
| CLIB_UNUSED (vlib_node_t * node) = va_arg (*va, vlib_node_t *); |
| ethernet_arp_input_trace_t *t = va_arg (*va, ethernet_arp_input_trace_t *); |
| |
| s = format (s, "%U", |
| format_ethernet_arp_header, |
| t->packet_data, sizeof (t->packet_data)); |
| |
| return s; |
| } |
| |
| static u8 * |
| format_arp_term_input_trace (u8 * s, va_list * va) |
| { |
| CLIB_UNUSED (vlib_main_t * vm) = va_arg (*va, vlib_main_t *); |
| CLIB_UNUSED (vlib_node_t * node) = va_arg (*va, vlib_node_t *); |
| ethernet_arp_input_trace_t *t = va_arg (*va, ethernet_arp_input_trace_t *); |
| |
| /* arp-term trace data saved is either arp or ip6/icmp6 packet: |
| - for arp, the 1st 16-bit field is hw type of value of 0x0001. |
| - for ip6, the first nibble has value of 6. */ |
| s = format (s, "%U", t->packet_data[0] == 0 ? |
| format_ethernet_arp_header : format_ip6_header, |
| t->packet_data, sizeof (t->packet_data)); |
| |
| return s; |
| } |
| |
| static void |
| arp_nbr_probe (ip_adjacency_t * adj) |
| { |
| vnet_main_t *vnm = vnet_get_main (); |
| ip4_main_t *im = &ip4_main; |
| ip_interface_address_t *ia; |
| ethernet_arp_header_t *h; |
| vnet_hw_interface_t *hi; |
| vnet_sw_interface_t *si; |
| ip4_address_t *src; |
| vlib_buffer_t *b; |
| vlib_main_t *vm; |
| u32 bi = 0; |
| |
| vm = vlib_get_main (); |
| |
| si = vnet_get_sw_interface (vnm, adj->rewrite_header.sw_if_index); |
| |
| if (!(si->flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP)) |
| { |
| return; |
| } |
| |
| src = |
| ip4_interface_address_matching_destination (im, |
| &adj->sub_type.nbr.next_hop. |
| ip4, |
| adj->rewrite_header. |
| sw_if_index, &ia); |
| if (!src) |
| { |
| return; |
| } |
| |
| h = |
| vlib_packet_template_get_packet (vm, &im->ip4_arp_request_packet_template, |
| &bi); |
| |
| hi = vnet_get_sup_hw_interface (vnm, adj->rewrite_header.sw_if_index); |
| |
| clib_memcpy (h->ip4_over_ethernet[0].ethernet, |
| hi->hw_address, sizeof (h->ip4_over_ethernet[0].ethernet)); |
| |
| h->ip4_over_ethernet[0].ip4 = src[0]; |
| h->ip4_over_ethernet[1].ip4 = adj->sub_type.nbr.next_hop.ip4; |
| |
| b = vlib_get_buffer (vm, bi); |
| vnet_buffer (b)->sw_if_index[VLIB_RX] = |
| vnet_buffer (b)->sw_if_index[VLIB_TX] = adj->rewrite_header.sw_if_index; |
| |
| /* Add encapsulation string for software interface (e.g. ethernet header). */ |
| vnet_rewrite_one_header (adj[0], h, sizeof (ethernet_header_t)); |
| vlib_buffer_advance (b, -adj->rewrite_header.data_bytes); |
| |
| { |
| vlib_frame_t *f = vlib_get_frame_to_node (vm, hi->output_node_index); |
| u32 *to_next = vlib_frame_vector_args (f); |
| to_next[0] = bi; |
| f->n_vectors = 1; |
| vlib_put_frame_to_node (vm, hi->output_node_index, f); |
| } |
| } |
| |
| static void |
| arp_mk_complete (adj_index_t ai, ethernet_arp_ip4_entry_t * e) |
| { |
| adj_nbr_update_rewrite |
| (ai, ADJ_NBR_REWRITE_FLAG_COMPLETE, |
| ethernet_build_rewrite (vnet_get_main (), |
| e->sw_if_index, |
| adj_get_link_type (ai), e->ethernet_address)); |
| } |
| |
| static void |
| arp_mk_incomplete (adj_index_t ai) |
| { |
| ip_adjacency_t *adj = adj_get (ai); |
| |
| adj_nbr_update_rewrite |
| (ai, |
| ADJ_NBR_REWRITE_FLAG_INCOMPLETE, |
| ethernet_build_rewrite (vnet_get_main (), |
| adj->rewrite_header.sw_if_index, |
| VNET_LINK_ARP, |
| VNET_REWRITE_FOR_SW_INTERFACE_ADDRESS_BROADCAST)); |
| } |
| |
| static ethernet_arp_ip4_entry_t * |
| arp_entry_find (ethernet_arp_interface_t * eai, const ip4_address_t * addr) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_ip4_entry_t *e = NULL; |
| uword *p; |
| |
| if (NULL != eai->arp_entries) |
| { |
| p = hash_get (eai->arp_entries, addr->as_u32); |
| if (!p) |
| return (NULL); |
| |
| e = pool_elt_at_index (am->ip4_entry_pool, p[0]); |
| } |
| |
| return (e); |
| } |
| |
| static adj_walk_rc_t |
| arp_mk_complete_walk (adj_index_t ai, void *ctx) |
| { |
| ethernet_arp_ip4_entry_t *e = ctx; |
| |
| arp_mk_complete (ai, e); |
| |
| return (ADJ_WALK_RC_CONTINUE); |
| } |
| |
| static adj_walk_rc_t |
| arp_mk_incomplete_walk (adj_index_t ai, void *ctx) |
| { |
| arp_mk_incomplete (ai); |
| |
| return (ADJ_WALK_RC_CONTINUE); |
| } |
| |
| void |
| arp_update_adjacency (vnet_main_t * vnm, u32 sw_if_index, u32 ai) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_interface_t *arp_int; |
| ethernet_arp_ip4_entry_t *e; |
| ip_adjacency_t *adj; |
| |
| adj = adj_get (ai); |
| |
| vec_validate (am->ethernet_arp_by_sw_if_index, sw_if_index); |
| arp_int = &am->ethernet_arp_by_sw_if_index[sw_if_index]; |
| e = arp_entry_find (arp_int, &adj->sub_type.nbr.next_hop.ip4); |
| |
| switch (adj->lookup_next_index) |
| { |
| case IP_LOOKUP_NEXT_ARP: |
| case IP_LOOKUP_NEXT_GLEAN: |
| if (NULL != e) |
| { |
| adj_nbr_walk_nh4 (sw_if_index, |
| &e->ip4_address, arp_mk_complete_walk, e); |
| } |
| else |
| { |
| /* |
| * no matching ARP entry. |
| * construct the rewrite required to for an ARP packet, and stick |
| * that in the adj's pipe to smoke. |
| */ |
| adj_nbr_update_rewrite |
| (ai, |
| ADJ_NBR_REWRITE_FLAG_INCOMPLETE, |
| ethernet_build_rewrite |
| (vnm, |
| sw_if_index, |
| VNET_LINK_ARP, |
| VNET_REWRITE_FOR_SW_INTERFACE_ADDRESS_BROADCAST)); |
| |
| /* |
| * since the FIB has added this adj for a route, it makes sense it |
| * may want to forward traffic sometime soon. Let's send a |
| * speculative ARP. just one. If we were to do periodically that |
| * wouldn't be bad either, but that's more code than i'm prepared to |
| * write at this time for relatively little reward. |
| */ |
| arp_nbr_probe (adj); |
| } |
| break; |
| case IP_LOOKUP_NEXT_MCAST: |
| { |
| /* |
| * Construct a partial rewrite from the known ethernet mcast dest MAC |
| */ |
| u8 *rewrite; |
| u8 offset; |
| |
| rewrite = ethernet_build_rewrite (vnm, |
| sw_if_index, |
| adj->ia_link, |
| ethernet_ip4_mcast_dst_addr ()); |
| offset = vec_len (rewrite) - 2; |
| |
| /* |
| * Complete the remaining fields of the adj's rewrite to direct the |
| * complete of the rewrite at switch time by copying in the IP |
| * dst address's bytes. |
| * Ofset is 2 bytes into the MAC desintation address. And we copy 23 bits |
| * from the address. |
| */ |
| adj_mcast_update_rewrite (ai, rewrite, offset, 0x007fffff); |
| |
| break; |
| } |
| case IP_LOOKUP_NEXT_DROP: |
| case IP_LOOKUP_NEXT_PUNT: |
| case IP_LOOKUP_NEXT_LOCAL: |
| case IP_LOOKUP_NEXT_REWRITE: |
| case IP_LOOKUP_NEXT_MCAST_MIDCHAIN: |
| case IP_LOOKUP_NEXT_MIDCHAIN: |
| case IP_LOOKUP_NEXT_ICMP_ERROR: |
| case IP_LOOKUP_N_NEXT: |
| ASSERT (0); |
| break; |
| } |
| } |
| |
| static void |
| arp_adj_fib_add (ethernet_arp_ip4_entry_t * e, u32 fib_index) |
| { |
| fib_prefix_t pfx = { |
| .fp_len = 32, |
| .fp_proto = FIB_PROTOCOL_IP4, |
| .fp_addr.ip4 = e->ip4_address, |
| }; |
| |
| e->fib_entry_index = |
| fib_table_entry_path_add (fib_index, &pfx, FIB_SOURCE_ADJ, |
| FIB_ENTRY_FLAG_ATTACHED, |
| DPO_PROTO_IP4, &pfx.fp_addr, |
| e->sw_if_index, ~0, 1, NULL, |
| FIB_ROUTE_PATH_FLAG_NONE); |
| fib_table_lock (fib_index, FIB_PROTOCOL_IP4, FIB_SOURCE_ADJ); |
| } |
| |
| static int |
| vnet_arp_set_ip4_over_ethernet_internal (vnet_main_t * vnm, |
| vnet_arp_set_ip4_over_ethernet_rpc_args_t |
| * args) |
| { |
| ethernet_arp_ip4_entry_t *e = 0; |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_ip4_over_ethernet_address_t *a = &args->a; |
| vlib_main_t *vm = vlib_get_main (); |
| int make_new_arp_cache_entry = 1; |
| uword *p; |
| pending_resolution_t *pr, *mc; |
| ethernet_arp_interface_t *arp_int; |
| int is_static = args->is_static; |
| u32 sw_if_index = args->sw_if_index; |
| int is_no_fib_entry = args->is_no_fib_entry; |
| |
| vec_validate (am->ethernet_arp_by_sw_if_index, sw_if_index); |
| |
| arp_int = &am->ethernet_arp_by_sw_if_index[sw_if_index]; |
| |
| if (NULL != arp_int->arp_entries) |
| { |
| p = hash_get (arp_int->arp_entries, a->ip4.as_u32); |
| if (p) |
| { |
| e = pool_elt_at_index (am->ip4_entry_pool, p[0]); |
| |
| /* Refuse to over-write static arp. */ |
| if (!is_static && (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_STATIC)) |
| return -2; |
| make_new_arp_cache_entry = 0; |
| } |
| } |
| |
| if (make_new_arp_cache_entry) |
| { |
| pool_get (am->ip4_entry_pool, e); |
| |
| if (NULL == arp_int->arp_entries) |
| { |
| arp_int->arp_entries = hash_create (0, sizeof (u32)); |
| } |
| |
| hash_set (arp_int->arp_entries, a->ip4.as_u32, e - am->ip4_entry_pool); |
| |
| e->sw_if_index = sw_if_index; |
| e->ip4_address = a->ip4; |
| e->fib_entry_index = FIB_NODE_INDEX_INVALID; |
| clib_memcpy (e->ethernet_address, |
| a->ethernet, sizeof (e->ethernet_address)); |
| |
| if (!is_no_fib_entry) |
| { |
| arp_adj_fib_add (e, |
| ip4_fib_table_get_index_for_sw_if_index |
| (e->sw_if_index)); |
| } |
| else |
| { |
| e->flags |= ETHERNET_ARP_IP4_ENTRY_FLAG_NO_FIB_ENTRY; |
| } |
| } |
| else |
| { |
| /* |
| * prevent a DoS attack from the data-plane that |
| * spams us with no-op updates to the MAC address |
| */ |
| if (0 == memcmp (e->ethernet_address, |
| a->ethernet, sizeof (e->ethernet_address))) |
| goto check_customers; |
| |
| /* Update time stamp and ethernet address. */ |
| clib_memcpy (e->ethernet_address, a->ethernet, |
| sizeof (e->ethernet_address)); |
| } |
| |
| e->cpu_time_last_updated = clib_cpu_time_now (); |
| if (is_static) |
| e->flags |= ETHERNET_ARP_IP4_ENTRY_FLAG_STATIC; |
| else |
| e->flags |= ETHERNET_ARP_IP4_ENTRY_FLAG_DYNAMIC; |
| |
| adj_nbr_walk_nh4 (sw_if_index, &e->ip4_address, arp_mk_complete_walk, e); |
| |
| check_customers: |
| /* Customer(s) waiting for this address to be resolved? */ |
| p = hash_get (am->pending_resolutions_by_address, a->ip4.as_u32); |
| if (p) |
| { |
| u32 next_index; |
| next_index = p[0]; |
| |
| while (next_index != (u32) ~ 0) |
| { |
| pr = pool_elt_at_index (am->pending_resolutions, next_index); |
| vlib_process_signal_event (vm, pr->node_index, |
| pr->type_opaque, pr->data); |
| next_index = pr->next_index; |
| pool_put (am->pending_resolutions, pr); |
| } |
| |
| hash_unset (am->pending_resolutions_by_address, a->ip4.as_u32); |
| } |
| |
| /* Customer(s) requesting ARP event for this address? */ |
| p = hash_get (am->mac_changes_by_address, a->ip4.as_u32); |
| if (p) |
| { |
| u32 next_index; |
| next_index = p[0]; |
| |
| while (next_index != (u32) ~ 0) |
| { |
| int (*fp) (u32, u8 *, u32, u32); |
| int rv = 1; |
| mc = pool_elt_at_index (am->mac_changes, next_index); |
| fp = mc->data_callback; |
| |
| /* Call the user's data callback, return 1 to suppress dup events */ |
| if (fp) |
| rv = (*fp) (mc->data, a->ethernet, sw_if_index, 0); |
| |
| /* |
| * Signal the resolver process, as long as the user |
| * says they want to be notified |
| */ |
| if (rv == 0) |
| vlib_process_signal_event (vm, mc->node_index, |
| mc->type_opaque, mc->data); |
| next_index = mc->next_index; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void |
| vnet_register_ip4_arp_resolution_event (vnet_main_t * vnm, |
| void *address_arg, |
| uword node_index, |
| uword type_opaque, uword data) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ip4_address_t *address = address_arg; |
| uword *p; |
| pending_resolution_t *pr; |
| |
| pool_get (am->pending_resolutions, pr); |
| |
| pr->next_index = ~0; |
| pr->node_index = node_index; |
| pr->type_opaque = type_opaque; |
| pr->data = data; |
| pr->data_callback = 0; |
| |
| p = hash_get (am->pending_resolutions_by_address, address->as_u32); |
| if (p) |
| { |
| /* Insert new resolution at the head of the list */ |
| pr->next_index = p[0]; |
| hash_unset (am->pending_resolutions_by_address, address->as_u32); |
| } |
| |
| hash_set (am->pending_resolutions_by_address, address->as_u32, |
| pr - am->pending_resolutions); |
| } |
| |
| int |
| vnet_add_del_ip4_arp_change_event (vnet_main_t * vnm, |
| void *data_callback, |
| u32 pid, |
| void *address_arg, |
| uword node_index, |
| uword type_opaque, uword data, int is_add) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ip4_address_t *address = address_arg; |
| |
| /* Try to find an existing entry */ |
| u32 *first = (u32 *) hash_get (am->mac_changes_by_address, address->as_u32); |
| u32 *p = first; |
| pending_resolution_t *mc; |
| while (p && *p != ~0) |
| { |
| mc = pool_elt_at_index (am->mac_changes, *p); |
| if (mc->node_index == node_index && mc->type_opaque == type_opaque |
| && mc->pid == pid) |
| break; |
| p = &mc->next_index; |
| } |
| |
| int found = p && *p != ~0; |
| if (is_add) |
| { |
| if (found) |
| return VNET_API_ERROR_ENTRY_ALREADY_EXISTS; |
| |
| pool_get (am->mac_changes, mc); |
| *mc = (pending_resolution_t) |
| { |
| .next_index = ~0,.node_index = node_index,.type_opaque = |
| type_opaque,.data = data,.data_callback = data_callback,.pid = |
| pid,}; |
| |
| /* Insert new resolution at the end of the list */ |
| u32 new_idx = mc - am->mac_changes; |
| if (p) |
| p[0] = new_idx; |
| else |
| hash_set (am->mac_changes_by_address, address->as_u32, new_idx); |
| } |
| else |
| { |
| if (!found) |
| return VNET_API_ERROR_NO_SUCH_ENTRY; |
| |
| /* Clients may need to clean up pool entries, too */ |
| void (*fp) (u32, u8 *) = data_callback; |
| if (fp) |
| (*fp) (mc->data, 0 /* no new mac addrs */ ); |
| |
| /* Remove the entry from the list and delete the entry */ |
| *p = mc->next_index; |
| pool_put (am->mac_changes, mc); |
| |
| /* Remove from hash if we deleted the last entry */ |
| if (*p == ~0 && p == first) |
| hash_unset (am->mac_changes_by_address, address->as_u32); |
| } |
| return 0; |
| } |
| |
| /* Either we drop the packet or we send a reply to the sender. */ |
| typedef enum |
| { |
| ARP_INPUT_NEXT_DROP, |
| ARP_INPUT_NEXT_REPLY_TX, |
| ARP_INPUT_N_NEXT, |
| } arp_input_next_t; |
| |
| #define foreach_ethernet_arp_error \ |
| _ (replies_sent, "ARP replies sent") \ |
| _ (l2_type_not_ethernet, "L2 type not ethernet") \ |
| _ (l3_type_not_ip4, "L3 type not IP4") \ |
| _ (l3_src_address_not_local, "IP4 source address not local to subnet") \ |
| _ (l3_dst_address_not_local, "IP4 destination address not local to subnet") \ |
| _ (l3_src_address_is_local, "IP4 source address matches local interface") \ |
| _ (l3_src_address_learned, "ARP request IP4 source address learned") \ |
| _ (replies_received, "ARP replies received") \ |
| _ (opcode_not_request, "ARP opcode not request") \ |
| _ (proxy_arp_replies_sent, "Proxy ARP replies sent") \ |
| _ (l2_address_mismatch, "ARP hw addr does not match L2 frame src addr") \ |
| _ (gratuitous_arp, "ARP probe or announcement dropped") \ |
| _ (interface_no_table, "Interface is not mapped to an IP table") \ |
| _ (interface_not_ip_enabled, "Interface is not IP enabled") \ |
| |
| typedef enum |
| { |
| #define _(sym,string) ETHERNET_ARP_ERROR_##sym, |
| foreach_ethernet_arp_error |
| #undef _ |
| ETHERNET_ARP_N_ERROR, |
| } ethernet_arp_input_error_t; |
| |
| |
| static void |
| unset_random_arp_entry (void) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_ip4_entry_t *e; |
| vnet_main_t *vnm = vnet_get_main (); |
| ethernet_arp_ip4_over_ethernet_address_t delme; |
| u32 index; |
| |
| index = pool_next_index (am->ip4_entry_pool, am->arp_delete_rotor); |
| am->arp_delete_rotor = index; |
| |
| /* Try again from elt 0, could happen if an intfc goes down */ |
| if (index == ~0) |
| { |
| index = pool_next_index (am->ip4_entry_pool, am->arp_delete_rotor); |
| am->arp_delete_rotor = index; |
| } |
| |
| /* Nothing left in the pool */ |
| if (index == ~0) |
| return; |
| |
| e = pool_elt_at_index (am->ip4_entry_pool, index); |
| |
| clib_memcpy (&delme.ethernet, e->ethernet_address, 6); |
| delme.ip4.as_u32 = e->ip4_address.as_u32; |
| |
| vnet_arp_unset_ip4_over_ethernet (vnm, e->sw_if_index, &delme); |
| } |
| |
| static int |
| arp_unnumbered (vlib_buffer_t * p0, |
| u32 input_sw_if_index, u32 conn_sw_if_index) |
| { |
| vnet_main_t *vnm = vnet_get_main (); |
| vnet_interface_main_t *vim = &vnm->interface_main; |
| vnet_sw_interface_t *si; |
| |
| /* verify that the input interface is unnumbered to the connected. |
| * the connected interface is the interface on which the subnet is |
| * configured */ |
| si = &vim->sw_interfaces[input_sw_if_index]; |
| |
| if (!(si->flags & VNET_SW_INTERFACE_FLAG_UNNUMBERED && |
| (si->unnumbered_sw_if_index == conn_sw_if_index))) |
| { |
| /* the input interface is not unnumbered to the interface on which |
| * the sub-net is configured that covers the ARP request. |
| * So this is not the case for unnumbered.. */ |
| return 0; |
| } |
| |
| return !0; |
| } |
| |
| static u32 |
| arp_learn (vnet_main_t * vnm, |
| ethernet_arp_main_t * am, u32 sw_if_index, void *addr) |
| { |
| if (am->limit_arp_cache_size && |
| pool_elts (am->ip4_entry_pool) >= am->limit_arp_cache_size) |
| unset_random_arp_entry (); |
| |
| vnet_arp_set_ip4_over_ethernet (vnm, sw_if_index, addr, 0, 0); |
| return (ETHERNET_ARP_ERROR_l3_src_address_learned); |
| } |
| |
| static uword |
| arp_input (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| vnet_main_t *vnm = vnet_get_main (); |
| ip4_main_t *im4 = &ip4_main; |
| u32 n_left_from, next_index, *from, *to_next; |
| u32 n_replies_sent = 0, n_proxy_arp_replies_sent = 0; |
| |
| from = vlib_frame_vector_args (frame); |
| n_left_from = frame->n_vectors; |
| next_index = node->cached_next_index; |
| |
| if (node->flags & VLIB_NODE_FLAG_TRACE) |
| vlib_trace_frame_buffers_only (vm, node, from, frame->n_vectors, |
| /* stride */ 1, |
| sizeof (ethernet_arp_input_trace_t)); |
| |
| while (n_left_from > 0) |
| { |
| u32 n_left_to_next; |
| |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| |
| while (n_left_from > 0 && n_left_to_next > 0) |
| { |
| vlib_buffer_t *p0; |
| vnet_hw_interface_t *hw_if0; |
| ethernet_arp_header_t *arp0; |
| ethernet_header_t *eth_rx, *eth_tx; |
| ip4_address_t *if_addr0, proxy_src; |
| u32 pi0, error0, next0, sw_if_index0, conn_sw_if_index0, fib_index0; |
| u8 is_request0, dst_is_local0, is_unnum0, is_vrrp_reply0; |
| ethernet_proxy_arp_t *pa; |
| fib_node_index_t dst_fei, src_fei; |
| fib_prefix_t pfx0; |
| fib_entry_flag_t src_flags, dst_flags; |
| u8 *rewrite0, rewrite0_len; |
| |
| pi0 = from[0]; |
| to_next[0] = pi0; |
| from += 1; |
| to_next += 1; |
| n_left_from -= 1; |
| n_left_to_next -= 1; |
| pa = 0; |
| |
| p0 = vlib_get_buffer (vm, pi0); |
| arp0 = vlib_buffer_get_current (p0); |
| /* Fill in ethernet header. */ |
| eth_rx = ethernet_buffer_get_header (p0); |
| |
| is_request0 = arp0->opcode |
| == clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_request); |
| |
| error0 = ETHERNET_ARP_ERROR_replies_sent; |
| |
| error0 = |
| (arp0->l2_type != |
| clib_net_to_host_u16 (ETHERNET_ARP_HARDWARE_TYPE_ethernet) ? |
| ETHERNET_ARP_ERROR_l2_type_not_ethernet : error0); |
| error0 = |
| (arp0->l3_type != |
| clib_net_to_host_u16 (ETHERNET_TYPE_IP4) ? |
| ETHERNET_ARP_ERROR_l3_type_not_ip4 : error0); |
| |
| sw_if_index0 = vnet_buffer (p0)->sw_if_index[VLIB_RX]; |
| |
| /* not playing the ARP game if the interface is not IPv4 enabled */ |
| error0 = |
| (im4->ip_enabled_by_sw_if_index[sw_if_index0] == 0 ? |
| ETHERNET_ARP_ERROR_interface_not_ip_enabled : error0); |
| |
| if (error0) |
| goto drop2; |
| |
| /* Check that IP address is local and matches incoming interface. */ |
| fib_index0 = ip4_fib_table_get_index_for_sw_if_index (sw_if_index0); |
| if (~0 == fib_index0) |
| { |
| error0 = ETHERNET_ARP_ERROR_interface_no_table; |
| goto drop2; |
| |
| } |
| dst_fei = ip4_fib_table_lookup (ip4_fib_get (fib_index0), |
| &arp0->ip4_over_ethernet[1].ip4, |
| 32); |
| dst_flags = fib_entry_get_flags (dst_fei); |
| |
| conn_sw_if_index0 = fib_entry_get_resolving_interface (dst_fei); |
| |
| /* Honor unnumbered interface, if any */ |
| is_unnum0 = sw_if_index0 != conn_sw_if_index0; |
| |
| { |
| /* |
| * we're looking for FIB entries that indicate the source |
| * is attached. There may be more specific non-attached |
| * routes tht match the source, but these do not influence |
| * whether we respond to an ARP request, i.e. they do not |
| * influence whether we are the correct way for the sender |
| * to reach us, they only affect how we reach the sender. |
| */ |
| fib_entry_t *src_fib_entry; |
| fib_entry_src_t *src; |
| fib_source_t source; |
| fib_prefix_t pfx; |
| int attached; |
| int mask; |
| |
| mask = 32; |
| attached = 0; |
| |
| do |
| { |
| src_fei = ip4_fib_table_lookup (ip4_fib_get (fib_index0), |
| &arp0-> |
| ip4_over_ethernet[0].ip4, |
| mask); |
| src_fib_entry = fib_entry_get (src_fei); |
| |
| /* |
| * It's possible that the source that provides the |
| * flags we need, or the flags we must not have, |
| * is not the best source, so check then all. |
| */ |
| /* *INDENT-OFF* */ |
| FOR_EACH_SRC_ADDED(src_fib_entry, src, source, |
| ({ |
| src_flags = fib_entry_get_flags_for_source (src_fei, source); |
| |
| /* Reject requests/replies with our local interface |
| address. */ |
| if (FIB_ENTRY_FLAG_LOCAL & src_flags) |
| { |
| error0 = ETHERNET_ARP_ERROR_l3_src_address_is_local; |
| /* |
| * When VPP has an interface whose address is also |
| * applied to a TAP interface on the host, then VPP's |
| * TAP interface will be unnumbered to the 'real' |
| * interface and do proxy ARP from the host. |
| * The curious aspect of this setup is that ARP requests |
| * from the host will come from the VPP's own address. |
| * So don't drop immediately here, instead go see if this |
| * is a proxy ARP case. |
| */ |
| goto drop1; |
| } |
| /* A Source must also be local to subnet of matching |
| * interface address. */ |
| if ((FIB_ENTRY_FLAG_ATTACHED & src_flags) || |
| (FIB_ENTRY_FLAG_CONNECTED & src_flags)) |
| { |
| attached = 1; |
| break; |
| } |
| /* |
| * else |
| * The packet was sent from an address that is not |
| * connected nor attached i.e. it is not from an |
| * address that is covered by a link's sub-net, |
| * nor is it a already learned host resp. |
| */ |
| })); |
| /* *INDENT-ON* */ |
| |
| /* |
| * shorter mask lookup for the next iteration. |
| */ |
| fib_entry_get_prefix (src_fei, &pfx); |
| mask = pfx.fp_len - 1; |
| |
| /* |
| * continue until we hit the default route or we find |
| * the attached we are looking for. The most likely |
| * outcome is we find the attached with the first source |
| * on the first lookup. |
| */ |
| } |
| while (!attached && |
| !fib_entry_is_sourced (src_fei, FIB_SOURCE_DEFAULT_ROUTE)); |
| |
| if (!attached) |
| { |
| /* |
| * the matching route is a not attached, i.e. it was |
| * added as a result of routing, rather than interface/ARP |
| * configuration. If the matching route is not a host route |
| * (i.e. a /32) |
| */ |
| error0 = ETHERNET_ARP_ERROR_l3_src_address_not_local; |
| goto drop2; |
| } |
| } |
| |
| if (!(FIB_ENTRY_FLAG_CONNECTED & dst_flags)) |
| { |
| error0 = ETHERNET_ARP_ERROR_l3_dst_address_not_local; |
| goto drop1; |
| } |
| |
| if (sw_if_index0 != fib_entry_get_resolving_interface (src_fei)) |
| { |
| /* |
| * The interface the ARP was received on is not the interface |
| * on which the covering prefix is configured. Maybe this is a |
| * case for unnumbered. |
| */ |
| is_unnum0 = 1; |
| } |
| |
| dst_is_local0 = (FIB_ENTRY_FLAG_LOCAL & dst_flags); |
| fib_entry_get_prefix (dst_fei, &pfx0); |
| if_addr0 = &pfx0.fp_addr.ip4; |
| |
| is_vrrp_reply0 = |
| ((arp0->opcode == |
| clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply)) |
| && |
| (!memcmp |
| (arp0->ip4_over_ethernet[0].ethernet, vrrp_prefix, |
| sizeof (vrrp_prefix)))); |
| |
| /* Trash ARP packets whose ARP-level source addresses do not |
| match their L2-frame-level source addresses, unless it's |
| a reply from a VRRP virtual router */ |
| if (memcmp |
| (eth_rx->src_address, arp0->ip4_over_ethernet[0].ethernet, |
| sizeof (eth_rx->src_address)) && !is_vrrp_reply0) |
| { |
| error0 = ETHERNET_ARP_ERROR_l2_address_mismatch; |
| goto drop2; |
| } |
| |
| /* Learn or update sender's mapping only for replies to addresses |
| * that are local to the subnet */ |
| if (arp0->opcode == |
| clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply) && |
| dst_is_local0) |
| { |
| error0 = arp_learn (vnm, am, sw_if_index0, |
| &arp0->ip4_over_ethernet[0]); |
| goto drop1; |
| } |
| else if (arp0->opcode == |
| clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_request) && |
| (dst_is_local0 == 0)) |
| { |
| goto drop1; |
| } |
| |
| send_reply: |
| /* Send a reply. |
| An adjacency to the sender is not always present, |
| so we use the interface to build us a rewrite string |
| which will contain all the necessary tags. */ |
| rewrite0 = ethernet_build_rewrite (vnm, sw_if_index0, |
| VNET_LINK_ARP, |
| eth_rx->src_address); |
| rewrite0_len = vec_len (rewrite0); |
| |
| /* Figure out how much to rewind current data from adjacency. */ |
| vlib_buffer_advance (p0, -rewrite0_len); |
| eth_tx = vlib_buffer_get_current (p0); |
| |
| vnet_buffer (p0)->sw_if_index[VLIB_TX] = sw_if_index0; |
| hw_if0 = vnet_get_sup_hw_interface (vnm, sw_if_index0); |
| |
| /* Send reply back through input interface */ |
| vnet_buffer (p0)->sw_if_index[VLIB_TX] = sw_if_index0; |
| next0 = ARP_INPUT_NEXT_REPLY_TX; |
| |
| arp0->opcode = clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply); |
| |
| arp0->ip4_over_ethernet[1] = arp0->ip4_over_ethernet[0]; |
| |
| clib_memcpy (arp0->ip4_over_ethernet[0].ethernet, |
| hw_if0->hw_address, 6); |
| clib_mem_unaligned (&arp0->ip4_over_ethernet[0].ip4.data_u32, u32) = |
| if_addr0->data_u32; |
| |
| /* Hardware must be ethernet-like. */ |
| ASSERT (vec_len (hw_if0->hw_address) == 6); |
| |
| /* the rx nd tx ethernet headers wil overlap in the case |
| * when we received a tagged VLAN=0 packet, but we are sending |
| * back untagged */ |
| clib_memcpy (eth_tx, rewrite0, vec_len (rewrite0)); |
| vec_free (rewrite0); |
| |
| if (NULL == pa) |
| { |
| if (is_unnum0) |
| { |
| if (!arp_unnumbered (p0, sw_if_index0, conn_sw_if_index0)) |
| goto drop2; |
| } |
| } |
| |
| /* We are going to reply to this request, so, in the absence of |
| errors, learn the sender */ |
| if (!error0) |
| error0 = arp_learn (vnm, am, sw_if_index0, |
| &arp0->ip4_over_ethernet[1]); |
| |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next, |
| n_left_to_next, pi0, next0); |
| |
| n_replies_sent += 1; |
| continue; |
| |
| drop1: |
| if (0 == arp0->ip4_over_ethernet[0].ip4.as_u32 || |
| (arp0->ip4_over_ethernet[0].ip4.as_u32 == |
| arp0->ip4_over_ethernet[1].ip4.as_u32)) |
| { |
| error0 = ETHERNET_ARP_ERROR_gratuitous_arp; |
| goto drop2; |
| } |
| /* See if proxy arp is configured for the address */ |
| if (is_request0) |
| { |
| vnet_sw_interface_t *si; |
| u32 this_addr = clib_net_to_host_u32 |
| (arp0->ip4_over_ethernet[1].ip4.as_u32); |
| u32 fib_index0; |
| |
| si = vnet_get_sw_interface (vnm, sw_if_index0); |
| |
| if (!(si->flags & VNET_SW_INTERFACE_FLAG_PROXY_ARP)) |
| goto drop2; |
| |
| fib_index0 = vec_elt (im4->fib_index_by_sw_if_index, |
| sw_if_index0); |
| |
| vec_foreach (pa, am->proxy_arps) |
| { |
| u32 lo_addr = clib_net_to_host_u32 (pa->lo_addr); |
| u32 hi_addr = clib_net_to_host_u32 (pa->hi_addr); |
| |
| /* an ARP request hit in the proxy-arp table? */ |
| if ((this_addr >= lo_addr && this_addr <= hi_addr) && |
| (fib_index0 == pa->fib_index)) |
| { |
| proxy_src.as_u32 = |
| arp0->ip4_over_ethernet[1].ip4.data_u32; |
| |
| /* |
| * change the interface address to the proxied |
| */ |
| if_addr0 = &proxy_src; |
| is_unnum0 = 0; |
| n_proxy_arp_replies_sent++; |
| goto send_reply; |
| } |
| } |
| } |
| |
| drop2: |
| |
| next0 = ARP_INPUT_NEXT_DROP; |
| p0->error = node->errors[error0]; |
| |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next, |
| n_left_to_next, pi0, next0); |
| } |
| |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| |
| vlib_error_count (vm, node->node_index, |
| ETHERNET_ARP_ERROR_replies_sent, |
| n_replies_sent - n_proxy_arp_replies_sent); |
| |
| vlib_error_count (vm, node->node_index, |
| ETHERNET_ARP_ERROR_proxy_arp_replies_sent, |
| n_proxy_arp_replies_sent); |
| return frame->n_vectors; |
| } |
| |
| static char *ethernet_arp_error_strings[] = { |
| #define _(sym,string) string, |
| foreach_ethernet_arp_error |
| #undef _ |
| }; |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (arp_input_node, static) = |
| { |
| .function = arp_input, |
| .name = "arp-input", |
| .vector_size = sizeof (u32), |
| .n_errors = ETHERNET_ARP_N_ERROR, |
| .error_strings = ethernet_arp_error_strings, |
| .n_next_nodes = ARP_INPUT_N_NEXT, |
| .next_nodes = { |
| [ARP_INPUT_NEXT_DROP] = "error-drop", |
| [ARP_INPUT_NEXT_REPLY_TX] = "interface-output", |
| }, |
| .format_buffer = format_ethernet_arp_header, |
| .format_trace = format_ethernet_arp_input_trace, |
| }; |
| /* *INDENT-ON* */ |
| |
| static int |
| ip4_arp_entry_sort (void *a1, void *a2) |
| { |
| ethernet_arp_ip4_entry_t *e1 = a1; |
| ethernet_arp_ip4_entry_t *e2 = a2; |
| |
| int cmp; |
| vnet_main_t *vnm = vnet_get_main (); |
| |
| cmp = vnet_sw_interface_compare (vnm, e1->sw_if_index, e2->sw_if_index); |
| if (!cmp) |
| cmp = ip4_address_compare (&e1->ip4_address, &e2->ip4_address); |
| return cmp; |
| } |
| |
| ethernet_arp_ip4_entry_t * |
| ip4_neighbor_entries (u32 sw_if_index) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_ip4_entry_t *n, *ns = 0; |
| |
| /* *INDENT-OFF* */ |
| pool_foreach (n, am->ip4_entry_pool, ({ |
| if (sw_if_index != ~0 && n->sw_if_index != sw_if_index) |
| continue; |
| vec_add1 (ns, n[0]); |
| })); |
| /* *INDENT-ON* */ |
| |
| if (ns) |
| vec_sort_with_function (ns, ip4_arp_entry_sort); |
| return ns; |
| } |
| |
| static clib_error_t * |
| show_ip4_arp (vlib_main_t * vm, |
| unformat_input_t * input, vlib_cli_command_t * cmd) |
| { |
| vnet_main_t *vnm = vnet_get_main (); |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_ip4_entry_t *e, *es; |
| ethernet_proxy_arp_t *pa; |
| clib_error_t *error = 0; |
| u32 sw_if_index; |
| |
| /* Filter entries by interface if given. */ |
| sw_if_index = ~0; |
| (void) unformat_user (input, unformat_vnet_sw_interface, vnm, &sw_if_index); |
| |
| es = ip4_neighbor_entries (sw_if_index); |
| if (es) |
| { |
| vlib_cli_output (vm, "%U", format_ethernet_arp_ip4_entry, vnm, 0); |
| vec_foreach (e, es) |
| { |
| vlib_cli_output (vm, "%U", format_ethernet_arp_ip4_entry, vnm, e); |
| } |
| vec_free (es); |
| } |
| |
| if (vec_len (am->proxy_arps)) |
| { |
| vlib_cli_output (vm, "Proxy arps enabled for:"); |
| vec_foreach (pa, am->proxy_arps) |
| { |
| vlib_cli_output (vm, "Fib_index %d %U - %U ", |
| pa->fib_index, |
| format_ip4_address, &pa->lo_addr, |
| format_ip4_address, &pa->hi_addr); |
| } |
| } |
| |
| return error; |
| } |
| |
| /*? |
| * Display all the IPv4 ARP entries. |
| * |
| * @cliexpar |
| * Example of how to display the IPv4 ARP table: |
| * @cliexstart{show ip arp} |
| * Time FIB IP4 Flags Ethernet Interface |
| * 346.3028 0 6.1.1.3 de:ad:be:ef:ba:be GigabitEthernet2/0/0 |
| * 3077.4271 0 6.1.1.4 S de:ad:be:ef:ff:ff GigabitEthernet2/0/0 |
| * 2998.6409 1 6.2.2.3 de:ad:be:ef:00:01 GigabitEthernet2/0/0 |
| * Proxy arps enabled for: |
| * Fib_index 0 6.0.0.1 - 6.0.0.11 |
| * @cliexend |
| ?*/ |
| /* *INDENT-OFF* */ |
| VLIB_CLI_COMMAND (show_ip4_arp_command, static) = { |
| .path = "show ip arp", |
| .function = show_ip4_arp, |
| .short_help = "show ip arp", |
| }; |
| /* *INDENT-ON* */ |
| |
| typedef struct |
| { |
| pg_edit_t l2_type, l3_type; |
| pg_edit_t n_l2_address_bytes, n_l3_address_bytes; |
| pg_edit_t opcode; |
| struct |
| { |
| pg_edit_t ethernet; |
| pg_edit_t ip4; |
| } ip4_over_ethernet[2]; |
| } pg_ethernet_arp_header_t; |
| |
| static inline void |
| pg_ethernet_arp_header_init (pg_ethernet_arp_header_t * p) |
| { |
| /* Initialize fields that are not bit fields in the IP header. */ |
| #define _(f) pg_edit_init (&p->f, ethernet_arp_header_t, f); |
| _(l2_type); |
| _(l3_type); |
| _(n_l2_address_bytes); |
| _(n_l3_address_bytes); |
| _(opcode); |
| _(ip4_over_ethernet[0].ethernet); |
| _(ip4_over_ethernet[0].ip4); |
| _(ip4_over_ethernet[1].ethernet); |
| _(ip4_over_ethernet[1].ip4); |
| #undef _ |
| } |
| |
| uword |
| unformat_pg_arp_header (unformat_input_t * input, va_list * args) |
| { |
| pg_stream_t *s = va_arg (*args, pg_stream_t *); |
| pg_ethernet_arp_header_t *p; |
| u32 group_index; |
| |
| p = pg_create_edit_group (s, sizeof (p[0]), sizeof (ethernet_arp_header_t), |
| &group_index); |
| pg_ethernet_arp_header_init (p); |
| |
| /* Defaults. */ |
| pg_edit_set_fixed (&p->l2_type, ETHERNET_ARP_HARDWARE_TYPE_ethernet); |
| pg_edit_set_fixed (&p->l3_type, ETHERNET_TYPE_IP4); |
| pg_edit_set_fixed (&p->n_l2_address_bytes, 6); |
| pg_edit_set_fixed (&p->n_l3_address_bytes, 4); |
| |
| if (!unformat (input, "%U: %U/%U -> %U/%U", |
| unformat_pg_edit, |
| unformat_ethernet_arp_opcode_net_byte_order, &p->opcode, |
| unformat_pg_edit, |
| unformat_ethernet_address, &p->ip4_over_ethernet[0].ethernet, |
| unformat_pg_edit, |
| unformat_ip4_address, &p->ip4_over_ethernet[0].ip4, |
| unformat_pg_edit, |
| unformat_ethernet_address, &p->ip4_over_ethernet[1].ethernet, |
| unformat_pg_edit, |
| unformat_ip4_address, &p->ip4_over_ethernet[1].ip4)) |
| { |
| /* Free up any edits we may have added. */ |
| pg_free_edit_group (s); |
| return 0; |
| } |
| return 1; |
| } |
| |
| clib_error_t * |
| ip4_set_arp_limit (u32 arp_limit) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| |
| am->limit_arp_cache_size = arp_limit; |
| return 0; |
| } |
| |
| /** |
| * @brief Control Plane hook to remove an ARP entry |
| */ |
| int |
| vnet_arp_unset_ip4_over_ethernet (vnet_main_t * vnm, |
| u32 sw_if_index, void *a_arg) |
| { |
| ethernet_arp_ip4_over_ethernet_address_t *a = a_arg; |
| vnet_arp_set_ip4_over_ethernet_rpc_args_t args; |
| |
| args.sw_if_index = sw_if_index; |
| args.flags = ETHERNET_ARP_ARGS_REMOVE; |
| clib_memcpy (&args.a, a, sizeof (*a)); |
| |
| vl_api_rpc_call_main_thread (set_ip4_over_ethernet_rpc_callback, |
| (u8 *) & args, sizeof (args)); |
| return 0; |
| } |
| |
| /** |
| * @brief Internally generated event to flush the ARP cache on an |
| * interface state change event. |
| * A flush will remove dynamic ARP entries, and for statics remove the MAC |
| * address from the corresponding adjacencies. |
| */ |
| static int |
| vnet_arp_flush_ip4_over_ethernet (vnet_main_t * vnm, |
| u32 sw_if_index, void *a_arg) |
| { |
| ethernet_arp_ip4_over_ethernet_address_t *a = a_arg; |
| vnet_arp_set_ip4_over_ethernet_rpc_args_t args; |
| |
| args.sw_if_index = sw_if_index; |
| args.flags = ETHERNET_ARP_ARGS_FLUSH; |
| clib_memcpy (&args.a, a, sizeof (*a)); |
| |
| vl_api_rpc_call_main_thread (set_ip4_over_ethernet_rpc_callback, |
| (u8 *) & args, sizeof (args)); |
| return 0; |
| } |
| |
| /** |
| * @brief Internally generated event to populate the ARP cache on an |
| * interface state change event. |
| * For static entries this will re-source the adjacencies. |
| * |
| * @param sw_if_index The interface on which the ARP entires are acted |
| */ |
| static int |
| vnet_arp_populate_ip4_over_ethernet (vnet_main_t * vnm, |
| u32 sw_if_index, void *a_arg) |
| { |
| ethernet_arp_ip4_over_ethernet_address_t *a = a_arg; |
| vnet_arp_set_ip4_over_ethernet_rpc_args_t args; |
| |
| args.sw_if_index = sw_if_index; |
| args.flags = ETHERNET_ARP_ARGS_POPULATE; |
| clib_memcpy (&args.a, a, sizeof (*a)); |
| |
| vl_api_rpc_call_main_thread (set_ip4_over_ethernet_rpc_callback, |
| (u8 *) & args, sizeof (args)); |
| return 0; |
| } |
| |
| /** |
| * @brief publish wildcard arp event |
| * @param sw_if_index The interface on which the ARP entires are acted |
| */ |
| static int |
| vnet_arp_wc_publish (u32 sw_if_index, void *a_arg) |
| { |
| ethernet_arp_ip4_over_ethernet_address_t *a = a_arg; |
| vnet_arp_set_ip4_over_ethernet_rpc_args_t args = { |
| .flags = ETHERNET_ARP_ARGS_WC_PUB, |
| .sw_if_index = sw_if_index, |
| .a = *a |
| }; |
| |
| vl_api_rpc_call_main_thread (set_ip4_over_ethernet_rpc_callback, |
| (u8 *) & args, sizeof (args)); |
| return 0; |
| } |
| |
| static void |
| vnet_arp_wc_publish_internal (vnet_main_t * vnm, |
| vnet_arp_set_ip4_over_ethernet_rpc_args_t * |
| args) |
| { |
| vlib_main_t *vm = vlib_get_main (); |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| uword ni = am->wc_ip4_arp_publisher_node; |
| uword et = am->wc_ip4_arp_publisher_et; |
| |
| if (ni == (uword) ~ 0) |
| return; |
| wc_arp_report_t *r = |
| vlib_process_signal_event_data (vm, ni, et, 1, sizeof *r); |
| r->ip4 = args->a.ip4.as_u32; |
| r->sw_if_index = args->sw_if_index; |
| memcpy (r->mac, args->a.ethernet, sizeof r->mac); |
| } |
| |
| void |
| wc_arp_set_publisher_node (uword node_index, uword event_type) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| am->wc_ip4_arp_publisher_node = node_index; |
| am->wc_ip4_arp_publisher_et = event_type; |
| } |
| |
| /* |
| * arp_add_del_interface_address |
| * |
| * callback when an interface address is added or deleted |
| */ |
| static void |
| arp_add_del_interface_address (ip4_main_t * im, |
| uword opaque, |
| u32 sw_if_index, |
| ip4_address_t * address, |
| u32 address_length, |
| u32 if_address_index, u32 is_del) |
| { |
| /* |
| * Flush the ARP cache of all entries covered by the address |
| * that is being removed. |
| */ |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_ip4_entry_t *e; |
| |
| if (vec_len (am->ethernet_arp_by_sw_if_index) <= sw_if_index) |
| return; |
| |
| if (is_del) |
| { |
| ethernet_arp_interface_t *eai; |
| u32 i, *to_delete = 0; |
| hash_pair_t *pair; |
| |
| eai = &am->ethernet_arp_by_sw_if_index[sw_if_index]; |
| |
| /* *INDENT-OFF* */ |
| hash_foreach_pair (pair, eai->arp_entries, |
| ({ |
| e = pool_elt_at_index(am->ip4_entry_pool, |
| pair->value[0]); |
| if (ip4_destination_matches_route (im, &e->ip4_address, |
| address, address_length)) |
| { |
| vec_add1 (to_delete, e - am->ip4_entry_pool); |
| } |
| })); |
| /* *INDENT-ON* */ |
| |
| for (i = 0; i < vec_len (to_delete); i++) |
| { |
| ethernet_arp_ip4_over_ethernet_address_t delme; |
| e = pool_elt_at_index (am->ip4_entry_pool, to_delete[i]); |
| |
| clib_memcpy (&delme.ethernet, e->ethernet_address, 6); |
| delme.ip4.as_u32 = e->ip4_address.as_u32; |
| |
| vnet_arp_flush_ip4_over_ethernet (vnet_get_main (), |
| e->sw_if_index, &delme); |
| } |
| |
| vec_free (to_delete); |
| } |
| } |
| |
| void |
| arp_adj_fib_remove (ethernet_arp_ip4_entry_t * e, u32 fib_index) |
| { |
| if (FIB_NODE_INDEX_INVALID != e->fib_entry_index) |
| { |
| fib_prefix_t pfx = { |
| .fp_len = 32, |
| .fp_proto = FIB_PROTOCOL_IP4, |
| .fp_addr.ip4 = e->ip4_address, |
| }; |
| u32 fib_index; |
| |
| fib_index = ip4_fib_table_get_index_for_sw_if_index (e->sw_if_index); |
| |
| fib_table_entry_path_remove (fib_index, &pfx, |
| FIB_SOURCE_ADJ, |
| DPO_PROTO_IP4, |
| &pfx.fp_addr, |
| e->sw_if_index, ~0, 1, |
| FIB_ROUTE_PATH_FLAG_NONE); |
| fib_table_unlock (fib_index, FIB_PROTOCOL_IP4, FIB_SOURCE_ADJ); |
| } |
| } |
| |
| static void |
| arp_table_bind (ip4_main_t * im, |
| uword opaque, |
| u32 sw_if_index, u32 new_fib_index, u32 old_fib_index) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_interface_t *eai; |
| ethernet_arp_ip4_entry_t *e; |
| hash_pair_t *pair; |
| |
| /* |
| * the IP table that the interface is bound to has changed. |
| * reinstall all the adj fibs. |
| */ |
| |
| if (vec_len (am->ethernet_arp_by_sw_if_index) <= sw_if_index) |
| return; |
| |
| eai = &am->ethernet_arp_by_sw_if_index[sw_if_index]; |
| |
| /* *INDENT-OFF* */ |
| hash_foreach_pair (pair, eai->arp_entries, |
| ({ |
| e = pool_elt_at_index(am->ip4_entry_pool, |
| pair->value[0]); |
| /* |
| * remove the adj-fib from the old table and add to the new |
| */ |
| arp_adj_fib_remove(e, old_fib_index); |
| arp_adj_fib_add(e, new_fib_index); |
| })); |
| /* *INDENT-ON* */ |
| |
| } |
| |
| static clib_error_t * |
| ethernet_arp_init (vlib_main_t * vm) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ip4_main_t *im = &ip4_main; |
| clib_error_t *error; |
| pg_node_t *pn; |
| |
| if ((error = vlib_call_init_function (vm, ethernet_init))) |
| return error; |
| |
| ethernet_register_input_type (vm, ETHERNET_TYPE_ARP, arp_input_node.index); |
| |
| pn = pg_get_node (arp_input_node.index); |
| pn->unformat_edit = unformat_pg_arp_header; |
| |
| am->opcode_by_name = hash_create_string (0, sizeof (uword)); |
| #define _(o) hash_set_mem (am->opcode_by_name, #o, ETHERNET_ARP_OPCODE_##o); |
| foreach_ethernet_arp_opcode; |
| #undef _ |
| |
| /* $$$ configurable */ |
| am->limit_arp_cache_size = 50000; |
| |
| am->pending_resolutions_by_address = hash_create (0, sizeof (uword)); |
| am->mac_changes_by_address = hash_create (0, sizeof (uword)); |
| am->wc_ip4_arp_publisher_node = (uword) ~ 0; |
| |
| /* don't trace ARP error packets */ |
| { |
| vlib_node_runtime_t *rt = |
| vlib_node_get_runtime (vm, arp_input_node.index); |
| |
| #define _(a,b) \ |
| vnet_pcap_drop_trace_filter_add_del \ |
| (rt->errors[ETHERNET_ARP_ERROR_##a], \ |
| 1 /* is_add */); |
| foreach_ethernet_arp_error |
| #undef _ |
| } |
| |
| ip4_add_del_interface_address_callback_t cb; |
| cb.function = arp_add_del_interface_address; |
| cb.function_opaque = 0; |
| vec_add1 (im->add_del_interface_address_callbacks, cb); |
| |
| ip4_table_bind_callback_t cbt; |
| cbt.function = arp_table_bind; |
| cbt.function_opaque = 0; |
| vec_add1 (im->table_bind_callbacks, cbt); |
| |
| return 0; |
| } |
| |
| VLIB_INIT_FUNCTION (ethernet_arp_init); |
| |
| static void |
| arp_entry_free (ethernet_arp_interface_t * eai, ethernet_arp_ip4_entry_t * e) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| |
| arp_adj_fib_remove (e, |
| ip4_fib_table_get_index_for_sw_if_index |
| (e->sw_if_index)); |
| hash_unset (eai->arp_entries, e->ip4_address.as_u32); |
| pool_put (am->ip4_entry_pool, e); |
| } |
| |
| static inline int |
| vnet_arp_unset_ip4_over_ethernet_internal (vnet_main_t * vnm, |
| vnet_arp_set_ip4_over_ethernet_rpc_args_t |
| * args) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_ip4_entry_t *e; |
| ethernet_arp_interface_t *eai; |
| |
| if (vec_len (am->ethernet_arp_by_sw_if_index) <= args->sw_if_index) |
| return 0; |
| |
| eai = &am->ethernet_arp_by_sw_if_index[args->sw_if_index]; |
| |
| e = arp_entry_find (eai, &args->a.ip4); |
| |
| if (NULL != e) |
| { |
| arp_entry_free (eai, e); |
| |
| adj_nbr_walk_nh4 (e->sw_if_index, |
| &e->ip4_address, arp_mk_incomplete_walk, NULL); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| vnet_arp_flush_ip4_over_ethernet_internal (vnet_main_t * vnm, |
| vnet_arp_set_ip4_over_ethernet_rpc_args_t |
| * args) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_ip4_entry_t *e; |
| ethernet_arp_interface_t *eai; |
| |
| if (vec_len (am->ethernet_arp_by_sw_if_index) <= args->sw_if_index) |
| return 0; |
| |
| eai = &am->ethernet_arp_by_sw_if_index[args->sw_if_index]; |
| |
| e = arp_entry_find (eai, &args->a.ip4); |
| |
| if (NULL != e) |
| { |
| adj_nbr_walk_nh4 (e->sw_if_index, |
| &e->ip4_address, arp_mk_incomplete_walk, e); |
| |
| /* |
| * The difference between flush and unset, is that an unset |
| * means delete for static and dynamic entries. A flush |
| * means delete only for dynamic. Flushing is what the DP |
| * does in response to interface events. unset is only done |
| * by the control plane. |
| */ |
| if (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_STATIC) |
| { |
| e->flags &= ETHERNET_ARP_IP4_ENTRY_FLAG_DYNAMIC; |
| } |
| else if (e->flags & ETHERNET_ARP_IP4_ENTRY_FLAG_DYNAMIC) |
| { |
| arp_entry_free (eai, e); |
| } |
| } |
| return (0); |
| } |
| |
| static int |
| vnet_arp_populate_ip4_over_ethernet_internal (vnet_main_t * vnm, |
| vnet_arp_set_ip4_over_ethernet_rpc_args_t |
| * args) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_ip4_entry_t *e; |
| ethernet_arp_interface_t *eai; |
| |
| vec_validate (am->ethernet_arp_by_sw_if_index, args->sw_if_index); |
| eai = &am->ethernet_arp_by_sw_if_index[args->sw_if_index]; |
| |
| e = arp_entry_find (eai, &args->a.ip4); |
| |
| if (NULL != e) |
| { |
| adj_nbr_walk_nh4 (e->sw_if_index, |
| &e->ip4_address, arp_mk_complete_walk, e); |
| } |
| return (0); |
| } |
| |
| static void |
| set_ip4_over_ethernet_rpc_callback (vnet_arp_set_ip4_over_ethernet_rpc_args_t |
| * a) |
| { |
| vnet_main_t *vm = vnet_get_main (); |
| ASSERT (vlib_get_thread_index () == 0); |
| |
| if (a->flags & ETHERNET_ARP_ARGS_REMOVE) |
| vnet_arp_unset_ip4_over_ethernet_internal (vm, a); |
| else if (a->flags & ETHERNET_ARP_ARGS_FLUSH) |
| vnet_arp_flush_ip4_over_ethernet_internal (vm, a); |
| else if (a->flags & ETHERNET_ARP_ARGS_POPULATE) |
| vnet_arp_populate_ip4_over_ethernet_internal (vm, a); |
| else if (a->flags & ETHERNET_ARP_ARGS_WC_PUB) |
| vnet_arp_wc_publish_internal (vm, a); |
| else |
| vnet_arp_set_ip4_over_ethernet_internal (vm, a); |
| } |
| |
| /** |
| * @brief Invoked when the interface's admin state changes |
| */ |
| static clib_error_t * |
| ethernet_arp_sw_interface_up_down (vnet_main_t * vnm, |
| u32 sw_if_index, u32 flags) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_ip4_entry_t *e; |
| u32 i, *to_delete = 0; |
| |
| /* *INDENT-OFF* */ |
| pool_foreach (e, am->ip4_entry_pool, |
| ({ |
| if (e->sw_if_index == sw_if_index) |
| vec_add1 (to_delete, |
| e - am->ip4_entry_pool); |
| })); |
| /* *INDENT-ON* */ |
| |
| for (i = 0; i < vec_len (to_delete); i++) |
| { |
| ethernet_arp_ip4_over_ethernet_address_t delme; |
| e = pool_elt_at_index (am->ip4_entry_pool, to_delete[i]); |
| |
| clib_memcpy (&delme.ethernet, e->ethernet_address, 6); |
| delme.ip4.as_u32 = e->ip4_address.as_u32; |
| |
| if (flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP) |
| { |
| vnet_arp_populate_ip4_over_ethernet (vnm, e->sw_if_index, &delme); |
| } |
| else |
| { |
| vnet_arp_flush_ip4_over_ethernet (vnm, e->sw_if_index, &delme); |
| } |
| |
| } |
| vec_free (to_delete); |
| |
| return 0; |
| } |
| |
| VNET_SW_INTERFACE_ADMIN_UP_DOWN_FUNCTION (ethernet_arp_sw_interface_up_down); |
| |
| static void |
| increment_ip4_and_mac_address (ethernet_arp_ip4_over_ethernet_address_t * a) |
| { |
| u8 old; |
| int i; |
| |
| for (i = 3; i >= 0; i--) |
| { |
| old = a->ip4.as_u8[i]; |
| a->ip4.as_u8[i] += 1; |
| if (old < a->ip4.as_u8[i]) |
| break; |
| } |
| |
| for (i = 5; i >= 0; i--) |
| { |
| old = a->ethernet[i]; |
| a->ethernet[i] += 1; |
| if (old < a->ethernet[i]) |
| break; |
| } |
| } |
| |
| int |
| vnet_arp_set_ip4_over_ethernet (vnet_main_t * vnm, |
| u32 sw_if_index, void *a_arg, |
| int is_static, int is_no_fib_entry) |
| { |
| ethernet_arp_ip4_over_ethernet_address_t *a = a_arg; |
| vnet_arp_set_ip4_over_ethernet_rpc_args_t args; |
| |
| args.sw_if_index = sw_if_index; |
| args.is_static = is_static; |
| args.is_no_fib_entry = is_no_fib_entry; |
| args.flags = 0; |
| clib_memcpy (&args.a, a, sizeof (*a)); |
| |
| vl_api_rpc_call_main_thread (set_ip4_over_ethernet_rpc_callback, |
| (u8 *) & args, sizeof (args)); |
| return 0; |
| } |
| |
| int |
| vnet_proxy_arp_add_del (ip4_address_t * lo_addr, |
| ip4_address_t * hi_addr, u32 fib_index, int is_del) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_proxy_arp_t *pa; |
| u32 found_at_index = ~0; |
| |
| vec_foreach (pa, am->proxy_arps) |
| { |
| if (pa->lo_addr == lo_addr->as_u32 |
| && pa->hi_addr == hi_addr->as_u32 && pa->fib_index == fib_index) |
| { |
| found_at_index = pa - am->proxy_arps; |
| break; |
| } |
| } |
| |
| if (found_at_index != ~0) |
| { |
| /* Delete, otherwise it's already in the table */ |
| if (is_del) |
| vec_delete (am->proxy_arps, 1, found_at_index); |
| return 0; |
| } |
| /* delete, no such entry */ |
| if (is_del) |
| return VNET_API_ERROR_NO_SUCH_ENTRY; |
| |
| /* add, not in table */ |
| vec_add2 (am->proxy_arps, pa, 1); |
| pa->lo_addr = lo_addr->as_u32; |
| pa->hi_addr = hi_addr->as_u32; |
| pa->fib_index = fib_index; |
| return 0; |
| } |
| |
| /* |
| * Remove any proxy arp entries asdociated with the |
| * specificed fib. |
| */ |
| int |
| vnet_proxy_arp_fib_reset (u32 fib_id) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_proxy_arp_t *pa; |
| u32 *entries_to_delete = 0; |
| u32 fib_index; |
| int i; |
| |
| fib_index = fib_table_find (FIB_PROTOCOL_IP4, fib_id); |
| if (~0 == fib_index) |
| return VNET_API_ERROR_NO_SUCH_ENTRY; |
| |
| vec_foreach (pa, am->proxy_arps) |
| { |
| if (pa->fib_index == fib_index) |
| { |
| vec_add1 (entries_to_delete, pa - am->proxy_arps); |
| } |
| } |
| |
| for (i = 0; i < vec_len (entries_to_delete); i++) |
| { |
| vec_delete (am->proxy_arps, 1, entries_to_delete[i]); |
| } |
| |
| vec_free (entries_to_delete); |
| |
| return 0; |
| } |
| |
| static clib_error_t * |
| ip_arp_add_del_command_fn (vlib_main_t * vm, |
| unformat_input_t * input, vlib_cli_command_t * cmd) |
| { |
| vnet_main_t *vnm = vnet_get_main (); |
| u32 sw_if_index; |
| ethernet_arp_ip4_over_ethernet_address_t lo_addr, hi_addr, addr; |
| int addr_valid = 0; |
| int is_del = 0; |
| int count = 1; |
| u32 fib_index = 0; |
| u32 fib_id; |
| int is_static = 0; |
| int is_no_fib_entry = 0; |
| int is_proxy = 0; |
| |
| while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT) |
| { |
| /* set ip arp TenGigE1/1/0/1 1.2.3.4 aa:bb:... or aabb.ccdd... */ |
| if (unformat (input, "%U %U %U", |
| unformat_vnet_sw_interface, vnm, &sw_if_index, |
| unformat_ip4_address, &addr.ip4, |
| unformat_ethernet_address, &addr.ethernet)) |
| addr_valid = 1; |
| |
| else if (unformat (input, "delete") || unformat (input, "del")) |
| is_del = 1; |
| |
| else if (unformat (input, "static")) |
| is_static = 1; |
| |
| else if (unformat (input, "no-fib-entry")) |
| is_no_fib_entry = 1; |
| |
| else if (unformat (input, "count %d", &count)) |
| ; |
| |
| else if (unformat (input, "fib-id %d", &fib_id)) |
| { |
| fib_index = fib_table_find (FIB_PROTOCOL_IP4, fib_id); |
| |
| if (~0 == fib_index) |
| return clib_error_return (0, "fib ID %d doesn't exist\n", fib_id); |
| } |
| |
| else if (unformat (input, "proxy %U - %U", |
| unformat_ip4_address, &lo_addr.ip4, |
| unformat_ip4_address, &hi_addr.ip4)) |
| is_proxy = 1; |
| else |
| break; |
| } |
| |
| if (is_proxy) |
| { |
| (void) vnet_proxy_arp_add_del (&lo_addr.ip4, &hi_addr.ip4, |
| fib_index, is_del); |
| return 0; |
| } |
| |
| if (addr_valid) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) |
| { |
| if (is_del == 0) |
| { |
| uword event_type, *event_data = 0; |
| |
| /* Park the debug CLI until the arp entry is installed */ |
| vnet_register_ip4_arp_resolution_event |
| (vnm, &addr.ip4, vlib_current_process (vm), |
| 1 /* type */ , 0 /* data */ ); |
| |
| vnet_arp_set_ip4_over_ethernet |
| (vnm, sw_if_index, &addr, is_static, is_no_fib_entry); |
| |
| vlib_process_wait_for_event (vm); |
| event_type = vlib_process_get_events (vm, &event_data); |
| vec_reset_length (event_data); |
| if (event_type != 1) |
| clib_warning ("event type %d unexpected", event_type); |
| } |
| else |
| vnet_arp_unset_ip4_over_ethernet (vnm, sw_if_index, &addr); |
| |
| increment_ip4_and_mac_address (&addr); |
| } |
| } |
| else |
| { |
| return clib_error_return (0, "unknown input `%U'", |
| format_unformat_error, input); |
| } |
| |
| return 0; |
| } |
| |
| /* *INDENT-OFF* */ |
| /*? |
| * Add or delete IPv4 ARP cache entries. |
| * |
| * @note 'set ip arp' options (e.g. delete, static, 'fib-id <id>', |
| * 'count <number>', 'interface ip4_addr mac_addr') can be added in |
| * any order and combination. |
| * |
| * @cliexpar |
| * @parblock |
| * Add or delete IPv4 ARP cache entries as follows. MAC Address can be in |
| * either aa:bb:cc:dd:ee:ff format or aabb.ccdd.eeff format. |
| * @cliexcmd{set ip arp GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe} |
| * @cliexcmd{set ip arp delete GigabitEthernet2/0/0 6.0.0.3 de:ad:be:ef:ba:be} |
| * |
| * To add or delete an IPv4 ARP cache entry to or from a specific fib |
| * table: |
| * @cliexcmd{set ip arp fib-id 1 GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe} |
| * @cliexcmd{set ip arp fib-id 1 delete GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe} |
| * |
| * Add or delete IPv4 static ARP cache entries as follows: |
| * @cliexcmd{set ip arp static GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe} |
| * @cliexcmd{set ip arp static delete GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe} |
| * |
| * For testing / debugging purposes, the 'set ip arp' command can add or |
| * delete multiple entries. Supply the 'count N' parameter: |
| * @cliexcmd{set ip arp count 10 GigabitEthernet2/0/0 6.0.0.3 dead.beef.babe} |
| * @endparblock |
| ?*/ |
| VLIB_CLI_COMMAND (ip_arp_add_del_command, static) = { |
| .path = "set ip arp", |
| .short_help = |
| "set ip arp [del] <intfc> <ip-address> <mac-address> [static] [no-fib-entry] [count <count>] [fib-id <fib-id>] [proxy <lo-addr> - <hi-addr>]", |
| .function = ip_arp_add_del_command_fn, |
| }; |
| /* *INDENT-ON* */ |
| |
| static clib_error_t * |
| set_int_proxy_arp_command_fn (vlib_main_t * vm, |
| unformat_input_t * |
| input, vlib_cli_command_t * cmd) |
| { |
| vnet_main_t *vnm = vnet_get_main (); |
| u32 sw_if_index; |
| vnet_sw_interface_t *si; |
| int enable = 0; |
| int intfc_set = 0; |
| |
| while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT) |
| { |
| if (unformat (input, "%U", unformat_vnet_sw_interface, |
| vnm, &sw_if_index)) |
| intfc_set = 1; |
| else if (unformat (input, "enable") || unformat (input, "on")) |
| enable = 1; |
| else if (unformat (input, "disable") || unformat (input, "off")) |
| enable = 0; |
| else |
| break; |
| } |
| |
| if (intfc_set == 0) |
| return clib_error_return (0, "unknown input '%U'", |
| format_unformat_error, input); |
| |
| si = vnet_get_sw_interface (vnm, sw_if_index); |
| ASSERT (si); |
| if (enable) |
| si->flags |= VNET_SW_INTERFACE_FLAG_PROXY_ARP; |
| else |
| si->flags &= ~VNET_SW_INTERFACE_FLAG_PROXY_ARP; |
| |
| return 0; |
| } |
| |
| /* *INDENT-OFF* */ |
| /*? |
| * Enable proxy-arp on an interface. The vpp stack will answer ARP |
| * requests for the indicated address range. Multiple proxy-arp |
| * ranges may be provisioned. |
| * |
| * @note Proxy ARP as a technology is infamous for blackholing traffic. |
| * Also, the underlying implementation has not been performance-tuned. |
| * Avoid creating an unnecessarily large set of ranges. |
| * |
| * @cliexpar |
| * To enable proxy arp on a range of addresses, use: |
| * @cliexcmd{set ip arp proxy 6.0.0.1 - 6.0.0.11} |
| * Append 'del' to delete a range of proxy ARP addresses: |
| * @cliexcmd{set ip arp proxy 6.0.0.1 - 6.0.0.11 del} |
| * You must then specifically enable proxy arp on individual interfaces: |
| * @cliexcmd{set interface proxy-arp GigabitEthernet0/8/0 enable} |
| * To disable proxy arp on an individual interface: |
| * @cliexcmd{set interface proxy-arp GigabitEthernet0/8/0 disable} |
| ?*/ |
| VLIB_CLI_COMMAND (set_int_proxy_enable_command, static) = { |
| .path = "set interface proxy-arp", |
| .short_help = |
| "set interface proxy-arp <intfc> [enable|disable]", |
| .function = set_int_proxy_arp_command_fn, |
| }; |
| /* *INDENT-ON* */ |
| |
| |
| /* |
| * ARP/ND Termination in a L2 Bridge Domain based on IP4/IP6 to MAC |
| * hash tables mac_by_ip4 and mac_by_ip6 for each BD. |
| */ |
| typedef enum |
| { |
| ARP_TERM_NEXT_L2_OUTPUT, |
| ARP_TERM_NEXT_DROP, |
| ARP_TERM_N_NEXT, |
| } arp_term_next_t; |
| |
| u32 arp_term_next_node_index[32]; |
| |
| static uword |
| arp_term_l2bd (vlib_main_t * vm, |
| vlib_node_runtime_t * node, vlib_frame_t * frame) |
| { |
| l2input_main_t *l2im = &l2input_main; |
| u32 n_left_from, next_index, *from, *to_next; |
| u32 n_replies_sent = 0; |
| u16 last_bd_index = ~0; |
| l2_bridge_domain_t *last_bd_config = 0; |
| l2_input_config_t *cfg0; |
| |
| from = vlib_frame_vector_args (frame); |
| n_left_from = frame->n_vectors; |
| next_index = node->cached_next_index; |
| |
| while (n_left_from > 0) |
| { |
| u32 n_left_to_next; |
| |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| |
| while (n_left_from > 0 && n_left_to_next > 0) |
| { |
| vlib_buffer_t *p0; |
| ethernet_header_t *eth0; |
| ethernet_arp_header_t *arp0; |
| ip6_header_t *iph0; |
| u8 *l3h0; |
| u32 pi0, error0, next0, sw_if_index0; |
| u16 ethertype0; |
| u16 bd_index0; |
| u32 ip0; |
| u8 *macp0; |
| u8 is_vrrp_reply0; |
| |
| pi0 = from[0]; |
| to_next[0] = pi0; |
| from += 1; |
| to_next += 1; |
| n_left_from -= 1; |
| n_left_to_next -= 1; |
| |
| p0 = vlib_get_buffer (vm, pi0); |
| // Terminate only local (SHG == 0) ARP |
| if (vnet_buffer (p0)->l2.shg != 0) |
| goto next_l2_feature; |
| |
| eth0 = vlib_buffer_get_current (p0); |
| l3h0 = (u8 *) eth0 + vnet_buffer (p0)->l2.l2_len; |
| ethertype0 = clib_net_to_host_u16 (*(u16 *) (l3h0 - 2)); |
| arp0 = (ethernet_arp_header_t *) l3h0; |
| |
| if (PREDICT_FALSE ((ethertype0 != ETHERNET_TYPE_ARP) || |
| (arp0->opcode != |
| clib_host_to_net_u16 |
| (ETHERNET_ARP_OPCODE_request)))) |
| goto check_ip6_nd; |
| |
| /* Must be ARP request packet here */ |
| if (PREDICT_FALSE ((node->flags & VLIB_NODE_FLAG_TRACE) && |
| (p0->flags & VLIB_BUFFER_IS_TRACED))) |
| { |
| u8 *t0 = vlib_add_trace (vm, node, p0, |
| sizeof (ethernet_arp_input_trace_t)); |
| clib_memcpy (t0, l3h0, sizeof (ethernet_arp_input_trace_t)); |
| } |
| |
| error0 = ETHERNET_ARP_ERROR_replies_sent; |
| error0 = |
| (arp0->l2_type != |
| clib_net_to_host_u16 (ETHERNET_ARP_HARDWARE_TYPE_ethernet) |
| ? ETHERNET_ARP_ERROR_l2_type_not_ethernet : error0); |
| error0 = |
| (arp0->l3_type != |
| clib_net_to_host_u16 (ETHERNET_TYPE_IP4) ? |
| ETHERNET_ARP_ERROR_l3_type_not_ip4 : error0); |
| |
| sw_if_index0 = vnet_buffer (p0)->sw_if_index[VLIB_RX]; |
| |
| if (error0) |
| goto drop; |
| |
| is_vrrp_reply0 = |
| ((arp0->opcode == |
| clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply)) |
| && |
| (!memcmp |
| (arp0->ip4_over_ethernet[0].ethernet, vrrp_prefix, |
| sizeof (vrrp_prefix)))); |
| |
| /* Trash ARP packets whose ARP-level source addresses do not |
| match their L2-frame-level source addresses, unless it's |
| a reply from a VRRP virtual router */ |
| if (PREDICT_FALSE |
| (memcmp (eth0->src_address, arp0->ip4_over_ethernet[0].ethernet, |
| sizeof (eth0->src_address)) && !is_vrrp_reply0)) |
| { |
| error0 = ETHERNET_ARP_ERROR_l2_address_mismatch; |
| goto drop; |
| } |
| |
| /* Check if anyone want ARP request events for L2 BDs */ |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| if (am->wc_ip4_arp_publisher_node != (uword) ~ 0) |
| vnet_arp_wc_publish (sw_if_index0, &arp0->ip4_over_ethernet[0]); |
| } |
| |
| /* lookup BD mac_by_ip4 hash table for MAC entry */ |
| ip0 = arp0->ip4_over_ethernet[1].ip4.as_u32; |
| bd_index0 = vnet_buffer (p0)->l2.bd_index; |
| if (PREDICT_FALSE ((bd_index0 != last_bd_index) |
| || (last_bd_index == (u16) ~ 0))) |
| { |
| last_bd_index = bd_index0; |
| last_bd_config = vec_elt_at_index (l2im->bd_configs, bd_index0); |
| } |
| macp0 = (u8 *) hash_get (last_bd_config->mac_by_ip4, ip0); |
| |
| if (PREDICT_FALSE (!macp0)) |
| goto next_l2_feature; /* MAC not found */ |
| |
| /* MAC found, send ARP reply - |
| Convert ARP request packet to ARP reply */ |
| arp0->opcode = clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply); |
| arp0->ip4_over_ethernet[1] = arp0->ip4_over_ethernet[0]; |
| arp0->ip4_over_ethernet[0].ip4.as_u32 = ip0; |
| clib_memcpy (arp0->ip4_over_ethernet[0].ethernet, macp0, 6); |
| clib_memcpy (eth0->dst_address, eth0->src_address, 6); |
| clib_memcpy (eth0->src_address, macp0, 6); |
| n_replies_sent += 1; |
| |
| output_response: |
| /* For BVI, need to use l2-fwd node to send ARP reply as |
| l2-output node cannot output packet to BVI properly */ |
| cfg0 = vec_elt_at_index (l2im->configs, sw_if_index0); |
| if (PREDICT_FALSE (cfg0->bvi)) |
| { |
| vnet_buffer (p0)->l2.feature_bitmap |= L2INPUT_FEAT_FWD; |
| vnet_buffer (p0)->sw_if_index[VLIB_RX] = 0; |
| goto next_l2_feature; |
| } |
| |
| /* Send ARP/ND reply back out input interface through l2-output */ |
| vnet_buffer (p0)->sw_if_index[VLIB_TX] = sw_if_index0; |
| next0 = ARP_TERM_NEXT_L2_OUTPUT; |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, |
| to_next, n_left_to_next, pi0, |
| next0); |
| continue; |
| |
| check_ip6_nd: |
| /* IP6 ND event notification or solicitation handling to generate |
| local response instead of flooding */ |
| iph0 = (ip6_header_t *) l3h0; |
| if (PREDICT_FALSE (ethertype0 == ETHERNET_TYPE_IP6 && |
| iph0->protocol == IP_PROTOCOL_ICMP6 && |
| !ip6_address_is_unspecified |
| (&iph0->src_address))) |
| { |
| sw_if_index0 = vnet_buffer (p0)->sw_if_index[VLIB_RX]; |
| if (vnet_ip6_nd_term |
| (vm, node, p0, eth0, iph0, sw_if_index0, |
| vnet_buffer (p0)->l2.bd_index)) |
| goto output_response; |
| } |
| |
| next_l2_feature: |
| { |
| next0 = vnet_l2_feature_next (p0, arp_term_next_node_index, |
| L2INPUT_FEAT_ARP_TERM); |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, |
| to_next, n_left_to_next, |
| pi0, next0); |
| continue; |
| } |
| |
| drop: |
| if (0 == arp0->ip4_over_ethernet[0].ip4.as_u32 || |
| (arp0->ip4_over_ethernet[0].ip4.as_u32 == |
| arp0->ip4_over_ethernet[1].ip4.as_u32)) |
| { |
| error0 = ETHERNET_ARP_ERROR_gratuitous_arp; |
| } |
| next0 = ARP_TERM_NEXT_DROP; |
| p0->error = node->errors[error0]; |
| |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, |
| to_next, n_left_to_next, pi0, |
| next0); |
| } |
| |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| |
| vlib_error_count (vm, node->node_index, |
| ETHERNET_ARP_ERROR_replies_sent, n_replies_sent); |
| return frame->n_vectors; |
| } |
| |
| /* *INDENT-OFF* */ |
| VLIB_REGISTER_NODE (arp_term_l2bd_node, static) = { |
| .function = arp_term_l2bd, |
| .name = "arp-term-l2bd", |
| .vector_size = sizeof (u32), |
| .n_errors = ETHERNET_ARP_N_ERROR, |
| .error_strings = ethernet_arp_error_strings, |
| .n_next_nodes = ARP_TERM_N_NEXT, |
| .next_nodes = { |
| [ARP_TERM_NEXT_L2_OUTPUT] = "l2-output", |
| [ARP_TERM_NEXT_DROP] = "error-drop", |
| }, |
| .format_buffer = format_ethernet_arp_header, |
| .format_trace = format_arp_term_input_trace, |
| }; |
| /* *INDENT-ON* */ |
| |
| clib_error_t * |
| arp_term_init (vlib_main_t * vm) |
| { |
| // Initialize the feature next-node indexes |
| feat_bitmap_init_next_nodes (vm, |
| arp_term_l2bd_node.index, |
| L2INPUT_N_FEAT, |
| l2input_get_feat_names (), |
| arp_term_next_node_index); |
| return 0; |
| } |
| |
| VLIB_INIT_FUNCTION (arp_term_init); |
| |
| void |
| change_arp_mac (u32 sw_if_index, ethernet_arp_ip4_entry_t * e) |
| { |
| if (e->sw_if_index == sw_if_index) |
| { |
| adj_nbr_walk_nh4 (e->sw_if_index, |
| &e->ip4_address, arp_mk_complete_walk, e); |
| } |
| } |
| |
| void |
| ethernet_arp_change_mac (u32 sw_if_index) |
| { |
| ethernet_arp_main_t *am = ðernet_arp_main; |
| ethernet_arp_ip4_entry_t *e; |
| |
| /* *INDENT-OFF* */ |
| pool_foreach (e, am->ip4_entry_pool, |
| ({ |
| change_arp_mac (sw_if_index, e); |
| })); |
| /* *INDENT-ON* */ |
| } |
| |
| void |
| send_ip4_garp (vlib_main_t * vm, vnet_hw_interface_t * hi) |
| { |
| ip4_main_t *i4m = &ip4_main; |
| u32 sw_if_index = hi->sw_if_index; |
| ip4_address_t *ip4_addr = ip4_interface_first_address (i4m, sw_if_index, 0); |
| |
| if (ip4_addr) |
| { |
| clib_warning ("Sending GARP for IP4 address %U on sw_if_idex %d", |
| format_ip4_address, ip4_addr, sw_if_index); |
| |
| /* Form GARP packet for output - Gratuitous ARP is an ARP request packet |
| where the interface IP/MAC pair is used for both source and request |
| MAC/IP pairs in the request */ |
| u32 bi = 0; |
| ethernet_arp_header_t *h = vlib_packet_template_get_packet |
| (vm, &i4m->ip4_arp_request_packet_template, &bi); |
| clib_memcpy (h->ip4_over_ethernet[0].ethernet, hi->hw_address, |
| sizeof (h->ip4_over_ethernet[0].ethernet)); |
| clib_memcpy (h->ip4_over_ethernet[1].ethernet, hi->hw_address, |
| sizeof (h->ip4_over_ethernet[1].ethernet)); |
| h->ip4_over_ethernet[0].ip4 = ip4_addr[0]; |
| h->ip4_over_ethernet[1].ip4 = ip4_addr[0]; |
| |
| /* Setup MAC header with ARP Etype and broadcast DMAC */ |
| vlib_buffer_t *b = vlib_get_buffer (vm, bi); |
| vlib_buffer_advance (b, -sizeof (ethernet_header_t)); |
| ethernet_header_t *e = vlib_buffer_get_current (b); |
| e->type = clib_host_to_net_u16 (ETHERNET_TYPE_ARP); |
| clib_memcpy (e->src_address, hi->hw_address, sizeof (e->src_address)); |
| memset (e->dst_address, 0xff, sizeof (e->dst_address)); |
| |
| /* Send GARP packet out the specified interface */ |
| vnet_buffer (b)->sw_if_index[VLIB_RX] = |
| vnet_buffer (b)->sw_if_index[VLIB_TX] = sw_if_index; |
| vlib_frame_t *f = vlib_get_frame_to_node (vm, hi->output_node_index); |
| u32 *to_next = vlib_frame_vector_args (f); |
| to_next[0] = bi; |
| f->n_vectors = 1; |
| vlib_put_frame_to_node (vm, hi->output_node_index, f); |
| } |
| } |
| |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |