blob: adc3acaee3c9fe1241a8160a4570fcdd5f713448 [file] [log] [blame]
/*
* Copyright (c) 2016 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* @brief Common utility functions for IPv4, IPv6 and L2 LISP-GPE adjacencys.
*
*/
#ifndef LISP_GPE_ADJACENCY_H__
#define LISP_GPE_ADJACENCY_H__
#include <vnet/fib/fib_node.h>
#include <vnet/lisp-gpe/lisp_gpe.h>
/**
* @brief A LISP GPE Adjacency.
*
* A adjacency represents peer on an L3 sub-interface to which to send traffic.
* adjacencies are thus present in the EID space.
* The peer is identified by the key:{remote-rloc, sub-interface}, which is
* equivalent to the usal adjacency key {next-hop, interface}. So curiously
* the rloc address from the underlay is used as a next hop address in the overlay
* This is OK because:
* 1 - the RLOC is unique in the underlay AND there is only one underlay VRF per
* overlay
* 2 - the RLOC may overlap with an address in the overlay, but we do not create
* an adj-fib (i.e. a route in the overlay FIB for the rloc)
*
*
*/
typedef struct lisp_gpe_adjacency_t_
{
/**
* The LISP adj is a part of the FIB control plane graph.
*/
fib_node_t fib_node;
/**
* remote RLOC. The adjacency's next-hop
*/
ip_address_t remote_rloc;
/**
* The VNI. Used in combination with the local-rloc to get the sub-interface
*/
u32 vni;
/**
* The number of locks/reference counts on the adjacency.
*/
u32 locks;
/**
* The index of the LISP L3 subinterface
*/
u32 lisp_l3_sub_index;
/**
* The SW IF index of the sub-interface this adjacency uses.
* Cached for convenience from the LISP L3 sub-interface
*/
u32 sw_if_index;
/**
* The index of the LISP GPE tunnel that provides the transport
* in the underlay.
*/
u32 tunnel_index;
/**
* This adjacency is a child of the FIB entry to reach the RLOC.
* This is so when the reachability of that RLOC changes, we can restack
* the FIB adjacnecies.
*/
u32 fib_entry_child_index;
/**
* LISP header fields in HOST byte order
*/
u8 flags;
u8 ver_res;
u8 res;
u8 next_protocol;
} lisp_gpe_adjacency_t;
extern index_t lisp_gpe_adjacency_find_or_create_and_lock (const
locator_pair_t *
pair,
u32 rloc_fib_index,
u32 vni);
extern void lisp_gpe_adjacency_unlock (index_t l3si);
extern const lisp_gpe_adjacency_t *lisp_gpe_adjacency_get (index_t l3si);
extern void lisp_gpe_update_adjacency (vnet_main_t * vnm,
u32 sw_if_index, adj_index_t ai);
extern u8 *lisp_gpe_build_rewrite (vnet_main_t * vnm,
u32 sw_if_index,
vnet_link_t link_type,
const void *dst_address);
/**
* @brief Flags for displaying the adjacency
*/
typedef enum lisp_gpe_adjacency_format_flags_t_
{
LISP_GPE_ADJ_FORMAT_FLAG_NONE,
LISP_GPE_ADJ_FORMAT_FLAG_DETAIL,
} lisp_gpe_adjacency_format_flags_t;
extern u8 *format_lisp_gpe_adjacency (u8 * s, va_list * args);
#endif
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/