blob: 1331b5501bc35a394d366026529dd87793a81b25 [file] [log] [blame]
/*
* Copyright (c) 2016 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @brief
* A Data-Path Object is an object that represents actions that are
* applied to packets are they are switched through VPP.
*
* The DPO is a base class that is specialised by other objects to provide
* concrete actions
*
* The VLIB graph nodes are graph of types, the DPO graph is a graph of instances.
*/
#include <vnet/dpo/dpo.h>
#include <vnet/ip/lookup.h>
#include <vnet/ip/format.h>
#include <vnet/adj/adj.h>
#include <vnet/dpo/load_balance.h>
#include <vnet/dpo/mpls_label_dpo.h>
#include <vnet/dpo/lookup_dpo.h>
#include <vnet/dpo/drop_dpo.h>
#include <vnet/dpo/receive_dpo.h>
#include <vnet/dpo/punt_dpo.h>
#include <vnet/dpo/classify_dpo.h>
#include <vnet/dpo/ip_null_dpo.h>
#include <vnet/dpo/replicate_dpo.h>
#include <vnet/dpo/interface_rx_dpo.h>
#include <vnet/dpo/interface_tx_dpo.h>
#include <vnet/dpo/mpls_disposition.h>
#include <vnet/dpo/dvr_dpo.h>
#include <vnet/dpo/l3_proxy_dpo.h>
#include <vnet/dpo/ip6_ll_dpo.h>
#include <vnet/dpo/pw_cw.h>
/**
* Array of char* names for the DPO types and protos
*/
static const char* dpo_type_names[] = DPO_TYPES;
static const char* dpo_proto_names[] = DPO_PROTOS;
/**
* @brief Vector of virtual function tables for the DPO types
*
* This is a vector so we can dynamically register new DPO types in plugins.
*/
static dpo_vft_t *dpo_vfts;
/**
* @brief vector of graph node names associated with each DPO type and protocol.
*
* dpo_nodes[child_type][child_proto][node_X] = node_name;
* i.e.
* dpo_node[DPO_LOAD_BALANCE][DPO_PROTO_IP4][0] = "ip4-lookup"
* dpo_node[DPO_LOAD_BALANCE][DPO_PROTO_IP4][1] = "ip4-load-balance"
*
* This is a vector so we can dynamically register new DPO types in plugins.
*/
static const char* const * const ** dpo_nodes;
/**
* @brief Vector of edge indicies from parent DPO nodes to child
*
* dpo_edges[child_type][child_proto][parent_type][parent_proto] = edge_index
*
* This array is derived at init time from the dpo_nodes above. Note that
* the third dimension in dpo_nodes is lost, hence, the edge index from each
* node MUST be the same.
* Including both the child and parent protocol is required to support the
* case where it changes as the graph is traversed, most notably when an
* MPLS label is popped.
*
* Note that this array is child type specific, not child instance specific.
*/
static u32 ****dpo_edges;
/**
* @brief The DPO type value that can be assigned to the next dynamic
* type registration.
*/
static dpo_type_t dpo_dynamic = DPO_LAST;
dpo_proto_t
vnet_link_to_dpo_proto (vnet_link_t linkt)
{
switch (linkt)
{
case VNET_LINK_IP6:
return (DPO_PROTO_IP6);
case VNET_LINK_IP4:
return (DPO_PROTO_IP4);
case VNET_LINK_MPLS:
return (DPO_PROTO_MPLS);
case VNET_LINK_ETHERNET:
return (DPO_PROTO_ETHERNET);
case VNET_LINK_NSH:
return (DPO_PROTO_NSH);
case VNET_LINK_ARP:
break;
}
ASSERT(0);
return (0);
}
vnet_link_t
dpo_proto_to_link (dpo_proto_t dp)
{
switch (dp)
{
case DPO_PROTO_IP6:
return (VNET_LINK_IP6);
case DPO_PROTO_IP4:
return (VNET_LINK_IP4);
case DPO_PROTO_MPLS:
case DPO_PROTO_BIER:
return (VNET_LINK_MPLS);
case DPO_PROTO_ETHERNET:
return (VNET_LINK_ETHERNET);
case DPO_PROTO_NSH:
return (VNET_LINK_NSH);
}
return (~0);
}
u8 *
format_dpo_type (u8 * s, va_list * args)
{
dpo_type_t type = va_arg (*args, int);
s = format(s, "%s", dpo_type_names[type]);
return (s);
}
u8 *
format_dpo_id (u8 * s, va_list * args)
{
dpo_id_t *dpo = va_arg (*args, dpo_id_t*);
u32 indent = va_arg (*args, u32);
s = format(s, "[@%d]: ", dpo->dpoi_next_node);
if (NULL != dpo_vfts[dpo->dpoi_type].dv_format)
{
s = format(s, "%U",
dpo_vfts[dpo->dpoi_type].dv_format,
dpo->dpoi_index,
indent);
}
else
{
switch (dpo->dpoi_type)
{
case DPO_FIRST:
s = format(s, "unset");
break;
default:
s = format(s, "unknown");
break;
}
}
return (s);
}
u8 *
format_dpo_proto (u8 * s, va_list * args)
{
dpo_proto_t proto = va_arg (*args, int);
return (format(s, "%s", dpo_proto_names[proto]));
}
void
dpo_set (dpo_id_t *dpo,
dpo_type_t type,
dpo_proto_t proto,
index_t index)
{
dpo_id_t tmp = *dpo;
dpo->dpoi_type = type;
dpo->dpoi_proto = proto,
dpo->dpoi_index = index;
if (DPO_ADJACENCY == type)
{
/*
* set the adj subtype
*/
ip_adjacency_t *adj;
adj = adj_get(index);
switch (adj->lookup_next_index)
{
case IP_LOOKUP_NEXT_ARP:
dpo->dpoi_type = DPO_ADJACENCY_INCOMPLETE;
break;
case IP_LOOKUP_NEXT_MIDCHAIN:
dpo->dpoi_type = DPO_ADJACENCY_MIDCHAIN;
break;
case IP_LOOKUP_NEXT_MCAST_MIDCHAIN:
dpo->dpoi_type = DPO_ADJACENCY_MCAST_MIDCHAIN;
break;
case IP_LOOKUP_NEXT_MCAST:
dpo->dpoi_type = DPO_ADJACENCY_MCAST;
break;
case IP_LOOKUP_NEXT_GLEAN:
dpo->dpoi_type = DPO_ADJACENCY_GLEAN;
break;
default:
break;
}
}
dpo_lock(dpo);
dpo_unlock(&tmp);
}
void
dpo_reset (dpo_id_t *dpo)
{
dpo_id_t tmp = DPO_INVALID;
/*
* use the atomic copy operation.
*/
dpo_copy(dpo, &tmp);
}
/**
* \brief
* Compare two Data-path objects
*
* like memcmp, return 0 is matching, !0 otherwise.
*/
int
dpo_cmp (const dpo_id_t *dpo1,
const dpo_id_t *dpo2)
{
int res;
res = dpo1->dpoi_type - dpo2->dpoi_type;
if (0 != res) return (res);
return (dpo1->dpoi_index - dpo2->dpoi_index);
}
void
dpo_copy (dpo_id_t *dst,
const dpo_id_t *src)
{
dpo_id_t tmp = {
.as_u64 = dst->as_u64
};
/*
* the destination is written in a single u64 write - hence atomically w.r.t
* any packets inflight.
*/
dst->as_u64 = src->as_u64;
dpo_lock(dst);
dpo_unlock(&tmp);
}
int
dpo_is_adj (const dpo_id_t *dpo)
{
return ((dpo->dpoi_type == DPO_ADJACENCY) ||
(dpo->dpoi_type == DPO_ADJACENCY_INCOMPLETE) ||
(dpo->dpoi_type == DPO_ADJACENCY_GLEAN) ||
(dpo->dpoi_type == DPO_ADJACENCY_MCAST) ||
(dpo->dpoi_type == DPO_ADJACENCY_MCAST_MIDCHAIN) ||
(dpo->dpoi_type == DPO_ADJACENCY_MIDCHAIN) ||
(dpo->dpoi_type == DPO_ADJACENCY_GLEAN));
}
static u32 *
dpo_default_get_next_node (const dpo_id_t *dpo)
{
u32 *node_indices = NULL;
const char *node_name;
u32 ii = 0;
node_name = dpo_nodes[dpo->dpoi_type][dpo->dpoi_proto][ii];
while (NULL != node_name)
{
vlib_node_t *node;
node = vlib_get_node_by_name(vlib_get_main(), (u8*) node_name);
ASSERT(NULL != node);
vec_add1(node_indices, node->index);
++ii;
node_name = dpo_nodes[dpo->dpoi_type][dpo->dpoi_proto][ii];
}
return (node_indices);
}
/**
* A default variant of the make interpose function that just returns
* the original
*/
static void
dpo_default_mk_interpose (const dpo_id_t *original,
const dpo_id_t *parent,
dpo_id_t *clone)
{
dpo_copy(clone, original);
}
void
dpo_register (dpo_type_t type,
const dpo_vft_t *vft,
const char * const * const * nodes)
{
vec_validate(dpo_vfts, type);
dpo_vfts[type] = *vft;
if (NULL == dpo_vfts[type].dv_get_next_node)
{
dpo_vfts[type].dv_get_next_node = dpo_default_get_next_node;
}
if (NULL == dpo_vfts[type].dv_mk_interpose)
{
dpo_vfts[type].dv_mk_interpose = dpo_default_mk_interpose;
}
vec_validate(dpo_nodes, type);
dpo_nodes[type] = nodes;
}
dpo_type_t
dpo_register_new_type (const dpo_vft_t *vft,
const char * const * const * nodes)
{
dpo_type_t type = dpo_dynamic++;
dpo_register(type, vft, nodes);
return (type);
}
void
dpo_mk_interpose (const dpo_id_t *original,
const dpo_id_t *parent,
dpo_id_t *clone)
{
if (!dpo_id_is_valid(original))
return;
dpo_vfts[original->dpoi_type].dv_mk_interpose(original, parent, clone);
}
void
dpo_lock (dpo_id_t *dpo)
{
if (!dpo_id_is_valid(dpo))
return;
dpo_vfts[dpo->dpoi_type].dv_lock(dpo);
}
void
dpo_unlock (dpo_id_t *dpo)
{
if (!dpo_id_is_valid(dpo))
return;
dpo_vfts[dpo->dpoi_type].dv_unlock(dpo);
}
u32
dpo_get_urpf(const dpo_id_t *dpo)
{
if (dpo_id_is_valid(dpo) &&
(NULL != dpo_vfts[dpo->dpoi_type].dv_get_urpf))
{
return (dpo_vfts[dpo->dpoi_type].dv_get_urpf(dpo));
}
return (~0);
}
static u32
dpo_get_next_node (dpo_type_t child_type,
dpo_proto_t child_proto,
const dpo_id_t *parent_dpo)
{
dpo_proto_t parent_proto;
dpo_type_t parent_type;
parent_type = parent_dpo->dpoi_type;
parent_proto = parent_dpo->dpoi_proto;
vec_validate(dpo_edges, child_type);
vec_validate(dpo_edges[child_type], child_proto);
vec_validate(dpo_edges[child_type][child_proto], parent_type);
vec_validate_init_empty(
dpo_edges[child_type][child_proto][parent_type],
parent_proto, ~0);
/*
* if the edge index has not yet been created for this node to node transition
*/
if (~0 == dpo_edges[child_type][child_proto][parent_type][parent_proto])
{
vlib_node_t *child_node;
u32 *parent_indices;
vlib_main_t *vm;
u32 edge, *pi, cc;
vm = vlib_get_main();
ASSERT(NULL != dpo_vfts[parent_type].dv_get_next_node);
ASSERT(NULL != dpo_nodes[child_type]);
ASSERT(NULL != dpo_nodes[child_type][child_proto]);
cc = 0;
parent_indices = dpo_vfts[parent_type].dv_get_next_node(parent_dpo);
vlib_worker_thread_barrier_sync(vm);
/*
* create a graph arc from each of the child's registered node types,
* to each of the parent's.
*/
while (NULL != dpo_nodes[child_type][child_proto][cc])
{
child_node =
vlib_get_node_by_name(vm,
(u8*) dpo_nodes[child_type][child_proto][cc]);
vec_foreach(pi, parent_indices)
{
edge = vlib_node_add_next(vm, child_node->index, *pi);
if (~0 == dpo_edges[child_type][child_proto][parent_type][parent_proto])
{
dpo_edges[child_type][child_proto][parent_type][parent_proto] = edge;
}
else
{
ASSERT(dpo_edges[child_type][child_proto][parent_type][parent_proto] == edge);
}
}
cc++;
}
vlib_worker_thread_barrier_release(vm);
vec_free(parent_indices);
}
return (dpo_edges[child_type][child_proto][parent_type][parent_proto]);
}
/**
* @brief return already stacked up next node index for a given
* child_type/child_proto and parent_type/patent_proto.
* The VLIB graph arc used is taken from the parent and child types
* passed.
*/
u32
dpo_get_next_node_by_type_and_proto (dpo_type_t child_type,
dpo_proto_t child_proto,
dpo_type_t parent_type,
dpo_proto_t parent_proto)
{
return (dpo_edges[child_type][child_proto][parent_type][parent_proto]);
}
/**
* @brief Stack one DPO object on another, and thus establish a child parent
* relationship. The VLIB graph arc used is taken from the parent and child types
* passed.
*/
static void
dpo_stack_i (u32 edge,
dpo_id_t *dpo,
const dpo_id_t *parent)
{
/*
* in order to get an atomic update of the parent we create a temporary,
* from a copy of the child, and add the next_node. then we copy to the parent
*/
dpo_id_t tmp = DPO_INVALID;
dpo_copy(&tmp, parent);
/*
* get the edge index for the parent to child VLIB graph transition
*/
tmp.dpoi_next_node = edge;
/*
* this update is atomic.
*/
dpo_copy(dpo, &tmp);
dpo_reset(&tmp);
}
/**
* @brief Stack one DPO object on another, and thus establish a child-parent
* relationship. The VLIB graph arc used is taken from the parent and child types
* passed.
*/
void
dpo_stack (dpo_type_t child_type,
dpo_proto_t child_proto,
dpo_id_t *dpo,
const dpo_id_t *parent)
{
dpo_stack_i(dpo_get_next_node(child_type, child_proto, parent), dpo, parent);
}
/**
* @brief Stack one DPO object on another, and thus establish a child parent
* relationship. A new VLIB graph arc is created from the child node passed
* to the nodes registered by the parent. The VLIB infra will ensure this arc
* is added only once.
*/
void
dpo_stack_from_node (u32 child_node_index,
dpo_id_t *dpo,
const dpo_id_t *parent)
{
dpo_type_t parent_type;
u32 *parent_indices;
vlib_main_t *vm;
u32 edge, *pi;
edge = 0;
parent_type = parent->dpoi_type;
vm = vlib_get_main();
ASSERT(NULL != dpo_vfts[parent_type].dv_get_next_node);
parent_indices = dpo_vfts[parent_type].dv_get_next_node(parent);
ASSERT(parent_indices);
/*
* This loop is purposefully written with the worker thread lock in the
* inner loop because;
* 1) the likelihood that the edge does not exist is smaller
* 2) the likelihood there is more than one node is even smaller
* so we are optimising for not need to take the lock
*/
vec_foreach(pi, parent_indices)
{
edge = vlib_node_get_next(vm, child_node_index, *pi);
if (~0 == edge)
{
vlib_worker_thread_barrier_sync(vm);
edge = vlib_node_add_next(vm, child_node_index, *pi);
vlib_worker_thread_barrier_release(vm);
}
}
dpo_stack_i(edge, dpo, parent);
/* should free this local vector to avoid memory leak */
vec_free(parent_indices);
}
static clib_error_t *
dpo_module_init (vlib_main_t * vm)
{
drop_dpo_module_init();
punt_dpo_module_init();
receive_dpo_module_init();
load_balance_module_init();
mpls_label_dpo_module_init();
classify_dpo_module_init();
lookup_dpo_module_init();
ip_null_dpo_module_init();
ip6_ll_dpo_module_init();
replicate_module_init();
interface_rx_dpo_module_init();
interface_tx_dpo_module_init();
mpls_disp_dpo_module_init();
dvr_dpo_module_init();
l3_proxy_dpo_module_init();
pw_cw_dpo_module_init();
return (NULL);
}
/* *INDENT-OFF* */
VLIB_INIT_FUNCTION(dpo_module_init) =
{
.runs_before = VLIB_INITS ("ip_main_init"),
};
/* *INDENT-ON* */
static clib_error_t *
dpo_memory_show (vlib_main_t * vm,
unformat_input_t * input,
vlib_cli_command_t * cmd)
{
dpo_vft_t *vft;
vlib_cli_output (vm, "DPO memory");
vlib_cli_output (vm, "%=30s %=5s %=8s/%=9s totals",
"Name","Size", "in-use", "allocated");
vec_foreach(vft, dpo_vfts)
{
if (NULL != vft->dv_mem_show)
vft->dv_mem_show();
}
return (NULL);
}
/* *INDENT-OFF* */
/*?
* The '<em>sh dpo memory </em>' command displays the memory usage for each
* data-plane object type.
*
* @cliexpar
* @cliexstart{show dpo memory}
* DPO memory
* Name Size in-use /allocated totals
* load-balance 64 12 / 12 768/768
* Adjacency 256 1 / 1 256/256
* Receive 24 5 / 5 120/120
* Lookup 12 0 / 0 0/0
* Classify 12 0 / 0 0/0
* MPLS label 24 0 / 0 0/0
* @cliexend
?*/
VLIB_CLI_COMMAND (show_fib_memory, static) = {
.path = "show dpo memory",
.function = dpo_memory_show,
.short_help = "show dpo memory",
};
/* *INDENT-ON* */