| /* |
| * Copyright (c) 2015 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| /* |
| * ip/ip4_fib.h: ip4 mtrie fib |
| * |
| * Copyright (c) 2012 Eliot Dresselhaus |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining |
| * a copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sublicense, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be |
| * included in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include <vnet/ip/ip.h> |
| #include <vnet/ip/ip4_mtrie.h> |
| #include <vnet/fib/ip4_fib.h> |
| |
| |
| /** |
| * Global pool of IPv4 8bit PLYs |
| */ |
| ip4_fib_mtrie_8_ply_t *ip4_ply_pool; |
| |
| always_inline u32 |
| ip4_fib_mtrie_leaf_is_non_empty (ip4_fib_mtrie_8_ply_t * p, u8 dst_byte) |
| { |
| /* |
| * It's 'non-empty' if the length of the leaf stored is greater than the |
| * length of a leaf in the covering ply. i.e. the leaf is more specific |
| * than it's would be cover in the covering ply |
| */ |
| if (p->dst_address_bits_of_leaves[dst_byte] > p->dst_address_bits_base) |
| return (1); |
| return (0); |
| } |
| |
| always_inline ip4_fib_mtrie_leaf_t |
| ip4_fib_mtrie_leaf_set_adj_index (u32 adj_index) |
| { |
| ip4_fib_mtrie_leaf_t l; |
| l = 1 + 2 * adj_index; |
| ASSERT (ip4_fib_mtrie_leaf_get_adj_index (l) == adj_index); |
| return l; |
| } |
| |
| always_inline u32 |
| ip4_fib_mtrie_leaf_is_next_ply (ip4_fib_mtrie_leaf_t n) |
| { |
| return (n & 1) == 0; |
| } |
| |
| always_inline u32 |
| ip4_fib_mtrie_leaf_get_next_ply_index (ip4_fib_mtrie_leaf_t n) |
| { |
| ASSERT (ip4_fib_mtrie_leaf_is_next_ply (n)); |
| return n >> 1; |
| } |
| |
| always_inline ip4_fib_mtrie_leaf_t |
| ip4_fib_mtrie_leaf_set_next_ply_index (u32 i) |
| { |
| ip4_fib_mtrie_leaf_t l; |
| l = 0 + 2 * i; |
| ASSERT (ip4_fib_mtrie_leaf_get_next_ply_index (l) == i); |
| return l; |
| } |
| |
| #ifndef __ALTIVEC__ |
| #define PLY_X4_SPLAT_INIT(init_x4, init) \ |
| init_x4 = u32x4_splat (init); |
| #else |
| #define PLY_X4_SPLAT_INIT(init_x4, init) \ |
| { \ |
| u32x4_union_t y; \ |
| y.as_u32[0] = init; \ |
| y.as_u32[1] = init; \ |
| y.as_u32[2] = init; \ |
| y.as_u32[3] = init; \ |
| init_x4 = y.as_u32x4; \ |
| } |
| #endif |
| |
| #ifdef CLIB_HAVE_VEC128 |
| #define PLY_INIT_LEAVES(p) \ |
| { \ |
| u32x4 *l, init_x4; \ |
| \ |
| PLY_X4_SPLAT_INIT(init_x4, init); \ |
| for (l = p->leaves_as_u32x4; \ |
| l < p->leaves_as_u32x4 + ARRAY_LEN (p->leaves_as_u32x4); \ |
| l += 4) \ |
| { \ |
| l[0] = init_x4; \ |
| l[1] = init_x4; \ |
| l[2] = init_x4; \ |
| l[3] = init_x4; \ |
| } \ |
| } |
| #else |
| #define PLY_INIT_LEAVES(p) \ |
| { \ |
| u32 *l; \ |
| \ |
| for (l = p->leaves; l < p->leaves + ARRAY_LEN (p->leaves); l += 4) \ |
| { \ |
| l[0] = init; \ |
| l[1] = init; \ |
| l[2] = init; \ |
| l[3] = init; \ |
| } \ |
| } |
| #endif |
| |
| #define PLY_INIT(p, init, prefix_len, ply_base_len) \ |
| { \ |
| /* \ |
| * A leaf is 'empty' if it represents a leaf from the covering PLY \ |
| * i.e. if the prefix length of the leaf is less than or equal to \ |
| * the prefix length of the PLY \ |
| */ \ |
| p->n_non_empty_leafs = (prefix_len > ply_base_len ? \ |
| ARRAY_LEN (p->leaves) : 0); \ |
| clib_memset (p->dst_address_bits_of_leaves, prefix_len, \ |
| sizeof (p->dst_address_bits_of_leaves)); \ |
| p->dst_address_bits_base = ply_base_len; \ |
| \ |
| /* Initialize leaves. */ \ |
| PLY_INIT_LEAVES(p); \ |
| } |
| |
| static void |
| ply_8_init (ip4_fib_mtrie_8_ply_t * p, |
| ip4_fib_mtrie_leaf_t init, uword prefix_len, u32 ply_base_len) |
| { |
| PLY_INIT (p, init, prefix_len, ply_base_len); |
| } |
| |
| static void |
| ply_16_init (ip4_fib_mtrie_16_ply_t * p, |
| ip4_fib_mtrie_leaf_t init, uword prefix_len) |
| { |
| clib_memset (p->dst_address_bits_of_leaves, prefix_len, |
| sizeof (p->dst_address_bits_of_leaves)); |
| PLY_INIT_LEAVES (p); |
| } |
| |
| static ip4_fib_mtrie_leaf_t |
| ply_create (ip4_fib_mtrie_t * m, |
| ip4_fib_mtrie_leaf_t init_leaf, |
| u32 leaf_prefix_len, u32 ply_base_len) |
| { |
| ip4_fib_mtrie_8_ply_t *p; |
| /* Get cache aligned ply. */ |
| |
| pool_get_aligned (ip4_ply_pool, p, CLIB_CACHE_LINE_BYTES); |
| |
| ply_8_init (p, init_leaf, leaf_prefix_len, ply_base_len); |
| return ip4_fib_mtrie_leaf_set_next_ply_index (p - ip4_ply_pool); |
| } |
| |
| always_inline ip4_fib_mtrie_8_ply_t * |
| get_next_ply_for_leaf (ip4_fib_mtrie_t * m, ip4_fib_mtrie_leaf_t l) |
| { |
| uword n = ip4_fib_mtrie_leaf_get_next_ply_index (l); |
| |
| return pool_elt_at_index (ip4_ply_pool, n); |
| } |
| |
| void |
| ip4_mtrie_free (ip4_fib_mtrie_t * m) |
| { |
| /* the root ply is embedded so there is nothing to do, |
| * the assumption being that the IP4 FIB table has emptied the trie |
| * before deletion. |
| */ |
| #if CLIB_DEBUG > 0 |
| int i; |
| for (i = 0; i < ARRAY_LEN (m->root_ply.leaves); i++) |
| { |
| ASSERT (!ip4_fib_mtrie_leaf_is_next_ply (m->root_ply.leaves[i])); |
| } |
| #endif |
| } |
| |
| void |
| ip4_mtrie_init (ip4_fib_mtrie_t * m) |
| { |
| ply_16_init (&m->root_ply, IP4_FIB_MTRIE_LEAF_EMPTY, 0); |
| } |
| |
| typedef struct |
| { |
| ip4_address_t dst_address; |
| u32 dst_address_length; |
| u32 adj_index; |
| u32 cover_address_length; |
| u32 cover_adj_index; |
| } ip4_fib_mtrie_set_unset_leaf_args_t; |
| |
| static void |
| set_ply_with_more_specific_leaf (ip4_fib_mtrie_t * m, |
| ip4_fib_mtrie_8_ply_t * ply, |
| ip4_fib_mtrie_leaf_t new_leaf, |
| uword new_leaf_dst_address_bits) |
| { |
| ip4_fib_mtrie_leaf_t old_leaf; |
| uword i; |
| |
| ASSERT (ip4_fib_mtrie_leaf_is_terminal (new_leaf)); |
| |
| for (i = 0; i < ARRAY_LEN (ply->leaves); i++) |
| { |
| old_leaf = ply->leaves[i]; |
| |
| /* Recurse into sub plies. */ |
| if (!ip4_fib_mtrie_leaf_is_terminal (old_leaf)) |
| { |
| ip4_fib_mtrie_8_ply_t *sub_ply = |
| get_next_ply_for_leaf (m, old_leaf); |
| set_ply_with_more_specific_leaf (m, sub_ply, new_leaf, |
| new_leaf_dst_address_bits); |
| } |
| |
| /* Replace less specific terminal leaves with new leaf. */ |
| else if (new_leaf_dst_address_bits >= |
| ply->dst_address_bits_of_leaves[i]) |
| { |
| clib_atomic_store_rel_n (&ply->leaves[i], new_leaf); |
| ply->dst_address_bits_of_leaves[i] = new_leaf_dst_address_bits; |
| ply->n_non_empty_leafs += ip4_fib_mtrie_leaf_is_non_empty (ply, i); |
| } |
| } |
| } |
| |
| static void |
| set_leaf (ip4_fib_mtrie_t * m, |
| const ip4_fib_mtrie_set_unset_leaf_args_t * a, |
| u32 old_ply_index, u32 dst_address_byte_index) |
| { |
| ip4_fib_mtrie_leaf_t old_leaf, new_leaf; |
| i32 n_dst_bits_next_plies; |
| u8 dst_byte; |
| ip4_fib_mtrie_8_ply_t *old_ply; |
| |
| old_ply = pool_elt_at_index (ip4_ply_pool, old_ply_index); |
| |
| ASSERT (a->dst_address_length <= 32); |
| ASSERT (dst_address_byte_index < ARRAY_LEN (a->dst_address.as_u8)); |
| |
| /* how many bits of the destination address are in the next PLY */ |
| n_dst_bits_next_plies = |
| a->dst_address_length - BITS (u8) * (dst_address_byte_index + 1); |
| |
| dst_byte = a->dst_address.as_u8[dst_address_byte_index]; |
| |
| /* Number of bits next plies <= 0 => insert leaves this ply. */ |
| if (n_dst_bits_next_plies <= 0) |
| { |
| /* The mask length of the address to insert maps to this ply */ |
| uword old_leaf_is_terminal; |
| u32 i, n_dst_bits_this_ply; |
| |
| /* The number of bits, and hence slots/buckets, we will fill */ |
| n_dst_bits_this_ply = clib_min (8, -n_dst_bits_next_plies); |
| ASSERT ((a->dst_address.as_u8[dst_address_byte_index] & |
| pow2_mask (n_dst_bits_this_ply)) == 0); |
| |
| /* Starting at the value of the byte at this section of the v4 address |
| * fill the buckets/slots of the ply */ |
| for (i = dst_byte; i < dst_byte + (1 << n_dst_bits_this_ply); i++) |
| { |
| ip4_fib_mtrie_8_ply_t *new_ply; |
| |
| old_leaf = old_ply->leaves[i]; |
| old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf); |
| |
| if (a->dst_address_length >= old_ply->dst_address_bits_of_leaves[i]) |
| { |
| /* The new leaf is more or equally specific than the one currently |
| * occupying the slot */ |
| new_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index); |
| |
| if (old_leaf_is_terminal) |
| { |
| /* The current leaf is terminal, we can replace it with |
| * the new one */ |
| old_ply->n_non_empty_leafs -= |
| ip4_fib_mtrie_leaf_is_non_empty (old_ply, i); |
| |
| old_ply->dst_address_bits_of_leaves[i] = |
| a->dst_address_length; |
| clib_atomic_store_rel_n (&old_ply->leaves[i], new_leaf); |
| |
| old_ply->n_non_empty_leafs += |
| ip4_fib_mtrie_leaf_is_non_empty (old_ply, i); |
| ASSERT (old_ply->n_non_empty_leafs <= |
| ARRAY_LEN (old_ply->leaves)); |
| } |
| else |
| { |
| /* Existing leaf points to another ply. We need to place |
| * new_leaf into all more specific slots. */ |
| new_ply = get_next_ply_for_leaf (m, old_leaf); |
| set_ply_with_more_specific_leaf (m, new_ply, new_leaf, |
| a->dst_address_length); |
| } |
| } |
| else if (!old_leaf_is_terminal) |
| { |
| /* The current leaf is less specific and not termial (i.e. a ply), |
| * recurse on down the trie */ |
| new_ply = get_next_ply_for_leaf (m, old_leaf); |
| set_leaf (m, a, new_ply - ip4_ply_pool, |
| dst_address_byte_index + 1); |
| } |
| /* |
| * else |
| * the route we are adding is less specific than the leaf currently |
| * occupying this slot. leave it there |
| */ |
| } |
| } |
| else |
| { |
| /* The address to insert requires us to move down at a lower level of |
| * the trie - recurse on down */ |
| ip4_fib_mtrie_8_ply_t *new_ply; |
| u8 ply_base_len; |
| |
| ply_base_len = 8 * (dst_address_byte_index + 1); |
| |
| old_leaf = old_ply->leaves[dst_byte]; |
| |
| if (ip4_fib_mtrie_leaf_is_terminal (old_leaf)) |
| { |
| /* There is a leaf occupying the slot. Replace it with a new ply */ |
| old_ply->n_non_empty_leafs -= |
| ip4_fib_mtrie_leaf_is_non_empty (old_ply, dst_byte); |
| |
| new_leaf = |
| ply_create (m, old_leaf, |
| old_ply->dst_address_bits_of_leaves[dst_byte], |
| ply_base_len); |
| new_ply = get_next_ply_for_leaf (m, new_leaf); |
| |
| /* Refetch since ply_create may move pool. */ |
| old_ply = pool_elt_at_index (ip4_ply_pool, old_ply_index); |
| |
| clib_atomic_store_rel_n (&old_ply->leaves[dst_byte], new_leaf); |
| old_ply->dst_address_bits_of_leaves[dst_byte] = ply_base_len; |
| |
| old_ply->n_non_empty_leafs += |
| ip4_fib_mtrie_leaf_is_non_empty (old_ply, dst_byte); |
| ASSERT (old_ply->n_non_empty_leafs >= 0); |
| } |
| else |
| new_ply = get_next_ply_for_leaf (m, old_leaf); |
| |
| set_leaf (m, a, new_ply - ip4_ply_pool, dst_address_byte_index + 1); |
| } |
| } |
| |
| static void |
| set_root_leaf (ip4_fib_mtrie_t * m, |
| const ip4_fib_mtrie_set_unset_leaf_args_t * a) |
| { |
| ip4_fib_mtrie_leaf_t old_leaf, new_leaf; |
| ip4_fib_mtrie_16_ply_t *old_ply; |
| i32 n_dst_bits_next_plies; |
| u16 dst_byte; |
| |
| old_ply = &m->root_ply; |
| |
| ASSERT (a->dst_address_length <= 32); |
| |
| /* how many bits of the destination address are in the next PLY */ |
| n_dst_bits_next_plies = a->dst_address_length - BITS (u16); |
| |
| dst_byte = a->dst_address.as_u16[0]; |
| |
| /* Number of bits next plies <= 0 => insert leaves this ply. */ |
| if (n_dst_bits_next_plies <= 0) |
| { |
| /* The mask length of the address to insert maps to this ply */ |
| uword old_leaf_is_terminal; |
| u32 i, n_dst_bits_this_ply; |
| |
| /* The number of bits, and hence slots/buckets, we will fill */ |
| n_dst_bits_this_ply = 16 - a->dst_address_length; |
| ASSERT ((clib_host_to_net_u16 (a->dst_address.as_u16[0]) & |
| pow2_mask (n_dst_bits_this_ply)) == 0); |
| |
| /* Starting at the value of the byte at this section of the v4 address |
| * fill the buckets/slots of the ply */ |
| for (i = 0; i < (1 << n_dst_bits_this_ply); i++) |
| { |
| ip4_fib_mtrie_8_ply_t *new_ply; |
| u16 slot; |
| |
| slot = clib_net_to_host_u16 (dst_byte); |
| slot += i; |
| slot = clib_host_to_net_u16 (slot); |
| |
| old_leaf = old_ply->leaves[slot]; |
| old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf); |
| |
| if (a->dst_address_length >= |
| old_ply->dst_address_bits_of_leaves[slot]) |
| { |
| /* The new leaf is more or equally specific than the one currently |
| * occupying the slot */ |
| new_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index); |
| |
| if (old_leaf_is_terminal) |
| { |
| /* The current leaf is terminal, we can replace it with |
| * the new one */ |
| old_ply->dst_address_bits_of_leaves[slot] = |
| a->dst_address_length; |
| clib_atomic_store_rel_n (&old_ply->leaves[slot], new_leaf); |
| } |
| else |
| { |
| /* Existing leaf points to another ply. We need to place |
| * new_leaf into all more specific slots. */ |
| new_ply = get_next_ply_for_leaf (m, old_leaf); |
| set_ply_with_more_specific_leaf (m, new_ply, new_leaf, |
| a->dst_address_length); |
| } |
| } |
| else if (!old_leaf_is_terminal) |
| { |
| /* The current leaf is less specific and not termial (i.e. a ply), |
| * recurse on down the trie */ |
| new_ply = get_next_ply_for_leaf (m, old_leaf); |
| set_leaf (m, a, new_ply - ip4_ply_pool, 2); |
| } |
| /* |
| * else |
| * the route we are adding is less specific than the leaf currently |
| * occupying this slot. leave it there |
| */ |
| } |
| } |
| else |
| { |
| /* The address to insert requires us to move down at a lower level of |
| * the trie - recurse on down */ |
| ip4_fib_mtrie_8_ply_t *new_ply; |
| u8 ply_base_len; |
| |
| ply_base_len = 16; |
| |
| old_leaf = old_ply->leaves[dst_byte]; |
| |
| if (ip4_fib_mtrie_leaf_is_terminal (old_leaf)) |
| { |
| /* There is a leaf occupying the slot. Replace it with a new ply */ |
| new_leaf = |
| ply_create (m, old_leaf, |
| old_ply->dst_address_bits_of_leaves[dst_byte], |
| ply_base_len); |
| new_ply = get_next_ply_for_leaf (m, new_leaf); |
| |
| clib_atomic_store_rel_n (&old_ply->leaves[dst_byte], new_leaf); |
| old_ply->dst_address_bits_of_leaves[dst_byte] = ply_base_len; |
| } |
| else |
| new_ply = get_next_ply_for_leaf (m, old_leaf); |
| |
| set_leaf (m, a, new_ply - ip4_ply_pool, 2); |
| } |
| } |
| |
| static uword |
| unset_leaf (ip4_fib_mtrie_t * m, |
| const ip4_fib_mtrie_set_unset_leaf_args_t * a, |
| ip4_fib_mtrie_8_ply_t * old_ply, u32 dst_address_byte_index) |
| { |
| ip4_fib_mtrie_leaf_t old_leaf, del_leaf; |
| i32 n_dst_bits_next_plies; |
| i32 i, n_dst_bits_this_ply, old_leaf_is_terminal; |
| u8 dst_byte; |
| |
| ASSERT (a->dst_address_length <= 32); |
| ASSERT (dst_address_byte_index < ARRAY_LEN (a->dst_address.as_u8)); |
| |
| n_dst_bits_next_plies = |
| a->dst_address_length - BITS (u8) * (dst_address_byte_index + 1); |
| |
| dst_byte = a->dst_address.as_u8[dst_address_byte_index]; |
| if (n_dst_bits_next_plies < 0) |
| dst_byte &= ~pow2_mask (-n_dst_bits_next_plies); |
| |
| n_dst_bits_this_ply = |
| n_dst_bits_next_plies <= 0 ? -n_dst_bits_next_plies : 0; |
| n_dst_bits_this_ply = clib_min (8, n_dst_bits_this_ply); |
| |
| del_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index); |
| |
| for (i = dst_byte; i < dst_byte + (1 << n_dst_bits_this_ply); i++) |
| { |
| old_leaf = old_ply->leaves[i]; |
| old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf); |
| |
| if (old_leaf == del_leaf |
| || (!old_leaf_is_terminal |
| && unset_leaf (m, a, get_next_ply_for_leaf (m, old_leaf), |
| dst_address_byte_index + 1))) |
| { |
| old_ply->n_non_empty_leafs -= |
| ip4_fib_mtrie_leaf_is_non_empty (old_ply, i); |
| |
| clib_atomic_store_rel_n (&old_ply->leaves[i], |
| ip4_fib_mtrie_leaf_set_adj_index |
| (a->cover_adj_index)); |
| old_ply->dst_address_bits_of_leaves[i] = a->cover_address_length; |
| |
| old_ply->n_non_empty_leafs += |
| ip4_fib_mtrie_leaf_is_non_empty (old_ply, i); |
| |
| ASSERT (old_ply->n_non_empty_leafs >= 0); |
| if (old_ply->n_non_empty_leafs == 0 && dst_address_byte_index > 0) |
| { |
| pool_put (ip4_ply_pool, old_ply); |
| /* Old ply was deleted. */ |
| return 1; |
| } |
| #if CLIB_DEBUG > 0 |
| else if (dst_address_byte_index) |
| { |
| int ii, count = 0; |
| for (ii = 0; ii < ARRAY_LEN (old_ply->leaves); ii++) |
| { |
| count += ip4_fib_mtrie_leaf_is_non_empty (old_ply, ii); |
| } |
| ASSERT (count); |
| } |
| #endif |
| } |
| } |
| |
| /* Old ply was not deleted. */ |
| return 0; |
| } |
| |
| static void |
| unset_root_leaf (ip4_fib_mtrie_t * m, |
| const ip4_fib_mtrie_set_unset_leaf_args_t * a) |
| { |
| ip4_fib_mtrie_leaf_t old_leaf, del_leaf; |
| i32 n_dst_bits_next_plies; |
| i32 i, n_dst_bits_this_ply, old_leaf_is_terminal; |
| u16 dst_byte; |
| ip4_fib_mtrie_16_ply_t *old_ply; |
| |
| ASSERT (a->dst_address_length <= 32); |
| |
| old_ply = &m->root_ply; |
| n_dst_bits_next_plies = a->dst_address_length - BITS (u16); |
| |
| dst_byte = a->dst_address.as_u16[0]; |
| |
| n_dst_bits_this_ply = (n_dst_bits_next_plies <= 0 ? |
| (16 - a->dst_address_length) : 0); |
| |
| del_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index); |
| |
| /* Starting at the value of the byte at this section of the v4 address |
| * fill the buckets/slots of the ply */ |
| for (i = 0; i < (1 << n_dst_bits_this_ply); i++) |
| { |
| u16 slot; |
| |
| slot = clib_net_to_host_u16 (dst_byte); |
| slot += i; |
| slot = clib_host_to_net_u16 (slot); |
| |
| old_leaf = old_ply->leaves[slot]; |
| old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf); |
| |
| if (old_leaf == del_leaf |
| || (!old_leaf_is_terminal |
| && unset_leaf (m, a, get_next_ply_for_leaf (m, old_leaf), 2))) |
| { |
| clib_atomic_store_rel_n (&old_ply->leaves[slot], |
| ip4_fib_mtrie_leaf_set_adj_index |
| (a->cover_adj_index)); |
| old_ply->dst_address_bits_of_leaves[slot] = a->cover_address_length; |
| } |
| } |
| } |
| |
| void |
| ip4_fib_mtrie_route_add (ip4_fib_mtrie_t * m, |
| const ip4_address_t * dst_address, |
| u32 dst_address_length, u32 adj_index) |
| { |
| ip4_fib_mtrie_set_unset_leaf_args_t a; |
| ip4_main_t *im = &ip4_main; |
| |
| /* Honor dst_address_length. Fib masks are in network byte order */ |
| a.dst_address.as_u32 = (dst_address->as_u32 & |
| im->fib_masks[dst_address_length]); |
| a.dst_address_length = dst_address_length; |
| a.adj_index = adj_index; |
| |
| set_root_leaf (m, &a); |
| } |
| |
| void |
| ip4_fib_mtrie_route_del (ip4_fib_mtrie_t * m, |
| const ip4_address_t * dst_address, |
| u32 dst_address_length, |
| u32 adj_index, |
| u32 cover_address_length, u32 cover_adj_index) |
| { |
| ip4_fib_mtrie_set_unset_leaf_args_t a; |
| ip4_main_t *im = &ip4_main; |
| |
| /* Honor dst_address_length. Fib masks are in network byte order */ |
| a.dst_address.as_u32 = (dst_address->as_u32 & |
| im->fib_masks[dst_address_length]); |
| a.dst_address_length = dst_address_length; |
| a.adj_index = adj_index; |
| a.cover_adj_index = cover_adj_index; |
| a.cover_address_length = cover_address_length; |
| |
| /* the top level ply is never removed */ |
| unset_root_leaf (m, &a); |
| } |
| |
| /* Returns number of bytes of memory used by mtrie. */ |
| static uword |
| mtrie_ply_memory_usage (ip4_fib_mtrie_t * m, ip4_fib_mtrie_8_ply_t * p) |
| { |
| uword bytes, i; |
| |
| bytes = sizeof (p[0]); |
| for (i = 0; i < ARRAY_LEN (p->leaves); i++) |
| { |
| ip4_fib_mtrie_leaf_t l = p->leaves[i]; |
| if (ip4_fib_mtrie_leaf_is_next_ply (l)) |
| bytes += mtrie_ply_memory_usage (m, get_next_ply_for_leaf (m, l)); |
| } |
| |
| return bytes; |
| } |
| |
| /* Returns number of bytes of memory used by mtrie. */ |
| uword |
| ip4_fib_mtrie_memory_usage (ip4_fib_mtrie_t * m) |
| { |
| uword bytes, i; |
| |
| bytes = sizeof (*m); |
| for (i = 0; i < ARRAY_LEN (m->root_ply.leaves); i++) |
| { |
| ip4_fib_mtrie_leaf_t l = m->root_ply.leaves[i]; |
| if (ip4_fib_mtrie_leaf_is_next_ply (l)) |
| bytes += mtrie_ply_memory_usage (m, get_next_ply_for_leaf (m, l)); |
| } |
| |
| return bytes; |
| } |
| |
| static u8 * |
| format_ip4_fib_mtrie_leaf (u8 * s, va_list * va) |
| { |
| ip4_fib_mtrie_leaf_t l = va_arg (*va, ip4_fib_mtrie_leaf_t); |
| |
| if (ip4_fib_mtrie_leaf_is_terminal (l)) |
| s = format (s, "lb-index %d", ip4_fib_mtrie_leaf_get_adj_index (l)); |
| else |
| s = format (s, "next ply %d", ip4_fib_mtrie_leaf_get_next_ply_index (l)); |
| return s; |
| } |
| |
| #define FORMAT_PLY(s, _p, _a, _i, _base_address, _ply_max_len, _indent) \ |
| ({ \ |
| u32 a, ia_length; \ |
| ip4_address_t ia; \ |
| ip4_fib_mtrie_leaf_t _l = p->leaves[(_i)]; \ |
| \ |
| a = (_base_address) + ((_a) << (32 - (_ply_max_len))); \ |
| ia.as_u32 = clib_host_to_net_u32 (a); \ |
| ia_length = (_p)->dst_address_bits_of_leaves[(_i)]; \ |
| s = format (s, "\n%U%U %U", \ |
| format_white_space, (_indent) + 4, \ |
| format_ip4_address_and_length, &ia, ia_length, \ |
| format_ip4_fib_mtrie_leaf, _l); \ |
| \ |
| if (ip4_fib_mtrie_leaf_is_next_ply (_l)) \ |
| s = format (s, "\n%U", \ |
| format_ip4_fib_mtrie_ply, m, a, (_indent) + 8, \ |
| ip4_fib_mtrie_leaf_get_next_ply_index (_l)); \ |
| s; \ |
| }) |
| |
| static u8 * |
| format_ip4_fib_mtrie_ply (u8 * s, va_list * va) |
| { |
| ip4_fib_mtrie_t *m = va_arg (*va, ip4_fib_mtrie_t *); |
| u32 base_address = va_arg (*va, u32); |
| u32 indent = va_arg (*va, u32); |
| u32 ply_index = va_arg (*va, u32); |
| ip4_fib_mtrie_8_ply_t *p; |
| int i; |
| |
| p = pool_elt_at_index (ip4_ply_pool, ply_index); |
| s = format (s, "%Uply index %d, %d non-empty leaves", |
| format_white_space, indent, ply_index, p->n_non_empty_leafs); |
| |
| for (i = 0; i < ARRAY_LEN (p->leaves); i++) |
| { |
| if (ip4_fib_mtrie_leaf_is_non_empty (p, i)) |
| { |
| s = FORMAT_PLY (s, p, i, i, base_address, |
| p->dst_address_bits_base + 8, indent); |
| } |
| } |
| |
| return s; |
| } |
| |
| u8 * |
| format_ip4_fib_mtrie (u8 * s, va_list * va) |
| { |
| ip4_fib_mtrie_t *m = va_arg (*va, ip4_fib_mtrie_t *); |
| int verbose = va_arg (*va, int); |
| ip4_fib_mtrie_16_ply_t *p; |
| u32 base_address = 0; |
| int i; |
| |
| s = format (s, "%d plies, memory usage %U\n", |
| pool_elts (ip4_ply_pool), |
| format_memory_size, ip4_fib_mtrie_memory_usage (m)); |
| s = format (s, "root-ply"); |
| p = &m->root_ply; |
| |
| if (verbose) |
| { |
| s = format (s, "root-ply"); |
| p = &m->root_ply; |
| |
| for (i = 0; i < ARRAY_LEN (p->leaves); i++) |
| { |
| u16 slot; |
| |
| slot = clib_host_to_net_u16 (i); |
| |
| if (p->dst_address_bits_of_leaves[slot] > 0) |
| { |
| s = FORMAT_PLY (s, p, i, slot, base_address, 16, 0); |
| } |
| } |
| } |
| |
| return s; |
| } |
| |
| /** Default heap size for the IPv4 mtries */ |
| #define IP4_FIB_DEFAULT_MTRIE_HEAP_SIZE (32<<20) |
| #ifndef MAP_HUGE_SHIFT |
| #define MAP_HUGE_SHIFT 26 |
| #endif |
| |
| static clib_error_t * |
| ip4_mtrie_module_init (vlib_main_t * vm) |
| { |
| CLIB_UNUSED (ip4_fib_mtrie_8_ply_t * p); |
| clib_error_t *error = NULL; |
| |
| /* Burn one ply so index 0 is taken */ |
| pool_get (ip4_ply_pool, p); |
| |
| return (error); |
| } |
| |
| VLIB_INIT_FUNCTION (ip4_mtrie_module_init); |
| |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |