| /* |
| Copyright (c) 2011 Cisco and/or its affiliates. |
| |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <vppinfra/anneal.h> |
| |
| /* |
| * Optimize an objective function by simulated annealing |
| * |
| * Here are a couple of short, easily-understood |
| * descriptions of simulated annealing: |
| * |
| * http://www.cs.sandia.gov/opt/survey/sa.html |
| * Numerical Recipes in C, 2nd ed., 444ff |
| * |
| * The description in the Wikipedia is not helpful. |
| * |
| * The algorithm tries to produce a decent answer to combinatorially |
| * explosive optimization problems by analogy to slow cooling |
| * of hot metal, aka annealing. |
| * |
| * There are (at least) three problem-dependent annealing parameters |
| * to consider: |
| * |
| * t0, the initial "temperature. Should be set so that the probability |
| * of accepting a transition to a higher cost configuration is |
| * initially about 0.8. |
| * |
| * ntemps, the number of temperatures to use. Each successive temperature |
| * is some fraction of the previous temperature. |
| * |
| * nmoves_per_temp, the number of configurations to try at each temperature |
| * |
| * It is a black art to set ntemps, nmoves_per_temp, and the rate |
| * at which the temperature drops. Go too fast with too few iterations, |
| * and the computation falls into a local minimum instead of the |
| * (desired) global minimum. |
| */ |
| |
| void |
| clib_anneal (clib_anneal_param_t * p) |
| { |
| f64 t; |
| f64 cost, prev_cost, delta_cost, initial_cost, best_cost; |
| f64 random_accept, delta_cost_over_t; |
| f64 total_increase = 0.0, average_increase; |
| u32 i, j; |
| u32 number_of_increases = 0; |
| u32 accepted_this_temperature; |
| u32 best_saves_this_temperature; |
| int accept; |
| |
| t = p->initial_temperature; |
| best_cost = initial_cost = prev_cost = p->anneal_metric (p->opaque); |
| p->anneal_save_best_configuration (p->opaque); |
| |
| if (p->flags & CLIB_ANNEAL_VERBOSE) |
| fformat (stdout, "Initial cost %.2f\n", initial_cost); |
| |
| for (i = 0; i < p->number_of_temperatures; i++) |
| { |
| accepted_this_temperature = 0; |
| best_saves_this_temperature = 0; |
| |
| p->anneal_restore_best_configuration (p->opaque); |
| cost = best_cost; |
| |
| for (j = 0; j < p->number_of_configurations_per_temperature; j++) |
| { |
| p->anneal_new_configuration (p->opaque); |
| cost = p->anneal_metric (p->opaque); |
| |
| delta_cost = cost - prev_cost; |
| |
| /* cost function looks better, accept this move */ |
| if (p->flags & CLIB_ANNEAL_MINIMIZE) |
| accept = delta_cost < 0.0; |
| else |
| accept = delta_cost > 0.0; |
| |
| if (accept) |
| { |
| if (p->flags & CLIB_ANNEAL_MINIMIZE) |
| if (cost < best_cost) |
| { |
| if (p->flags & CLIB_ANNEAL_VERBOSE) |
| fformat (stdout, "New best cost %.2f\n", cost); |
| best_cost = cost; |
| p->anneal_save_best_configuration (p->opaque); |
| best_saves_this_temperature++; |
| } |
| |
| accepted_this_temperature++; |
| prev_cost = cost; |
| continue; |
| } |
| |
| /* cost function worse, keep stats to suggest t0 */ |
| total_increase += (p->flags & CLIB_ANNEAL_MINIMIZE) ? |
| delta_cost : -delta_cost; |
| |
| number_of_increases++; |
| |
| /* |
| * Accept a higher cost with Pr { e^(-(delta_cost / T)) }, |
| * equivalent to rnd[0,1] < e^(-(delta_cost / T)) |
| * |
| * AKA, the Boltzmann factor. |
| */ |
| random_accept = random_f64 (&p->random_seed); |
| |
| delta_cost_over_t = delta_cost / t; |
| |
| if (random_accept < exp (-delta_cost_over_t)) |
| { |
| accepted_this_temperature++; |
| prev_cost = cost; |
| continue; |
| } |
| p->anneal_restore_previous_configuration (p->opaque); |
| } |
| |
| if (p->flags & CLIB_ANNEAL_VERBOSE) |
| { |
| fformat (stdout, "Temp %.2f, cost %.2f, accepted %d, bests %d\n", t, |
| prev_cost, accepted_this_temperature, |
| best_saves_this_temperature); |
| fformat (stdout, "Improvement %.2f\n", initial_cost - prev_cost); |
| fformat (stdout, "-------------\n"); |
| } |
| |
| t = t * p->temperature_step; |
| } |
| |
| /* |
| * Empirically, one wants the probability of accepting a move |
| * at the initial temperature to be about 0.8. |
| */ |
| average_increase = total_increase / (f64) number_of_increases; |
| p->suggested_initial_temperature = average_increase / 0.22; /* 0.22 = -ln (0.8) */ |
| |
| p->final_temperature = t; |
| p->final_metric = p->anneal_metric (p->opaque); |
| |
| if (p->flags & CLIB_ANNEAL_VERBOSE) |
| { |
| fformat (stdout, "Average cost increase from a bad move: %.2f\n", |
| average_increase); |
| fformat (stdout, "Suggested t0 = %.2f\n", |
| p->suggested_initial_temperature); |
| } |
| } |
| |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |