blob: e0d74e1309ee87cc517dcb51ee8f811a09d8bcdb [file] [log] [blame]
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __IPSEC_SPD_SA_H__
#define __IPSEC_SPD_SA_H__
#include <vlib/vlib.h>
#include <vnet/ip/ip.h>
#include <vnet/fib/fib_node.h>
#define foreach_ipsec_crypto_alg \
_ (0, NONE, "none") \
_ (1, AES_CBC_128, "aes-cbc-128") \
_ (2, AES_CBC_192, "aes-cbc-192") \
_ (3, AES_CBC_256, "aes-cbc-256") \
_ (4, AES_CTR_128, "aes-ctr-128") \
_ (5, AES_CTR_192, "aes-ctr-192") \
_ (6, AES_CTR_256, "aes-ctr-256") \
_ (7, AES_GCM_128, "aes-gcm-128") \
_ (8, AES_GCM_192, "aes-gcm-192") \
_ (9, AES_GCM_256, "aes-gcm-256") \
_ (10, DES_CBC, "des-cbc") \
_ (11, 3DES_CBC, "3des-cbc")
typedef enum
{
#define _(v, f, s) IPSEC_CRYPTO_ALG_##f = v,
foreach_ipsec_crypto_alg
#undef _
IPSEC_CRYPTO_N_ALG,
} ipsec_crypto_alg_t;
#define IPSEC_CRYPTO_ALG_IS_GCM(_alg) \
(((_alg == IPSEC_CRYPTO_ALG_AES_GCM_128) || \
(_alg == IPSEC_CRYPTO_ALG_AES_GCM_192) || \
(_alg == IPSEC_CRYPTO_ALG_AES_GCM_256)))
#define foreach_ipsec_integ_alg \
_ (0, NONE, "none") \
_ (1, MD5_96, "md5-96") /* RFC2403 */ \
_ (2, SHA1_96, "sha1-96") /* RFC2404 */ \
_ (3, SHA_256_96, "sha-256-96") /* draft-ietf-ipsec-ciph-sha-256-00 */ \
_ (4, SHA_256_128, "sha-256-128") /* RFC4868 */ \
_ (5, SHA_384_192, "sha-384-192") /* RFC4868 */ \
_ (6, SHA_512_256, "sha-512-256") /* RFC4868 */
typedef enum
{
#define _(v, f, s) IPSEC_INTEG_ALG_##f = v,
foreach_ipsec_integ_alg
#undef _
IPSEC_INTEG_N_ALG,
} ipsec_integ_alg_t;
typedef enum
{
IPSEC_PROTOCOL_AH = 0,
IPSEC_PROTOCOL_ESP = 1
} ipsec_protocol_t;
#define IPSEC_KEY_MAX_LEN 128
typedef struct ipsec_key_t_
{
u8 len;
u8 data[IPSEC_KEY_MAX_LEN];
} ipsec_key_t;
/*
* Enable extended sequence numbers
* Enable Anti-replay
* IPsec tunnel mode if non-zero, else transport mode
* IPsec tunnel mode is IPv6 if non-zero,
* else IPv4 tunnel only valid if is_tunnel is non-zero
* enable UDP encapsulation for NAT traversal
*/
#define foreach_ipsec_sa_flags \
_ (0, NONE, "none") \
_ (1, USE_ESN, "esn") \
_ (2, USE_ANTI_REPLAY, "anti-replay") \
_ (4, IS_TUNNEL, "tunnel") \
_ (8, IS_TUNNEL_V6, "tunnel-v6") \
_ (16, UDP_ENCAP, "udp-encap") \
_ (32, IS_PROTECT, "Protect") \
_ (64, IS_INBOUND, "inbound") \
_ (128, IS_AEAD, "aead") \
typedef enum ipsec_sad_flags_t_
{
#define _(v, f, s) IPSEC_SA_FLAG_##f = v,
foreach_ipsec_sa_flags
#undef _
} __clib_packed ipsec_sa_flags_t;
STATIC_ASSERT (sizeof (ipsec_sa_flags_t) == 1, "IPSEC SA flags > 1 byte");
typedef struct
{
CLIB_CACHE_LINE_ALIGN_MARK (cacheline0);
/* flags */
ipsec_sa_flags_t flags;
u8 crypto_iv_size;
u8 crypto_block_size;
u8 integ_icv_size;
u32 encrypt_thread_index;
u32 decrypt_thread_index;
u32 spi;
u32 seq;
u32 seq_hi;
u32 last_seq;
u32 last_seq_hi;
u64 replay_window;
dpo_id_t dpo;
vnet_crypto_key_index_t crypto_key_index;
vnet_crypto_key_index_t integ_key_index;
vnet_crypto_op_id_t crypto_enc_op_id:16;
vnet_crypto_op_id_t crypto_dec_op_id:16;
vnet_crypto_op_id_t integ_op_id:16;
/* data accessed by dataplane code should be above this comment */
CLIB_CACHE_LINE_ALIGN_MARK (cacheline1);
union
{
ip4_header_t ip4_hdr;
ip6_header_t ip6_hdr;
};
udp_header_t udp_hdr;
fib_node_t node;
u32 id;
u32 stat_index;
ipsec_protocol_t protocol;
ipsec_crypto_alg_t crypto_alg;
ipsec_key_t crypto_key;
vnet_crypto_alg_t crypto_calg;
ipsec_integ_alg_t integ_alg;
ipsec_key_t integ_key;
vnet_crypto_alg_t integ_calg;
ip46_address_t tunnel_src_addr;
ip46_address_t tunnel_dst_addr;
fib_node_index_t fib_entry_index;
u32 sibling;
u32 tx_fib_index;
/* Salt used in GCM modes - stored in network byte order */
u32 salt;
u64 gcm_iv_counter;
} ipsec_sa_t;
STATIC_ASSERT_OFFSET_OF (ipsec_sa_t, cacheline1, CLIB_CACHE_LINE_BYTES);
#define _(a,v,s) \
always_inline int \
ipsec_sa_is_set_##v (const ipsec_sa_t *sa) { \
return (sa->flags & IPSEC_SA_FLAG_##v); \
}
foreach_ipsec_sa_flags
#undef _
#define _(a,v,s) \
always_inline int \
ipsec_sa_set_##v (ipsec_sa_t *sa) { \
return (sa->flags |= IPSEC_SA_FLAG_##v); \
}
foreach_ipsec_sa_flags
#undef _
#define _(a,v,s) \
always_inline int \
ipsec_sa_unset_##v (ipsec_sa_t *sa) { \
return (sa->flags &= ~IPSEC_SA_FLAG_##v); \
}
foreach_ipsec_sa_flags
#undef _
/**
* @brief
* SA packet & bytes counters
*/
extern vlib_combined_counter_main_t ipsec_sa_counters;
extern void ipsec_mk_key (ipsec_key_t * key, const u8 * data, u8 len);
extern int ipsec_sa_add_and_lock (u32 id,
u32 spi,
ipsec_protocol_t proto,
ipsec_crypto_alg_t crypto_alg,
const ipsec_key_t * ck,
ipsec_integ_alg_t integ_alg,
const ipsec_key_t * ik,
ipsec_sa_flags_t flags,
u32 tx_table_id,
u32 salt,
const ip46_address_t * tunnel_src_addr,
const ip46_address_t * tunnel_dst_addr,
u32 * sa_index);
extern index_t ipsec_sa_find_and_lock (u32 id);
extern int ipsec_sa_unlock_id (u32 id);
extern void ipsec_sa_unlock (index_t sai);
extern void ipsec_sa_lock (index_t sai);
extern void ipsec_sa_clear (index_t sai);
extern void ipsec_sa_set_crypto_alg (ipsec_sa_t * sa,
ipsec_crypto_alg_t crypto_alg);
extern void ipsec_sa_set_integ_alg (ipsec_sa_t * sa,
ipsec_integ_alg_t integ_alg);
typedef walk_rc_t (*ipsec_sa_walk_cb_t) (ipsec_sa_t * sa, void *ctx);
extern void ipsec_sa_walk (ipsec_sa_walk_cb_t cd, void *ctx);
extern u8 *format_ipsec_crypto_alg (u8 * s, va_list * args);
extern u8 *format_ipsec_integ_alg (u8 * s, va_list * args);
extern u8 *format_ipsec_sa (u8 * s, va_list * args);
extern u8 *format_ipsec_key (u8 * s, va_list * args);
extern uword unformat_ipsec_crypto_alg (unformat_input_t * input,
va_list * args);
extern uword unformat_ipsec_integ_alg (unformat_input_t * input,
va_list * args);
extern uword unformat_ipsec_key (unformat_input_t * input, va_list * args);
/*
* Anti Replay definitions
*/
#define IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE (64)
#define IPSEC_SA_ANTI_REPLAY_WINDOW_MAX_INDEX (IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE-1)
/*
* sequence number less than the lower bound are outside of the window
* From RFC4303 Appendix A:
* Bl = Tl - W + 1
*/
#define IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND(_tl) (_tl - IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE + 1)
/*
* Anti replay check.
* inputs need to be in host byte order.
*/
always_inline int
ipsec_sa_anti_replay_check (ipsec_sa_t * sa, u32 seq)
{
u32 diff, tl, th;
if ((sa->flags & IPSEC_SA_FLAG_USE_ANTI_REPLAY) == 0)
return 0;
if (!ipsec_sa_is_set_USE_ESN (sa))
{
if (PREDICT_TRUE (seq > sa->last_seq))
return 0;
diff = sa->last_seq - seq;
if (IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE > diff)
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
else
return 1;
return 0;
}
tl = sa->last_seq;
th = sa->last_seq_hi;
diff = tl - seq;
if (PREDICT_TRUE (tl >= (IPSEC_SA_ANTI_REPLAY_WINDOW_MAX_INDEX)))
{
/*
* the last sequence number VPP recieved is more than one
* window size greater than zero.
* Case A from RFC4303 Appendix A.
*/
if (seq < IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND (tl))
{
/*
* the received sequence number is lower than the lower bound
* of the window, this could mean either a replay packet or that
* the high sequence number has wrapped. if it decrypts corrently
* then it's the latter.
*/
sa->seq_hi = th + 1;
return 0;
}
else
{
/*
* the recieved sequence number greater than the low
* end of the window.
*/
sa->seq_hi = th;
if (seq <= tl)
/*
* The recieved seq number is within bounds of the window
* check if it's a duplicate
*/
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
else
/*
* The received sequence number is greater than the window
* upper bound. this packet will move the window along, assuming
* it decrypts correctly.
*/
return 0;
}
}
else
{
/*
* the last sequence number VPP recieved is within one window
* size of zero, i.e. 0 < TL < WINDOW_SIZE, the lower bound is thus a
* large sequence number.
* Note that the check below uses unsiged integer arthimetic, so the
* RHS will be a larger number.
* Case B from RFC4303 Appendix A.
*/
if (seq < IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND (tl))
{
/*
* the sequence number is less than the lower bound.
*/
if (seq <= tl)
{
/*
* the packet is within the window upper bound.
* check for duplicates.
*/
sa->seq_hi = th;
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
}
else
{
/*
* the packet is less the window lower bound or greater than
* the higher bound, depending on how you look at it...
* We're assuming, given that the last sequence number received,
* TL < WINDOW_SIZE, that a largeer seq num is more likely to be
* a packet that moves the window forward, than a packet that has
* wrapped the high sequence again. If it were the latter then
* we've lost close to 2^32 packets.
*/
sa->seq_hi = th;
return 0;
}
}
else
{
/*
* the packet seq number is between the lower bound (a large nubmer)
* and MAX_SEQ_NUM. This is in the window since the window upper bound
* tl > 0.
* However, since TL is the other side of 0 to the received
* packet, the SA has moved on to a higher sequence number.
*/
sa->seq_hi = th - 1;
return (sa->replay_window & (1ULL << diff)) ? 1 : 0;
}
}
return 0;
}
/*
* Anti replay window advance
* inputs need to be in host byte order.
*/
always_inline void
ipsec_sa_anti_replay_advance (ipsec_sa_t * sa, u32 seq)
{
u32 pos;
if (PREDICT_TRUE (sa->flags & IPSEC_SA_FLAG_USE_ANTI_REPLAY) == 0)
return;
if (PREDICT_TRUE (sa->flags & IPSEC_SA_FLAG_USE_ESN))
{
int wrap = sa->seq_hi - sa->last_seq_hi;
if (wrap == 0 && seq > sa->last_seq)
{
pos = seq - sa->last_seq;
if (pos < IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE)
sa->replay_window = ((sa->replay_window) << pos) | 1;
else
sa->replay_window = 1;
sa->last_seq = seq;
}
else if (wrap > 0)
{
pos = ~seq + sa->last_seq + 1;
if (pos < IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE)
sa->replay_window = ((sa->replay_window) << pos) | 1;
else
sa->replay_window = 1;
sa->last_seq = seq;
sa->last_seq_hi = sa->seq_hi;
}
else if (wrap < 0)
{
pos = ~seq + sa->last_seq + 1;
sa->replay_window |= (1ULL << pos);
}
else
{
pos = sa->last_seq - seq;
sa->replay_window |= (1ULL << pos);
}
}
else
{
if (seq > sa->last_seq)
{
pos = seq - sa->last_seq;
if (pos < IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE)
sa->replay_window = ((sa->replay_window) << pos) | 1;
else
sa->replay_window = 1;
sa->last_seq = seq;
}
else
{
pos = sa->last_seq - seq;
sa->replay_window |= (1ULL << pos);
}
}
}
/*
* Makes choice for thread_id should be assigned.
* if input ~0, gets random worker_id based on unix_time_now_nsec
*/
always_inline u32
ipsec_sa_assign_thread (u32 thread_id)
{
return ((thread_id) ? thread_id
: (unix_time_now_nsec () % vlib_num_workers ()) + 1);
}
#endif /* __IPSEC_SPD_SA_H__ */
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/