| /* SPDX-License-Identifier: Apache-2.0 |
| * Copyright(c) 2023 Cisco Systems, Inc. |
| */ |
| |
| #ifndef __crypto_aes_gcm_h__ |
| #define __crypto_aes_gcm_h__ |
| |
| #include <vppinfra/clib.h> |
| #include <vppinfra/vector.h> |
| #include <vppinfra/cache.h> |
| #include <vppinfra/string.h> |
| #include <vppinfra/crypto/aes.h> |
| #include <vppinfra/crypto/ghash.h> |
| |
| #define NUM_HI 36 |
| #if N_AES_LANES == 4 |
| typedef u8x64u aes_ghash_t; |
| #define aes_gcm_splat(v) u8x64_splat (v) |
| #define aes_gcm_ghash_reduce(c) ghash4_reduce (&(c)->gd) |
| #define aes_gcm_ghash_reduce2(c) ghash4_reduce2 (&(c)->gd) |
| #define aes_gcm_ghash_final(c) (c)->T = ghash4_final (&(c)->gd) |
| #elif N_AES_LANES == 2 |
| typedef u8x32u aes_ghash_t; |
| #define aes_gcm_splat(v) u8x32_splat (v) |
| #define aes_gcm_ghash_reduce(c) ghash2_reduce (&(c)->gd) |
| #define aes_gcm_ghash_reduce2(c) ghash2_reduce2 (&(c)->gd) |
| #define aes_gcm_ghash_final(c) (c)->T = ghash2_final (&(c)->gd) |
| #else |
| typedef u8x16 aes_ghash_t; |
| #define aes_gcm_splat(v) u8x16_splat (v) |
| #define aes_gcm_ghash_reduce(c) ghash_reduce (&(c)->gd) |
| #define aes_gcm_ghash_reduce2(c) ghash_reduce2 (&(c)->gd) |
| #define aes_gcm_ghash_final(c) (c)->T = ghash_final (&(c)->gd) |
| #endif |
| |
| typedef enum |
| { |
| AES_GCM_OP_UNKNONW = 0, |
| AES_GCM_OP_ENCRYPT, |
| AES_GCM_OP_DECRYPT, |
| AES_GCM_OP_GMAC |
| } aes_gcm_op_t; |
| |
| typedef struct |
| { |
| /* pre-calculated hash key values */ |
| const u8x16 Hi[NUM_HI]; |
| /* extracted AES key */ |
| const aes_expaned_key_t Ke[AES_KEY_ROUNDS (AES_KEY_256) + 1]; |
| } aes_gcm_key_data_t; |
| |
| typedef struct |
| { |
| aes_gcm_op_t operation; |
| int last; |
| u8 rounds; |
| uword data_bytes; |
| uword aad_bytes; |
| |
| u8x16 T; |
| |
| /* hash */ |
| const u8x16 *Hi; |
| const aes_ghash_t *next_Hi; |
| |
| /* expaded keys */ |
| const aes_expaned_key_t *Ke; |
| |
| /* counter */ |
| u32 counter; |
| u8x16 EY0; |
| aes_counter_t Y; |
| |
| /* ghash */ |
| ghash_ctx_t gd; |
| } aes_gcm_ctx_t; |
| |
| static_always_inline u8x16 |
| aes_gcm_final_block (aes_gcm_ctx_t *ctx) |
| { |
| return (u8x16) ((u64x2){ ctx->data_bytes, ctx->aad_bytes } << 3); |
| } |
| |
| static_always_inline void |
| aes_gcm_ghash_mul_first (aes_gcm_ctx_t *ctx, aes_data_t data, u32 n_lanes) |
| { |
| uword hash_offset = NUM_HI - n_lanes; |
| ctx->next_Hi = (aes_ghash_t *) (ctx->Hi + hash_offset); |
| #if N_AES_LANES == 4 |
| u8x64 tag4 = {}; |
| tag4 = u8x64_insert_u8x16 (tag4, ctx->T, 0); |
| ghash4_mul_first (&ctx->gd, aes_reflect (data) ^ tag4, *ctx->next_Hi++); |
| #elif N_AES_LANES == 2 |
| u8x32 tag2 = {}; |
| tag2 = u8x32_insert_lo (tag2, ctx->T); |
| ghash2_mul_first (&ctx->gd, aes_reflect (data) ^ tag2, *ctx->next_Hi++); |
| #else |
| ghash_mul_first (&ctx->gd, aes_reflect (data) ^ ctx->T, *ctx->next_Hi++); |
| #endif |
| } |
| |
| static_always_inline void |
| aes_gcm_ghash_mul_next (aes_gcm_ctx_t *ctx, aes_data_t data) |
| { |
| #if N_AES_LANES == 4 |
| ghash4_mul_next (&ctx->gd, aes_reflect (data), *ctx->next_Hi++); |
| #elif N_AES_LANES == 2 |
| ghash2_mul_next (&ctx->gd, aes_reflect (data), *ctx->next_Hi++); |
| #else |
| ghash_mul_next (&ctx->gd, aes_reflect (data), *ctx->next_Hi++); |
| #endif |
| } |
| |
| static_always_inline void |
| aes_gcm_ghash_mul_final_block (aes_gcm_ctx_t *ctx) |
| { |
| #if N_AES_LANES == 4 |
| u8x64 h = u8x64_insert_u8x16 (u8x64_zero (), ctx->Hi[NUM_HI - 1], 0); |
| u8x64 r4 = u8x64_insert_u8x16 (u8x64_zero (), aes_gcm_final_block (ctx), 0); |
| ghash4_mul_next (&ctx->gd, r4, h); |
| #elif N_AES_LANES == 2 |
| u8x32 h = u8x32_insert_lo (u8x32_zero (), ctx->Hi[NUM_HI - 1]); |
| u8x32 r2 = u8x32_insert_lo (u8x32_zero (), aes_gcm_final_block (ctx)); |
| ghash2_mul_next (&ctx->gd, r2, h); |
| #else |
| ghash_mul_next (&ctx->gd, aes_gcm_final_block (ctx), ctx->Hi[NUM_HI - 1]); |
| #endif |
| } |
| |
| static_always_inline void |
| aes_gcm_enc_ctr0_round (aes_gcm_ctx_t *ctx, int aes_round) |
| { |
| if (aes_round == 0) |
| ctx->EY0 ^= ctx->Ke[0].x1; |
| else if (aes_round == ctx->rounds) |
| ctx->EY0 = aes_enc_last_round_x1 (ctx->EY0, ctx->Ke[aes_round].x1); |
| else |
| ctx->EY0 = aes_enc_round_x1 (ctx->EY0, ctx->Ke[aes_round].x1); |
| } |
| |
| static_always_inline void |
| aes_gcm_ghash (aes_gcm_ctx_t *ctx, u8 *data, u32 n_left) |
| { |
| uword i; |
| aes_data_t r = {}; |
| const aes_mem_t *d = (aes_mem_t *) data; |
| |
| for (int n = 8 * N_AES_BYTES; n_left >= n; n_left -= n, d += 8) |
| { |
| if (ctx->operation == AES_GCM_OP_GMAC && n_left == n) |
| { |
| aes_gcm_ghash_mul_first (ctx, d[0], 8 * N_AES_LANES + 1); |
| for (i = 1; i < 8; i++) |
| aes_gcm_ghash_mul_next (ctx, d[i]); |
| aes_gcm_ghash_mul_final_block (ctx); |
| aes_gcm_ghash_reduce (ctx); |
| aes_gcm_ghash_reduce2 (ctx); |
| aes_gcm_ghash_final (ctx); |
| goto done; |
| } |
| |
| aes_gcm_ghash_mul_first (ctx, d[0], 8 * N_AES_LANES); |
| for (i = 1; i < 8; i++) |
| aes_gcm_ghash_mul_next (ctx, d[i]); |
| aes_gcm_ghash_reduce (ctx); |
| aes_gcm_ghash_reduce2 (ctx); |
| aes_gcm_ghash_final (ctx); |
| } |
| |
| if (n_left > 0) |
| { |
| int n_lanes = (n_left + 15) / 16; |
| |
| if (ctx->operation == AES_GCM_OP_GMAC) |
| n_lanes++; |
| |
| if (n_left < N_AES_BYTES) |
| { |
| clib_memcpy_fast (&r, d, n_left); |
| aes_gcm_ghash_mul_first (ctx, r, n_lanes); |
| } |
| else |
| { |
| aes_gcm_ghash_mul_first (ctx, d[0], n_lanes); |
| n_left -= N_AES_BYTES; |
| i = 1; |
| |
| if (n_left >= 4 * N_AES_BYTES) |
| { |
| aes_gcm_ghash_mul_next (ctx, d[i]); |
| aes_gcm_ghash_mul_next (ctx, d[i + 1]); |
| aes_gcm_ghash_mul_next (ctx, d[i + 2]); |
| aes_gcm_ghash_mul_next (ctx, d[i + 3]); |
| n_left -= 4 * N_AES_BYTES; |
| i += 4; |
| } |
| if (n_left >= 2 * N_AES_BYTES) |
| { |
| aes_gcm_ghash_mul_next (ctx, d[i]); |
| aes_gcm_ghash_mul_next (ctx, d[i + 1]); |
| n_left -= 2 * N_AES_BYTES; |
| i += 2; |
| } |
| |
| if (n_left >= N_AES_BYTES) |
| { |
| aes_gcm_ghash_mul_next (ctx, d[i]); |
| n_left -= N_AES_BYTES; |
| i += 1; |
| } |
| |
| if (n_left) |
| { |
| clib_memcpy_fast (&r, d + i, n_left); |
| aes_gcm_ghash_mul_next (ctx, r); |
| } |
| } |
| |
| if (ctx->operation == AES_GCM_OP_GMAC) |
| aes_gcm_ghash_mul_final_block (ctx); |
| aes_gcm_ghash_reduce (ctx); |
| aes_gcm_ghash_reduce2 (ctx); |
| aes_gcm_ghash_final (ctx); |
| } |
| else if (ctx->operation == AES_GCM_OP_GMAC) |
| ctx->T = |
| ghash_mul (aes_gcm_final_block (ctx) ^ ctx->T, ctx->Hi[NUM_HI - 1]); |
| |
| done: |
| /* encrypt counter 0 E(Y0, k) */ |
| if (ctx->operation == AES_GCM_OP_GMAC) |
| for (int i = 0; i < ctx->rounds + 1; i += 1) |
| aes_gcm_enc_ctr0_round (ctx, i); |
| } |
| |
| static_always_inline void |
| aes_gcm_enc_first_round (aes_gcm_ctx_t *ctx, aes_data_t *r, uword n_blocks) |
| { |
| const aes_expaned_key_t Ke0 = ctx->Ke[0]; |
| uword i = 0; |
| |
| /* As counter is stored in network byte order for performance reasons we |
| are incrementing least significant byte only except in case where we |
| overlow. As we are processing four 128, 256 or 512-blocks in parallel |
| except the last round, overflow can happen only when n_blocks == 4 */ |
| |
| #if N_AES_LANES == 4 |
| const u32x16 ctr_inv_4444 = { 0, 0, 0, 4 << 24, 0, 0, 0, 4 << 24, |
| 0, 0, 0, 4 << 24, 0, 0, 0, 4 << 24 }; |
| |
| const u32x16 ctr_4444 = { |
| 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, |
| }; |
| |
| if (n_blocks == 4) |
| for (; i < 2; i++) |
| { |
| r[i] = Ke0.x4 ^ (u8x64) ctx->Y; /* Initial AES round */ |
| ctx->Y += ctr_inv_4444; |
| } |
| |
| if (n_blocks == 4 && PREDICT_FALSE ((u8) ctx->counter == 242)) |
| { |
| u32x16 Yr = (u32x16) aes_reflect ((u8x64) ctx->Y); |
| |
| for (; i < n_blocks; i++) |
| { |
| r[i] = Ke0.x4 ^ (u8x64) ctx->Y; /* Initial AES round */ |
| Yr += ctr_4444; |
| ctx->Y = (u32x16) aes_reflect ((u8x64) Yr); |
| } |
| } |
| else |
| { |
| for (; i < n_blocks; i++) |
| { |
| r[i] = Ke0.x4 ^ (u8x64) ctx->Y; /* Initial AES round */ |
| ctx->Y += ctr_inv_4444; |
| } |
| } |
| ctx->counter += n_blocks * 4; |
| #elif N_AES_LANES == 2 |
| const u32x8 ctr_inv_22 = { 0, 0, 0, 2 << 24, 0, 0, 0, 2 << 24 }; |
| const u32x8 ctr_22 = { 2, 0, 0, 0, 2, 0, 0, 0 }; |
| |
| if (n_blocks == 4) |
| for (; i < 2; i++) |
| { |
| r[i] = Ke0.x2 ^ (u8x32) ctx->Y; /* Initial AES round */ |
| ctx->Y += ctr_inv_22; |
| } |
| |
| if (n_blocks == 4 && PREDICT_FALSE ((u8) ctx->counter == 250)) |
| { |
| u32x8 Yr = (u32x8) aes_reflect ((u8x32) ctx->Y); |
| |
| for (; i < n_blocks; i++) |
| { |
| r[i] = Ke0.x2 ^ (u8x32) ctx->Y; /* Initial AES round */ |
| Yr += ctr_22; |
| ctx->Y = (u32x8) aes_reflect ((u8x32) Yr); |
| } |
| } |
| else |
| { |
| for (; i < n_blocks; i++) |
| { |
| r[i] = Ke0.x2 ^ (u8x32) ctx->Y; /* Initial AES round */ |
| ctx->Y += ctr_inv_22; |
| } |
| } |
| ctx->counter += n_blocks * 2; |
| #else |
| const u32x4 ctr_inv_1 = { 0, 0, 0, 1 << 24 }; |
| |
| if (PREDICT_TRUE ((u8) ctx->counter < 0xfe) || n_blocks < 3) |
| { |
| for (; i < n_blocks; i++) |
| { |
| r[i] = Ke0.x1 ^ (u8x16) ctx->Y; /* Initial AES round */ |
| ctx->Y += ctr_inv_1; |
| } |
| ctx->counter += n_blocks; |
| } |
| else |
| { |
| r[i++] = Ke0.x1 ^ (u8x16) ctx->Y; /* Initial AES round */ |
| ctx->Y += ctr_inv_1; |
| ctx->counter += 1; |
| |
| for (; i < n_blocks; i++) |
| { |
| r[i] = Ke0.x1 ^ (u8x16) ctx->Y; /* Initial AES round */ |
| ctx->counter++; |
| ctx->Y[3] = clib_host_to_net_u32 (ctx->counter); |
| } |
| } |
| #endif |
| } |
| |
| static_always_inline void |
| aes_gcm_enc_last_round (aes_gcm_ctx_t *ctx, aes_data_t *r, aes_data_t *d, |
| const aes_expaned_key_t *Ke, uword n_blocks) |
| { |
| /* additional ronuds for AES-192 and AES-256 */ |
| for (int i = 10; i < ctx->rounds; i++) |
| aes_enc_round (r, Ke + i, n_blocks); |
| |
| aes_enc_last_round (r, d, Ke + ctx->rounds, n_blocks); |
| } |
| |
| static_always_inline void |
| aes_gcm_calc (aes_gcm_ctx_t *ctx, aes_data_t *d, const u8 *src, u8 *dst, u32 n, |
| u32 n_bytes, int with_ghash) |
| { |
| const aes_expaned_key_t *k = ctx->Ke; |
| const aes_mem_t *sv = (aes_mem_t *) src; |
| aes_mem_t *dv = (aes_mem_t *) dst; |
| uword ghash_blocks, gc = 1; |
| aes_data_t r[4]; |
| u32 i, n_lanes; |
| |
| if (ctx->operation == AES_GCM_OP_ENCRYPT) |
| { |
| ghash_blocks = 4; |
| n_lanes = N_AES_LANES * 4; |
| } |
| else |
| { |
| ghash_blocks = n; |
| n_lanes = n * N_AES_LANES; |
| #if N_AES_LANES != 1 |
| if (ctx->last) |
| n_lanes = (n_bytes + 15) / 16; |
| #endif |
| } |
| |
| n_bytes -= (n - 1) * N_AES_BYTES; |
| |
| /* AES rounds 0 and 1 */ |
| aes_gcm_enc_first_round (ctx, r, n); |
| aes_enc_round (r, k + 1, n); |
| |
| /* load data - decrypt round */ |
| if (ctx->operation == AES_GCM_OP_DECRYPT) |
| { |
| for (i = 0; i < n - ctx->last; i++) |
| d[i] = sv[i]; |
| |
| if (ctx->last) |
| d[n - 1] = aes_load_partial ((u8 *) (sv + n - 1), n_bytes); |
| } |
| |
| /* GHASH multiply block 0 */ |
| if (with_ghash) |
| aes_gcm_ghash_mul_first (ctx, d[0], n_lanes); |
| |
| /* AES rounds 2 and 3 */ |
| aes_enc_round (r, k + 2, n); |
| aes_enc_round (r, k + 3, n); |
| |
| /* GHASH multiply block 1 */ |
| if (with_ghash && gc++ < ghash_blocks) |
| aes_gcm_ghash_mul_next (ctx, (d[1])); |
| |
| /* AES rounds 4 and 5 */ |
| aes_enc_round (r, k + 4, n); |
| aes_enc_round (r, k + 5, n); |
| |
| /* GHASH multiply block 2 */ |
| if (with_ghash && gc++ < ghash_blocks) |
| aes_gcm_ghash_mul_next (ctx, (d[2])); |
| |
| /* AES rounds 6 and 7 */ |
| aes_enc_round (r, k + 6, n); |
| aes_enc_round (r, k + 7, n); |
| |
| /* GHASH multiply block 3 */ |
| if (with_ghash && gc++ < ghash_blocks) |
| aes_gcm_ghash_mul_next (ctx, (d[3])); |
| |
| /* load 4 blocks of data - decrypt round */ |
| if (ctx->operation == AES_GCM_OP_ENCRYPT) |
| { |
| for (i = 0; i < n - ctx->last; i++) |
| d[i] = sv[i]; |
| |
| if (ctx->last) |
| d[n - 1] = aes_load_partial (sv + n - 1, n_bytes); |
| } |
| |
| /* AES rounds 8 and 9 */ |
| aes_enc_round (r, k + 8, n); |
| aes_enc_round (r, k + 9, n); |
| |
| /* AES last round(s) */ |
| aes_gcm_enc_last_round (ctx, r, d, k, n); |
| |
| /* store data */ |
| for (i = 0; i < n - ctx->last; i++) |
| dv[i] = d[i]; |
| |
| if (ctx->last) |
| aes_store_partial (d[n - 1], dv + n - 1, n_bytes); |
| |
| /* GHASH reduce 1st step */ |
| aes_gcm_ghash_reduce (ctx); |
| |
| /* GHASH reduce 2nd step */ |
| if (with_ghash) |
| aes_gcm_ghash_reduce2 (ctx); |
| |
| /* GHASH final step */ |
| if (with_ghash) |
| aes_gcm_ghash_final (ctx); |
| } |
| |
| static_always_inline void |
| aes_gcm_calc_double (aes_gcm_ctx_t *ctx, aes_data_t *d, const u8 *src, u8 *dst) |
| { |
| const aes_expaned_key_t *k = ctx->Ke; |
| const aes_mem_t *sv = (aes_mem_t *) src; |
| aes_mem_t *dv = (aes_mem_t *) dst; |
| aes_data_t r[4]; |
| |
| /* AES rounds 0 and 1 */ |
| aes_gcm_enc_first_round (ctx, r, 4); |
| aes_enc_round (r, k + 1, 4); |
| |
| /* load 4 blocks of data - decrypt round */ |
| if (ctx->operation == AES_GCM_OP_DECRYPT) |
| for (int i = 0; i < 4; i++) |
| d[i] = sv[i]; |
| |
| /* GHASH multiply block 0 */ |
| aes_gcm_ghash_mul_first (ctx, d[0], N_AES_LANES * 8); |
| |
| /* AES rounds 2 and 3 */ |
| aes_enc_round (r, k + 2, 4); |
| aes_enc_round (r, k + 3, 4); |
| |
| /* GHASH multiply block 1 */ |
| aes_gcm_ghash_mul_next (ctx, (d[1])); |
| |
| /* AES rounds 4 and 5 */ |
| aes_enc_round (r, k + 4, 4); |
| aes_enc_round (r, k + 5, 4); |
| |
| /* GHASH multiply block 2 */ |
| aes_gcm_ghash_mul_next (ctx, (d[2])); |
| |
| /* AES rounds 6 and 7 */ |
| aes_enc_round (r, k + 6, 4); |
| aes_enc_round (r, k + 7, 4); |
| |
| /* GHASH multiply block 3 */ |
| aes_gcm_ghash_mul_next (ctx, (d[3])); |
| |
| /* AES rounds 8 and 9 */ |
| aes_enc_round (r, k + 8, 4); |
| aes_enc_round (r, k + 9, 4); |
| |
| /* load 4 blocks of data - encrypt round */ |
| if (ctx->operation == AES_GCM_OP_ENCRYPT) |
| for (int i = 0; i < 4; i++) |
| d[i] = sv[i]; |
| |
| /* AES last round(s) */ |
| aes_gcm_enc_last_round (ctx, r, d, k, 4); |
| |
| /* store 4 blocks of data */ |
| for (int i = 0; i < 4; i++) |
| dv[i] = d[i]; |
| |
| /* load next 4 blocks of data data - decrypt round */ |
| if (ctx->operation == AES_GCM_OP_DECRYPT) |
| for (int i = 0; i < 4; i++) |
| d[i] = sv[i + 4]; |
| |
| /* GHASH multiply block 4 */ |
| aes_gcm_ghash_mul_next (ctx, (d[0])); |
| |
| /* AES rounds 0 and 1 */ |
| aes_gcm_enc_first_round (ctx, r, 4); |
| aes_enc_round (r, k + 1, 4); |
| |
| /* GHASH multiply block 5 */ |
| aes_gcm_ghash_mul_next (ctx, (d[1])); |
| |
| /* AES rounds 2 and 3 */ |
| aes_enc_round (r, k + 2, 4); |
| aes_enc_round (r, k + 3, 4); |
| |
| /* GHASH multiply block 6 */ |
| aes_gcm_ghash_mul_next (ctx, (d[2])); |
| |
| /* AES rounds 4 and 5 */ |
| aes_enc_round (r, k + 4, 4); |
| aes_enc_round (r, k + 5, 4); |
| |
| /* GHASH multiply block 7 */ |
| aes_gcm_ghash_mul_next (ctx, (d[3])); |
| |
| /* AES rounds 6 and 7 */ |
| aes_enc_round (r, k + 6, 4); |
| aes_enc_round (r, k + 7, 4); |
| |
| /* GHASH reduce 1st step */ |
| aes_gcm_ghash_reduce (ctx); |
| |
| /* AES rounds 8 and 9 */ |
| aes_enc_round (r, k + 8, 4); |
| aes_enc_round (r, k + 9, 4); |
| |
| /* GHASH reduce 2nd step */ |
| aes_gcm_ghash_reduce2 (ctx); |
| |
| /* load 4 blocks of data - encrypt round */ |
| if (ctx->operation == AES_GCM_OP_ENCRYPT) |
| for (int i = 0; i < 4; i++) |
| d[i] = sv[i + 4]; |
| |
| /* AES last round(s) */ |
| aes_gcm_enc_last_round (ctx, r, d, k, 4); |
| |
| /* store data */ |
| for (int i = 0; i < 4; i++) |
| dv[i + 4] = d[i]; |
| |
| /* GHASH final step */ |
| aes_gcm_ghash_final (ctx); |
| } |
| |
| static_always_inline void |
| aes_gcm_mask_bytes (aes_data_t *d, uword n_bytes) |
| { |
| const union |
| { |
| u8 b[64]; |
| aes_data_t r; |
| } scale = { |
| .b = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, |
| }; |
| |
| d[0] &= (aes_gcm_splat (n_bytes) > scale.r); |
| } |
| |
| static_always_inline void |
| aes_gcm_calc_last (aes_gcm_ctx_t *ctx, aes_data_t *d, int n_blocks, |
| u32 n_bytes) |
| { |
| int n_lanes = (N_AES_LANES == 1 ? n_blocks : (n_bytes + 15) / 16) + 1; |
| n_bytes -= (n_blocks - 1) * N_AES_BYTES; |
| int i; |
| |
| aes_gcm_enc_ctr0_round (ctx, 0); |
| aes_gcm_enc_ctr0_round (ctx, 1); |
| |
| if (n_bytes != N_AES_BYTES) |
| aes_gcm_mask_bytes (d + n_blocks - 1, n_bytes); |
| |
| aes_gcm_ghash_mul_first (ctx, d[0], n_lanes); |
| |
| aes_gcm_enc_ctr0_round (ctx, 2); |
| aes_gcm_enc_ctr0_round (ctx, 3); |
| |
| if (n_blocks > 1) |
| aes_gcm_ghash_mul_next (ctx, d[1]); |
| |
| aes_gcm_enc_ctr0_round (ctx, 4); |
| aes_gcm_enc_ctr0_round (ctx, 5); |
| |
| if (n_blocks > 2) |
| aes_gcm_ghash_mul_next (ctx, d[2]); |
| |
| aes_gcm_enc_ctr0_round (ctx, 6); |
| aes_gcm_enc_ctr0_round (ctx, 7); |
| |
| if (n_blocks > 3) |
| aes_gcm_ghash_mul_next (ctx, d[3]); |
| |
| aes_gcm_enc_ctr0_round (ctx, 8); |
| aes_gcm_enc_ctr0_round (ctx, 9); |
| |
| aes_gcm_ghash_mul_final_block (ctx); |
| aes_gcm_ghash_reduce (ctx); |
| |
| for (i = 10; i < ctx->rounds; i++) |
| aes_gcm_enc_ctr0_round (ctx, i); |
| |
| aes_gcm_ghash_reduce2 (ctx); |
| |
| aes_gcm_ghash_final (ctx); |
| |
| aes_gcm_enc_ctr0_round (ctx, i); |
| } |
| |
| static_always_inline void |
| aes_gcm_enc (aes_gcm_ctx_t *ctx, const u8 *src, u8 *dst, u32 n_left) |
| { |
| aes_data_t d[4]; |
| |
| if (PREDICT_FALSE (n_left == 0)) |
| { |
| int i; |
| for (i = 0; i < ctx->rounds + 1; i++) |
| aes_gcm_enc_ctr0_round (ctx, i); |
| return; |
| } |
| |
| if (n_left < 4 * N_AES_BYTES) |
| { |
| ctx->last = 1; |
| if (n_left > 3 * N_AES_BYTES) |
| { |
| aes_gcm_calc (ctx, d, src, dst, 4, n_left, /* with_ghash */ 0); |
| aes_gcm_calc_last (ctx, d, 4, n_left); |
| } |
| else if (n_left > 2 * N_AES_BYTES) |
| { |
| aes_gcm_calc (ctx, d, src, dst, 3, n_left, /* with_ghash */ 0); |
| aes_gcm_calc_last (ctx, d, 3, n_left); |
| } |
| else if (n_left > N_AES_BYTES) |
| { |
| aes_gcm_calc (ctx, d, src, dst, 2, n_left, /* with_ghash */ 0); |
| aes_gcm_calc_last (ctx, d, 2, n_left); |
| } |
| else |
| { |
| aes_gcm_calc (ctx, d, src, dst, 1, n_left, /* with_ghash */ 0); |
| aes_gcm_calc_last (ctx, d, 1, n_left); |
| } |
| return; |
| } |
| |
| aes_gcm_calc (ctx, d, src, dst, 4, 4 * N_AES_BYTES, /* with_ghash */ 0); |
| |
| /* next */ |
| n_left -= 4 * N_AES_BYTES; |
| dst += 4 * N_AES_BYTES; |
| src += 4 * N_AES_BYTES; |
| |
| for (int n = 8 * N_AES_BYTES; n_left >= n; n_left -= n, src += n, dst += n) |
| aes_gcm_calc_double (ctx, d, src, dst); |
| |
| if (n_left >= 4 * N_AES_BYTES) |
| { |
| aes_gcm_calc (ctx, d, src, dst, 4, 4 * N_AES_BYTES, /* with_ghash */ 1); |
| |
| /* next */ |
| n_left -= 4 * N_AES_BYTES; |
| dst += 4 * N_AES_BYTES; |
| src += 4 * N_AES_BYTES; |
| } |
| |
| if (n_left == 0) |
| { |
| aes_gcm_calc_last (ctx, d, 4, 4 * N_AES_BYTES); |
| return; |
| } |
| |
| ctx->last = 1; |
| |
| if (n_left > 3 * N_AES_BYTES) |
| { |
| aes_gcm_calc (ctx, d, src, dst, 4, n_left, /* with_ghash */ 1); |
| aes_gcm_calc_last (ctx, d, 4, n_left); |
| } |
| else if (n_left > 2 * N_AES_BYTES) |
| { |
| aes_gcm_calc (ctx, d, src, dst, 3, n_left, /* with_ghash */ 1); |
| aes_gcm_calc_last (ctx, d, 3, n_left); |
| } |
| else if (n_left > N_AES_BYTES) |
| { |
| aes_gcm_calc (ctx, d, src, dst, 2, n_left, /* with_ghash */ 1); |
| aes_gcm_calc_last (ctx, d, 2, n_left); |
| } |
| else |
| { |
| aes_gcm_calc (ctx, d, src, dst, 1, n_left, /* with_ghash */ 1); |
| aes_gcm_calc_last (ctx, d, 1, n_left); |
| } |
| } |
| |
| static_always_inline void |
| aes_gcm_dec (aes_gcm_ctx_t *ctx, const u8 *src, u8 *dst, uword n_left) |
| { |
| aes_data_t d[4] = {}; |
| ghash_ctx_t gd; |
| |
| /* main encryption loop */ |
| for (int n = 8 * N_AES_BYTES; n_left >= n; n_left -= n, dst += n, src += n) |
| aes_gcm_calc_double (ctx, d, src, dst); |
| |
| if (n_left >= 4 * N_AES_BYTES) |
| { |
| aes_gcm_calc (ctx, d, src, dst, 4, 4 * N_AES_BYTES, /* with_ghash */ 1); |
| |
| /* next */ |
| n_left -= 4 * N_AES_BYTES; |
| dst += N_AES_BYTES * 4; |
| src += N_AES_BYTES * 4; |
| } |
| |
| if (n_left) |
| { |
| ctx->last = 1; |
| |
| if (n_left > 3 * N_AES_BYTES) |
| aes_gcm_calc (ctx, d, src, dst, 4, n_left, /* with_ghash */ 1); |
| else if (n_left > 2 * N_AES_BYTES) |
| aes_gcm_calc (ctx, d, src, dst, 3, n_left, /* with_ghash */ 1); |
| else if (n_left > N_AES_BYTES) |
| aes_gcm_calc (ctx, d, src, dst, 2, n_left, /* with_ghash */ 1); |
| else |
| aes_gcm_calc (ctx, d, src, dst, 1, n_left, /* with_ghash */ 1); |
| } |
| |
| /* interleaved counter 0 encryption E(Y0, k) and ghash of final GCM |
| * (bit length) block */ |
| |
| aes_gcm_enc_ctr0_round (ctx, 0); |
| aes_gcm_enc_ctr0_round (ctx, 1); |
| |
| ghash_mul_first (&gd, aes_gcm_final_block (ctx) ^ ctx->T, |
| ctx->Hi[NUM_HI - 1]); |
| |
| aes_gcm_enc_ctr0_round (ctx, 2); |
| aes_gcm_enc_ctr0_round (ctx, 3); |
| |
| ghash_reduce (&gd); |
| |
| aes_gcm_enc_ctr0_round (ctx, 4); |
| aes_gcm_enc_ctr0_round (ctx, 5); |
| |
| ghash_reduce2 (&gd); |
| |
| aes_gcm_enc_ctr0_round (ctx, 6); |
| aes_gcm_enc_ctr0_round (ctx, 7); |
| |
| ctx->T = ghash_final (&gd); |
| |
| aes_gcm_enc_ctr0_round (ctx, 8); |
| aes_gcm_enc_ctr0_round (ctx, 9); |
| |
| for (int i = 10; i < ctx->rounds + 1; i += 1) |
| aes_gcm_enc_ctr0_round (ctx, i); |
| } |
| |
| static_always_inline int |
| aes_gcm (const u8 *src, u8 *dst, const u8 *aad, u8 *ivp, u8 *tag, |
| u32 data_bytes, u32 aad_bytes, u8 tag_len, |
| const aes_gcm_key_data_t *kd, int aes_rounds, aes_gcm_op_t op) |
| { |
| u8 *addt = (u8 *) aad; |
| u32x4 Y0; |
| |
| aes_gcm_ctx_t _ctx = { .counter = 2, |
| .rounds = aes_rounds, |
| .operation = op, |
| .data_bytes = data_bytes, |
| .aad_bytes = aad_bytes, |
| .Ke = kd->Ke, |
| .Hi = kd->Hi }, |
| *ctx = &_ctx; |
| |
| /* initalize counter */ |
| Y0 = (u32x4) (u64x2){ *(u64u *) ivp, 0 }; |
| Y0[2] = *(u32u *) (ivp + 8); |
| Y0[3] = 1 << 24; |
| ctx->EY0 = (u8x16) Y0; |
| |
| #if N_AES_LANES == 4 |
| ctx->Y = u32x16_splat_u32x4 (Y0) + (u32x16){ |
| 0, 0, 0, 1 << 24, 0, 0, 0, 2 << 24, 0, 0, 0, 3 << 24, 0, 0, 0, 4 << 24, |
| }; |
| #elif N_AES_LANES == 2 |
| ctx->Y = |
| u32x8_splat_u32x4 (Y0) + (u32x8){ 0, 0, 0, 1 << 24, 0, 0, 0, 2 << 24 }; |
| #else |
| ctx->Y = Y0 + (u32x4){ 0, 0, 0, 1 << 24 }; |
| #endif |
| |
| /* calculate ghash for AAD */ |
| aes_gcm_ghash (ctx, addt, aad_bytes); |
| |
| /* ghash and encrypt/edcrypt */ |
| if (op == AES_GCM_OP_ENCRYPT) |
| aes_gcm_enc (ctx, src, dst, data_bytes); |
| else if (op == AES_GCM_OP_DECRYPT) |
| aes_gcm_dec (ctx, src, dst, data_bytes); |
| |
| /* final tag is */ |
| ctx->T = u8x16_reflect (ctx->T) ^ ctx->EY0; |
| |
| /* tag_len 16 -> 0 */ |
| tag_len &= 0xf; |
| |
| if (op == AES_GCM_OP_ENCRYPT || op == AES_GCM_OP_GMAC) |
| { |
| /* store tag */ |
| if (tag_len) |
| u8x16_store_partial (ctx->T, tag, tag_len); |
| else |
| ((u8x16u *) tag)[0] = ctx->T; |
| } |
| else |
| { |
| /* check tag */ |
| if (tag_len) |
| { |
| u16 mask = pow2_mask (tag_len); |
| u8x16 expected = u8x16_load_partial (tag, tag_len); |
| if ((u8x16_msb_mask (expected == ctx->T) & mask) == mask) |
| return 1; |
| } |
| else |
| { |
| if (u8x16_is_equal (ctx->T, *(u8x16u *) tag)) |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static_always_inline void |
| clib_aes_gcm_key_expand (aes_gcm_key_data_t *kd, const u8 *key, |
| aes_key_size_t ks) |
| { |
| u8x16 H; |
| u8x16 ek[AES_KEY_ROUNDS (AES_KEY_256) + 1]; |
| aes_expaned_key_t *Ke = (aes_expaned_key_t *) kd->Ke; |
| |
| /* expand AES key */ |
| aes_key_expand (ek, key, ks); |
| for (int i = 0; i < AES_KEY_ROUNDS (ks) + 1; i++) |
| Ke[i].lanes[0] = Ke[i].lanes[1] = Ke[i].lanes[2] = Ke[i].lanes[3] = ek[i]; |
| |
| /* pre-calculate H */ |
| H = aes_encrypt_block (u8x16_zero (), ek, ks); |
| H = u8x16_reflect (H); |
| ghash_precompute (H, (u8x16 *) kd->Hi, ARRAY_LEN (kd->Hi)); |
| } |
| |
| static_always_inline void |
| clib_aes128_gcm_enc (const aes_gcm_key_data_t *kd, const u8 *plaintext, |
| u32 data_bytes, const u8 *aad, u32 aad_bytes, |
| const u8 *iv, u32 tag_bytes, u8 *cyphertext, u8 *tag) |
| { |
| aes_gcm (plaintext, cyphertext, aad, (u8 *) iv, tag, data_bytes, aad_bytes, |
| tag_bytes, kd, AES_KEY_ROUNDS (AES_KEY_128), AES_GCM_OP_ENCRYPT); |
| } |
| |
| static_always_inline void |
| clib_aes256_gcm_enc (const aes_gcm_key_data_t *kd, const u8 *plaintext, |
| u32 data_bytes, const u8 *aad, u32 aad_bytes, |
| const u8 *iv, u32 tag_bytes, u8 *cyphertext, u8 *tag) |
| { |
| aes_gcm (plaintext, cyphertext, aad, (u8 *) iv, tag, data_bytes, aad_bytes, |
| tag_bytes, kd, AES_KEY_ROUNDS (AES_KEY_256), AES_GCM_OP_ENCRYPT); |
| } |
| |
| static_always_inline int |
| clib_aes128_gcm_dec (const aes_gcm_key_data_t *kd, const u8 *cyphertext, |
| u32 data_bytes, const u8 *aad, u32 aad_bytes, |
| const u8 *iv, const u8 *tag, u32 tag_bytes, u8 *plaintext) |
| { |
| return aes_gcm (cyphertext, plaintext, aad, (u8 *) iv, (u8 *) tag, |
| data_bytes, aad_bytes, tag_bytes, kd, |
| AES_KEY_ROUNDS (AES_KEY_128), AES_GCM_OP_DECRYPT); |
| } |
| |
| static_always_inline int |
| clib_aes256_gcm_dec (const aes_gcm_key_data_t *kd, const u8 *cyphertext, |
| u32 data_bytes, const u8 *aad, u32 aad_bytes, |
| const u8 *iv, const u8 *tag, u32 tag_bytes, u8 *plaintext) |
| { |
| return aes_gcm (cyphertext, plaintext, aad, (u8 *) iv, (u8 *) tag, |
| data_bytes, aad_bytes, tag_bytes, kd, |
| AES_KEY_ROUNDS (AES_KEY_256), AES_GCM_OP_DECRYPT); |
| } |
| |
| static_always_inline void |
| clib_aes128_gmac (const aes_gcm_key_data_t *kd, const u8 *data, u32 data_bytes, |
| const u8 *iv, u32 tag_bytes, u8 *tag) |
| { |
| aes_gcm (0, 0, data, (u8 *) iv, tag, 0, data_bytes, tag_bytes, kd, |
| AES_KEY_ROUNDS (AES_KEY_128), AES_GCM_OP_GMAC); |
| } |
| |
| static_always_inline void |
| clib_aes256_gmac (const aes_gcm_key_data_t *kd, const u8 *data, u32 data_bytes, |
| const u8 *iv, u32 tag_bytes, u8 *tag) |
| { |
| aes_gcm (0, 0, data, (u8 *) iv, tag, 0, data_bytes, tag_bytes, kd, |
| AES_KEY_ROUNDS (AES_KEY_256), AES_GCM_OP_GMAC); |
| } |
| |
| #endif /* __crypto_aes_gcm_h__ */ |