blob: c8fd263c09485cb26199ba3ac8e0a5423262e254 [file] [log] [blame]
/*
* Copyright (c) 2016-2019 Cisco and/or its affiliates.
* Copyright (c) 2019 Arm Limited
* Copyright (c) 2010-2017 Intel Corporation and/or its affiliates.
* Copyright (c) 2007-2009 Kip Macy kmacy@freebsd.org
* Inspired from DPDK rte_ring.h (SPSC only) (derived from freebsd bufring.h).
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <svm/svm_fifo.h>
#include <vppinfra/cpu.h>
CLIB_MARCH_FN (svm_fifo_copy_to_chunk, void, svm_fifo_t * f,
svm_fifo_chunk_t * c, u32 tail_idx, const u8 * src, u32 len,
svm_fifo_chunk_t ** last)
{
u32 n_chunk;
ASSERT (tail_idx >= c->start_byte && tail_idx < c->start_byte + c->length);
tail_idx -= c->start_byte;
n_chunk = c->length - tail_idx;
if (n_chunk <= len)
{
u32 to_copy = len;
clib_memcpy_fast (&c->data[tail_idx], src, n_chunk);
c = c->next;
while ((to_copy -= n_chunk))
{
n_chunk = clib_min (c->length, to_copy);
clib_memcpy_fast (&c->data[0], src + (len - to_copy), n_chunk);
c = c->length <= to_copy ? c->next : c;
}
if (*last)
*last = c;
}
else
{
clib_memcpy_fast (&c->data[tail_idx], src, len);
}
}
CLIB_MARCH_FN (svm_fifo_copy_from_chunk, void, svm_fifo_t * f,
svm_fifo_chunk_t * c, u32 head_idx, u8 * dst, u32 len,
svm_fifo_chunk_t ** last)
{
u32 n_chunk;
ASSERT (head_idx >= c->start_byte && head_idx < c->start_byte + c->length);
head_idx -= c->start_byte;
n_chunk = c->length - head_idx;
if (n_chunk <= len)
{
u32 to_copy = len;
clib_memcpy_fast (dst, &c->data[head_idx], n_chunk);
c = c->next;
while ((to_copy -= n_chunk))
{
n_chunk = clib_min (c->length, to_copy);
clib_memcpy_fast (dst + (len - to_copy), &c->data[0], n_chunk);
c = c->length <= to_copy ? c->next : c;
}
if (*last)
*last = c;
}
else
{
clib_memcpy_fast (dst, &c->data[head_idx], len);
}
}
#ifndef CLIB_MARCH_VARIANT
static inline void
svm_fifo_copy_to_chunk (svm_fifo_t * f, svm_fifo_chunk_t * c, u32 tail_idx,
const u8 * src, u32 len, svm_fifo_chunk_t ** last)
{
CLIB_MARCH_FN_SELECT (svm_fifo_copy_to_chunk) (f, c, tail_idx, src, len,
last);
}
static inline void
svm_fifo_copy_from_chunk (svm_fifo_t * f, svm_fifo_chunk_t * c, u32 head_idx,
u8 * dst, u32 len, svm_fifo_chunk_t ** last)
{
CLIB_MARCH_FN_SELECT (svm_fifo_copy_from_chunk) (f, c, head_idx, dst, len,
last);
}
static inline u8
position_lt (svm_fifo_t * f, u32 a, u32 b, u32 tail)
{
return (ooo_segment_distance_from_tail (f, a, tail)
< ooo_segment_distance_from_tail (f, b, tail));
}
static inline u8
position_leq (svm_fifo_t * f, u32 a, u32 b, u32 tail)
{
return (ooo_segment_distance_from_tail (f, a, tail)
<= ooo_segment_distance_from_tail (f, b, tail));
}
static inline u8
position_gt (svm_fifo_t * f, u32 a, u32 b, u32 tail)
{
return (ooo_segment_distance_from_tail (f, a, tail)
> ooo_segment_distance_from_tail (f, b, tail));
}
static inline u32
position_diff (svm_fifo_t * f, u32 posa, u32 posb, u32 tail)
{
return ooo_segment_distance_from_tail (f, posa, tail)
- ooo_segment_distance_from_tail (f, posb, tail);
}
static inline u32
ooo_segment_end_pos (svm_fifo_t * f, ooo_segment_t * s)
{
return s->start + s->length;
}
u8 *
format_ooo_segment (u8 * s, va_list * args)
{
svm_fifo_t *f = va_arg (*args, svm_fifo_t *);
ooo_segment_t *seg = va_arg (*args, ooo_segment_t *);
u32 normalized_start = (seg->start + f->nitems - f->tail) % f->size;
s = format (s, "[%u, %u], len %u, next %d, prev %d", normalized_start,
(normalized_start + seg->length) % f->size, seg->length,
seg->next, seg->prev);
return s;
}
u8 *
svm_fifo_dump_trace (u8 * s, svm_fifo_t * f)
{
#if SVM_FIFO_TRACE
svm_fifo_trace_elem_t *seg = 0;
int i = 0;
if (f->trace)
{
vec_foreach (seg, f->trace)
{
s = format (s, "{%u, %u, %u}, ", seg->offset, seg->len, seg->action);
i++;
if (i % 5 == 0)
s = format (s, "\n");
}
s = format (s, "\n");
}
return s;
#else
return 0;
#endif
}
u8 *
svm_fifo_replay (u8 * s, svm_fifo_t * f, u8 no_read, u8 verbose)
{
int i, trace_len;
u8 *data = 0;
svm_fifo_trace_elem_t *trace;
u32 offset;
svm_fifo_t *dummy_fifo;
if (!f)
return s;
#if SVM_FIFO_TRACE
trace = f->trace;
trace_len = vec_len (trace);
#else
trace = 0;
trace_len = 0;
#endif
dummy_fifo = svm_fifo_create (f->size);
clib_memset (f->head_chunk->data, 0xFF, f->nitems);
vec_validate (data, f->nitems);
for (i = 0; i < vec_len (data); i++)
data[i] = i;
for (i = 0; i < trace_len; i++)
{
offset = trace[i].offset;
if (trace[i].action == 1)
{
if (verbose)
s = format (s, "adding [%u, %u]:", trace[i].offset,
(trace[i].offset + trace[i].len) % dummy_fifo->size);
svm_fifo_enqueue_with_offset (dummy_fifo, trace[i].offset,
trace[i].len, &data[offset]);
}
else if (trace[i].action == 2)
{
if (verbose)
s = format (s, "adding [%u, %u]:", 0, trace[i].len);
svm_fifo_enqueue_nowait (dummy_fifo, trace[i].len, &data[offset]);
}
else if (!no_read)
{
if (verbose)
s = format (s, "read: %u", trace[i].len);
svm_fifo_dequeue_drop (dummy_fifo, trace[i].len);
}
if (verbose)
s = format (s, "%U", format_svm_fifo, dummy_fifo, 1);
}
s = format (s, "result: %U", format_svm_fifo, dummy_fifo, 1);
return s;
}
u8 *
format_ooo_list (u8 * s, va_list * args)
{
svm_fifo_t *f = va_arg (*args, svm_fifo_t *);
u32 indent = va_arg (*args, u32);
u32 ooo_segment_index = f->ooos_list_head;
ooo_segment_t *seg;
while (ooo_segment_index != OOO_SEGMENT_INVALID_INDEX)
{
seg = pool_elt_at_index (f->ooo_segments, ooo_segment_index);
s = format (s, "%U%U\n", format_white_space, indent, format_ooo_segment,
f, seg);
ooo_segment_index = seg->next;
}
return s;
}
u8 *
format_svm_fifo (u8 * s, va_list * args)
{
svm_fifo_t *f = va_arg (*args, svm_fifo_t *);
int verbose = va_arg (*args, int);
u32 indent;
if (!s)
return s;
indent = format_get_indent (s);
s = format (s, "cursize %u nitems %u has_event %d\n",
svm_fifo_max_dequeue (f), f->nitems, f->has_event);
s = format (s, "%Uhead %u tail %u segment manager %u\n", format_white_space,
indent, (f->head % f->size), (f->tail % f->size),
f->segment_manager);
if (verbose > 1)
s = format (s, "%Uvpp session %d thread %d app session %d thread %d\n",
format_white_space, indent, f->master_session_index,
f->master_thread_index, f->client_session_index,
f->client_thread_index);
if (verbose)
{
s = format (s, "%Uooo pool %d active elts newest %u\n",
format_white_space, indent, pool_elts (f->ooo_segments),
f->ooos_newest);
if (svm_fifo_has_ooo_data (f))
s = format (s, " %U", format_ooo_list, f, indent, verbose);
}
return s;
}
void
svm_fifo_init (svm_fifo_t * f, u32 size)
{
f->size = size;
/*
* usable size of the fifo set to rounded_data_size - 1
* to differentiate between free fifo and empty fifo.
*/
f->nitems = f->size - 1;
f->ooos_list_head = OOO_SEGMENT_INVALID_INDEX;
f->ct_session_index = SVM_FIFO_INVALID_SESSION_INDEX;
f->segment_index = SVM_FIFO_INVALID_INDEX;
f->refcnt = 1;
f->default_chunk.start_byte = 0;
f->default_chunk.length = f->size;
f->default_chunk.next = f->start_chunk = f->end_chunk = &f->default_chunk;
f->head_chunk = f->tail_chunk = f->ooo_enq = f->ooo_deq = f->start_chunk;
}
/**
* Creates a fifo in the current heap. Fails vs blow up the process
*/
svm_fifo_t *
svm_fifo_create (u32 data_size_in_bytes)
{
svm_fifo_t *f;
u32 rounded_data_size;
/* always round fifo data size to the next highest power-of-two */
rounded_data_size = (1 << (max_log2 (data_size_in_bytes)));
f = clib_mem_alloc_aligned_or_null (sizeof (*f) + rounded_data_size,
CLIB_CACHE_LINE_BYTES);
if (f == 0)
return 0;
clib_memset (f, 0, sizeof (*f));
svm_fifo_init (f, data_size_in_bytes);
return f;
}
/**
* Creates a fifo chunk in the current heap
*/
svm_fifo_chunk_t *
svm_fifo_chunk_alloc (u32 size)
{
svm_fifo_chunk_t *c;
u32 rounded_size;
/* round chunk size to the next highest power-of-two */
rounded_size = (1 << (max_log2 (size)));
c = clib_mem_alloc_aligned_or_null (sizeof (*c) + rounded_size,
CLIB_CACHE_LINE_BYTES);
if (c == 0)
return 0;
clib_memset (c, 0, sizeof (*c));
c->length = rounded_size;
return c;
}
static inline void
svm_fifo_size_update (svm_fifo_t * f, svm_fifo_chunk_t * c)
{
svm_fifo_chunk_t *prev;
u32 add_bytes = 0;
if (!c)
return;
f->end_chunk->next = c;
while (c)
{
add_bytes += c->length;
prev = c;
c = c->next;
}
f->end_chunk = prev;
prev->next = f->start_chunk;
f->size += add_bytes;
f->nitems = f->size - 1;
f->new_chunks = 0;
}
static void
svm_fifo_try_size_update (svm_fifo_t * f, u32 new_head)
{
if (new_head % f->size > f->tail % f->size)
return;
svm_fifo_size_update (f, f->new_chunks);
f->flags &= ~SVM_FIFO_F_SIZE_UPDATE;
}
void
svm_fifo_add_chunk (svm_fifo_t * f, svm_fifo_chunk_t * c)
{
svm_fifo_chunk_t *cur, *prev;
/* Initialize rbtree if needed and add default chunk to it */
if (!(f->flags & SVM_FIFO_F_MULTI_CHUNK))
{
rb_tree_init (&f->chunk_lookup);
rb_tree_add2 (&f->chunk_lookup, 0, pointer_to_uword (f->start_chunk));
f->flags |= SVM_FIFO_F_MULTI_CHUNK;
}
/* Initialize chunks and add to lookup rbtree. Expectation is that this is
* called with the heap where the rbtree's pool is pushed. */
cur = c;
if (f->new_chunks)
{
prev = f->new_chunks;
while (prev->next)
prev = prev->next;
prev->next = c;
}
else
prev = f->end_chunk;
while (cur)
{
cur->start_byte = prev->start_byte + prev->length;
rb_tree_add2 (&f->chunk_lookup, cur->start_byte,
pointer_to_uword (cur));
prev = cur;
cur = cur->next;
}
/* If fifo is not wrapped, update the size now */
if (!svm_fifo_is_wrapped (f))
{
ASSERT (!f->new_chunks);
svm_fifo_size_update (f, c);
return;
}
/* Postpone size update */
if (!f->new_chunks)
{
f->new_chunks = c;
f->flags |= SVM_FIFO_F_SIZE_UPDATE;
}
}
static inline u8
svm_fifo_chunk_includes_pos (svm_fifo_chunk_t * c, u32 pos)
{
return (pos >= c->start_byte && pos < c->start_byte + c->length);
}
/**
* Find chunk for given byte position
*
* @param f fifo
* @param pos normalized position in fifo
*
* @return chunk that includes given position or 0
*/
static svm_fifo_chunk_t *
svm_fifo_find_chunk (svm_fifo_t * f, u32 pos)
{
rb_tree_t *rt = &f->chunk_lookup;
rb_node_t *cur, *prev;
svm_fifo_chunk_t *c;
cur = rb_node (rt, rt->root);
while (pos != cur->key)
{
prev = cur;
if (pos < cur->key)
cur = rb_node_left (rt, cur);
else
cur = rb_node_right (rt, cur);
if (rb_node_is_tnil (rt, cur))
{
/* Hit tnil as a left child. Find predecessor */
if (pos < prev->key)
{
cur = rb_tree_predecessor (rt, prev);
c = uword_to_pointer (cur->opaque, svm_fifo_chunk_t *);
if (svm_fifo_chunk_includes_pos (c, pos))
return c;
return 0;
}
/* Hit tnil as a right child. Check if this is the one, otherwise
* search for successor */
c = uword_to_pointer (prev->opaque, svm_fifo_chunk_t *);
if (svm_fifo_chunk_includes_pos (c, pos))
return c;
cur = rb_tree_successor (rt, prev);
c = uword_to_pointer (cur->opaque, svm_fifo_chunk_t *);
if (svm_fifo_chunk_includes_pos (c, pos))
return c;
return 0;
}
}
if (!rb_node_is_tnil (rt, cur))
return uword_to_pointer (cur->opaque, svm_fifo_chunk_t *);
return 0;
}
void
svm_fifo_free_chunk_lookup (svm_fifo_t * f)
{
rb_tree_free_nodes (&f->chunk_lookup);
}
void
svm_fifo_free_ooo_data (svm_fifo_t * f)
{
pool_free (f->ooo_segments);
}
void
svm_fifo_free (svm_fifo_t * f)
{
ASSERT (f->refcnt > 0);
if (--f->refcnt == 0)
{
/* ooo data is not allocated on segment heap */
svm_fifo_free_chunk_lookup (f);
clib_mem_free (f);
}
}
always_inline ooo_segment_t *
ooo_segment_new (svm_fifo_t * f, u32 start, u32 length)
{
ooo_segment_t *s;
pool_get (f->ooo_segments, s);
s->start = start;
s->length = length;
s->prev = s->next = OOO_SEGMENT_INVALID_INDEX;
return s;
}
always_inline void
ooo_segment_del (svm_fifo_t * f, u32 index)
{
ooo_segment_t *cur, *prev = 0, *next = 0;
cur = pool_elt_at_index (f->ooo_segments, index);
if (cur->next != OOO_SEGMENT_INVALID_INDEX)
{
next = pool_elt_at_index (f->ooo_segments, cur->next);
next->prev = cur->prev;
}
if (cur->prev != OOO_SEGMENT_INVALID_INDEX)
{
prev = pool_elt_at_index (f->ooo_segments, cur->prev);
prev->next = cur->next;
}
else
{
f->ooos_list_head = cur->next;
}
pool_put (f->ooo_segments, cur);
}
/**
* Add segment to fifo's out-of-order segment list. Takes care of merging
* adjacent segments and removing overlapping ones.
*/
static void
ooo_segment_add (svm_fifo_t * f, u32 offset, u32 head, u32 tail, u32 length)
{
ooo_segment_t *s, *new_s, *prev, *next, *it;
u32 new_index, s_end_pos, s_index;
u32 offset_pos, offset_end_pos;
ASSERT (offset + length <= ooo_segment_distance_from_tail (f, head, tail)
|| head == tail);
offset_pos = tail + offset;
offset_end_pos = tail + offset + length;
f->ooos_newest = OOO_SEGMENT_INVALID_INDEX;
if (f->ooos_list_head == OOO_SEGMENT_INVALID_INDEX)
{
s = ooo_segment_new (f, offset_pos, length);
f->ooos_list_head = s - f->ooo_segments;
f->ooos_newest = f->ooos_list_head;
return;
}
/* Find first segment that starts after new segment */
s = pool_elt_at_index (f->ooo_segments, f->ooos_list_head);
while (s->next != OOO_SEGMENT_INVALID_INDEX
&& position_lt (f, s->start, offset_pos, tail))
s = pool_elt_at_index (f->ooo_segments, s->next);
/* If we have a previous and we overlap it, use it as starting point */
prev = ooo_segment_get_prev (f, s);
if (prev
&& position_leq (f, offset_pos, ooo_segment_end_pos (f, prev), tail))
{
s = prev;
s_end_pos = ooo_segment_end_pos (f, s);
/* Since we have previous, offset start position cannot be smaller
* than prev->start. Check tail */
ASSERT (position_lt (f, s->start, offset_pos, tail));
goto check_tail;
}
s_index = s - f->ooo_segments;
s_end_pos = ooo_segment_end_pos (f, s);
/* No overlap, add before current segment */
if (position_lt (f, offset_end_pos, s->start, tail))
{
new_s = ooo_segment_new (f, offset_pos, length);
new_index = new_s - f->ooo_segments;
/* Pool might've moved, get segment again */
s = pool_elt_at_index (f->ooo_segments, s_index);
if (s->prev != OOO_SEGMENT_INVALID_INDEX)
{
new_s->prev = s->prev;
prev = pool_elt_at_index (f->ooo_segments, new_s->prev);
prev->next = new_index;
}
else
{
/* New head */
f->ooos_list_head = new_index;
}
new_s->next = s_index;
s->prev = new_index;
f->ooos_newest = new_index;
return;
}
/* No overlap, add after current segment */
else if (position_gt (f, offset_pos, s_end_pos, tail))
{
new_s = ooo_segment_new (f, offset_pos, length);
new_index = new_s - f->ooo_segments;
/* Pool might've moved, get segment again */
s = pool_elt_at_index (f->ooo_segments, s_index);
/* Needs to be last */
ASSERT (s->next == OOO_SEGMENT_INVALID_INDEX);
new_s->prev = s_index;
s->next = new_index;
f->ooos_newest = new_index;
return;
}
/*
* Merge needed
*/
/* Merge at head */
if (position_lt (f, offset_pos, s->start, tail))
{
s->start = offset_pos;
s->length = position_diff (f, s_end_pos, s->start, tail);
f->ooos_newest = s - f->ooo_segments;
}
check_tail:
/* Overlapping tail */
if (position_gt (f, offset_end_pos, s_end_pos, tail))
{
s->length = position_diff (f, offset_end_pos, s->start, tail);
/* Remove the completely overlapped segments in the tail */
it = ooo_segment_next (f, s);
while (it && position_leq (f, ooo_segment_end_pos (f, it),
offset_end_pos, tail))
{
next = ooo_segment_next (f, it);
ooo_segment_del (f, it - f->ooo_segments);
it = next;
}
/* If partial overlap with last, merge */
if (it && position_leq (f, it->start, offset_end_pos, tail))
{
s->length = position_diff (f, ooo_segment_end_pos (f, it),
s->start, tail);
ooo_segment_del (f, it - f->ooo_segments);
}
f->ooos_newest = s - f->ooo_segments;
}
}
/**
* Removes segments that can now be enqueued because the fifo's tail has
* advanced. Returns the number of bytes added to tail.
*/
static int
ooo_segment_try_collect (svm_fifo_t * f, u32 n_bytes_enqueued, u32 * tail)
{
ooo_segment_t *s;
u32 index, bytes = 0;
i32 diff;
s = pool_elt_at_index (f->ooo_segments, f->ooos_list_head);
diff = ooo_segment_distance_to_tail (f, s->start, *tail);
ASSERT (diff != n_bytes_enqueued);
if (diff > n_bytes_enqueued)
return 0;
/* If last tail update overlaps one/multiple ooo segments, remove them */
while (0 <= diff && diff < n_bytes_enqueued)
{
index = s - f->ooo_segments;
/* Segment end is beyond the tail. Advance tail and remove segment */
if (s->length > diff)
{
bytes = s->length - diff;
*tail = *tail + bytes;
ooo_segment_del (f, index);
break;
}
/* If we have next go on */
if (s->next != OOO_SEGMENT_INVALID_INDEX)
{
s = pool_elt_at_index (f->ooo_segments, s->next);
diff = ooo_segment_distance_to_tail (f, s->start, *tail);
ooo_segment_del (f, index);
}
/* End of search */
else
{
ooo_segment_del (f, index);
break;
}
}
ASSERT (bytes <= f->nitems);
return bytes;
}
void
svm_fifo_overwrite_head (svm_fifo_t * f, u8 * data, u32 len)
{
u32 n_chunk;
u32 head, tail, head_idx;
svm_fifo_chunk_t *c;
ASSERT (len <= f->nitems);
f_load_head_tail_cons (f, &head, &tail);
c = f->head_chunk;
head_idx = head % f->size;
head_idx -= c->start_byte;
n_chunk = c->length - head_idx;
if (len <= n_chunk)
clib_memcpy_fast (&c->data[head_idx], data, len);
else
{
clib_memcpy_fast (&c->data[head_idx], data, n_chunk);
clib_memcpy_fast (&c->next->data[0], data + n_chunk, len - n_chunk);
}
}
int
svm_fifo_enqueue_nowait (svm_fifo_t * f, u32 len, const u8 * src)
{
u32 tail, head, free_count;
f_load_head_tail_prod (f, &head, &tail);
/* free space in fifo can only increase during enqueue: SPSC */
free_count = f_free_count (f, head, tail);
f->ooos_newest = OOO_SEGMENT_INVALID_INDEX;
if (PREDICT_FALSE (free_count == 0))
return SVM_FIFO_FULL;
/* number of bytes we're going to copy */
len = clib_min (free_count, len);
svm_fifo_copy_to_chunk (f, f->tail_chunk, tail % f->size, src, len,
&f->tail_chunk);
tail += len;
svm_fifo_trace_add (f, head, n_total, 2);
/* collect out-of-order segments */
if (PREDICT_FALSE (f->ooos_list_head != OOO_SEGMENT_INVALID_INDEX))
len += ooo_segment_try_collect (f, len, &tail);
/* store-rel: producer owned index (paired with load-acq in consumer) */
clib_atomic_store_rel_n (&f->tail, tail);
return len;
}
/**
* Enqueue a future segment.
*
* Two choices: either copies the entire segment, or copies nothing
* Returns 0 of the entire segment was copied
* Returns -1 if none of the segment was copied due to lack of space
*/
int
svm_fifo_enqueue_with_offset (svm_fifo_t * f, u32 offset, u32 len, u8 * src)
{
u32 tail, head, free_count, tail_idx;
f_load_head_tail_prod (f, &head, &tail);
/* free space in fifo can only increase during enqueue: SPSC */
free_count = f_free_count (f, head, tail);
/* will this request fit? */
if ((len + offset) > free_count)
return -1;
f->ooos_newest = OOO_SEGMENT_INVALID_INDEX;
svm_fifo_trace_add (f, offset, len, 1);
ooo_segment_add (f, offset, head, tail, len);
tail_idx = (tail + offset) % f->size;
if (!svm_fifo_chunk_includes_pos (f->ooo_enq, tail_idx))
f->ooo_enq = svm_fifo_find_chunk (f, tail_idx);
svm_fifo_copy_to_chunk (f, f->ooo_enq, tail_idx, src, len, &f->ooo_enq);
return 0;
}
int
svm_fifo_dequeue_nowait (svm_fifo_t * f, u32 len, u8 * dst)
{
u32 tail, head, cursize;
f_load_head_tail_cons (f, &head, &tail);
/* current size of fifo can only increase during dequeue: SPSC */
cursize = f_cursize (f, head, tail);
if (PREDICT_FALSE (cursize == 0))
return -2; /* nothing in the fifo */
len = clib_min (cursize, len);
svm_fifo_copy_from_chunk (f, f->head_chunk, head % f->size, dst, len,
&f->head_chunk);
head += len;
if (PREDICT_FALSE (f->flags & SVM_FIFO_F_SIZE_UPDATE))
svm_fifo_try_size_update (f, head);
/* store-rel: consumer owned index (paired with load-acq in producer) */
clib_atomic_store_rel_n (&f->head, head);
return len;
}
int
svm_fifo_peek (svm_fifo_t * f, u32 offset, u32 len, u8 * dst)
{
u32 tail, head, cursize, head_idx;
f_load_head_tail_cons (f, &head, &tail);
/* current size of fifo can only increase during peek: SPSC */
cursize = f_cursize (f, head, tail);
if (PREDICT_FALSE (cursize < offset))
return -2; /* nothing in the fifo */
len = clib_min (cursize - offset, len);
head_idx = (head + offset) % f->size;
if (!svm_fifo_chunk_includes_pos (f->ooo_deq, head_idx))
f->ooo_deq = svm_fifo_find_chunk (f, head_idx);
svm_fifo_copy_from_chunk (f, f->ooo_deq, head_idx, dst, len, &f->ooo_deq);
return len;
}
int
svm_fifo_dequeue_drop (svm_fifo_t * f, u32 max_bytes)
{
u32 total_drop_bytes;
u32 tail, head, cursize;
f_load_head_tail_cons (f, &head, &tail);
/* number of bytes we're going to drop */
cursize = f_cursize (f, head, tail);
if (PREDICT_FALSE (cursize == 0))
return -2; /* nothing in the fifo */
svm_fifo_trace_add (f, tail, total_drop_bytes, 3);
/* number of bytes we're going to drop */
total_drop_bytes = (cursize < max_bytes) ? cursize : max_bytes;
/* move head */
head += total_drop_bytes;
ASSERT (cursize >= total_drop_bytes);
/* store-rel: consumer owned index (paired with load-acq in producer) */
clib_atomic_store_rel_n (&f->head, head);
return total_drop_bytes;
}
void
svm_fifo_dequeue_drop_all (svm_fifo_t * f)
{
/* consumer foreign index */
u32 tail = clib_atomic_load_acq_n (&f->tail);
/* store-rel: consumer owned index (paired with load-acq in producer) */
clib_atomic_store_rel_n (&f->head, tail);
}
int
svm_fifo_segments (svm_fifo_t * f, svm_fifo_seg_t * fs)
{
u32 cursize, head, tail, head_idx;
f_load_head_tail_cons (f, &head, &tail);
/* consumer function, cursize can only increase while we're working */
cursize = f_cursize (f, head, tail);
if (PREDICT_FALSE (cursize == 0))
return -2; /* nothing in the fifo */
head_idx = head % f->size;
if (tail < head)
{
fs[0].len = f->size - head_idx;
fs[0].data = f->head_chunk->data + head_idx;
fs[1].len = cursize - fs[0].len;
fs[1].data = f->head_chunk->data;
}
else
{
fs[0].len = cursize;
fs[0].data = f->head_chunk->data + head_idx;
fs[1].len = 0;
fs[1].data = 0;
}
return cursize;
}
void
svm_fifo_segments_free (svm_fifo_t * f, svm_fifo_seg_t * fs)
{
u32 head, head_idx;
/* consumer owned index */
head = f->head;
head_idx = head % f->size;
ASSERT (fs[0].data == f->head_chunk->data + head_idx);
head += fs[0].len + fs[1].len;
/* store-rel: consumer owned index (paired with load-acq in producer) */
clib_atomic_store_rel_n (&f->head, head);
}
/* Assumption: no prod and cons are accessing either dest or src fifo */
void
svm_fifo_clone (svm_fifo_t * df, svm_fifo_t * sf)
{
u32 head, tail;
clib_memcpy_fast (df->head_chunk->data, sf->head_chunk->data, sf->size);
f_load_head_tail_all_acq (sf, &head, &tail);
clib_atomic_store_rel_n (&df->head, head);
clib_atomic_store_rel_n (&df->tail, tail);
}
u32
svm_fifo_number_ooo_segments (svm_fifo_t * f)
{
return pool_elts (f->ooo_segments);
}
ooo_segment_t *
svm_fifo_first_ooo_segment (svm_fifo_t * f)
{
return pool_elt_at_index (f->ooo_segments, f->ooos_list_head);
}
/**
* Set fifo pointers to requested offset
*/
void
svm_fifo_init_pointers (svm_fifo_t * f, u32 head, u32 tail)
{
clib_atomic_store_rel_n (&f->head, head);
clib_atomic_store_rel_n (&f->tail, tail);
if (f->flags & SVM_FIFO_F_MULTI_CHUNK)
{
svm_fifo_chunk_t *c;
c = svm_fifo_find_chunk (f, head % f->size);
ASSERT (c != 0);
f->head_chunk = f->ooo_deq = c;
c = svm_fifo_find_chunk (f, tail % f->size);
ASSERT (c != 0);
f->tail_chunk = f->ooo_enq = c;
}
}
void
svm_fifo_add_subscriber (svm_fifo_t * f, u8 subscriber)
{
if (f->n_subscribers >= SVM_FIFO_MAX_EVT_SUBSCRIBERS)
return;
f->subscribers[f->n_subscribers++] = subscriber;
}
void
svm_fifo_del_subscriber (svm_fifo_t * f, u8 subscriber)
{
int i;
for (i = 0; i < f->n_subscribers; i++)
{
if (f->subscribers[i] != subscriber)
continue;
f->subscribers[i] = f->subscribers[f->n_subscribers - 1];
f->n_subscribers--;
break;
}
}
#endif
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/