| /* |
| * Copyright (c) 2015 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| /* |
| Copyright (c) 2001, 2002, 2003, 2004 Eliot Dresselhaus |
| |
| Permission is hereby granted, free of charge, to any person obtaining |
| a copy of this software and associated documentation files (the |
| "Software"), to deal in the Software without restriction, including |
| without limitation the rights to use, copy, modify, merge, publish, |
| distribute, sublicense, and/or sell copies of the Software, and to |
| permit persons to whom the Software is furnished to do so, subject to |
| the following conditions: |
| |
| The above copyright notice and this permission notice shall be |
| included in all copies or substantial portions of the Software. |
| |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| /** @file |
| * @brief Fixed length block allocator. |
| Pools are built from clib vectors and bitmaps. Use pools when |
| repeatedly allocating and freeing fixed-size data. Pools are |
| fast, and avoid memory fragmentation. |
| */ |
| |
| #ifndef included_pool_h |
| #define included_pool_h |
| |
| #include <vppinfra/bitmap.h> |
| #include <vppinfra/error.h> |
| |
| |
| typedef struct |
| { |
| /** Bitmap of indices of free objects. */ |
| uword *free_bitmap; |
| |
| /** Vector of free indices. One element for each set bit in bitmap. */ |
| u32 *free_indices; |
| |
| /* The following fields are set for fixed-size, preallocated pools */ |
| |
| /** Maximum size of the pool, in elements */ |
| u32 max_elts; |
| |
| } pool_header_t; |
| |
| /** Get pool header from user pool pointer */ |
| always_inline pool_header_t * |
| pool_header (void *v) |
| { |
| return vec_header (v); |
| } |
| |
| void _pool_init_fixed (void **pool_ptr, uword elt_sz, uword max_elts, |
| uword align); |
| |
| /** initialize a fixed-size, preallocated pool */ |
| #define pool_init_fixed(P, E) \ |
| _pool_init_fixed ((void **) &(P), _vec_elt_sz (P), E, _vec_align (P, 0)); |
| |
| /** Validate a pool */ |
| always_inline void |
| pool_validate (void *v) |
| { |
| pool_header_t *p = pool_header (v); |
| uword i, n_free_bitmap; |
| |
| if (!v) |
| return; |
| |
| n_free_bitmap = clib_bitmap_count_set_bits (p->free_bitmap); |
| ASSERT (n_free_bitmap == vec_len (p->free_indices)); |
| for (i = 0; i < vec_len (p->free_indices); i++) |
| ASSERT (clib_bitmap_get (p->free_bitmap, p->free_indices[i]) == 1); |
| } |
| |
| /** Number of active elements in a pool. |
| * @return Number of active elements in a pool |
| */ |
| always_inline uword |
| pool_elts (void *v) |
| { |
| uword ret = vec_len (v); |
| if (v) |
| ret -= vec_len (pool_header (v)->free_indices); |
| return ret; |
| } |
| |
| /** Number of elements in pool vector. |
| |
| @note You probably want to call pool_elts() instead. |
| */ |
| #define pool_len(p) vec_len(p) |
| |
| /** Number of elements in pool vector (usable as an lvalue) |
| |
| @note You probably don't want to use this macro. |
| */ |
| #define _pool_len(p) _vec_len(p) |
| |
| /** Memory usage of pool header. */ |
| always_inline uword |
| pool_header_bytes (void *v) |
| { |
| pool_header_t *p = pool_header (v); |
| |
| if (!v) |
| return 0; |
| |
| return vec_bytes (p->free_bitmap) + vec_bytes (p->free_indices); |
| } |
| |
| /** Memory usage of pool. */ |
| #define pool_bytes(P) (vec_bytes (P) + pool_header_bytes (P)) |
| |
| /** Local variable naming macro. */ |
| #define _pool_var(v) _pool_##v |
| |
| /** Number of elements that can fit into pool with current allocation */ |
| #define pool_max_len(P) vec_max_len (P) |
| |
| /** Number of free elements in pool */ |
| static_always_inline uword |
| _pool_free_elts (void *p, uword elt_sz) |
| { |
| pool_header_t *ph; |
| uword n_free; |
| |
| if (p == 0) |
| return 0; |
| |
| ph = pool_header (p); |
| |
| n_free = vec_len (ph->free_indices); |
| |
| /* Fixed-size pools have max_elts set non-zero */ |
| if (ph->max_elts == 0) |
| n_free += _vec_max_len (p, elt_sz) - vec_len (p); |
| |
| return n_free; |
| } |
| |
| #define pool_free_elts(P) _pool_free_elts ((void *) (P), _vec_elt_sz (P)) |
| |
| /** Allocate an object E from a pool P (general version). |
| |
| First search free list. If nothing is free extend vector of objects. |
| */ |
| |
| static_always_inline void |
| _pool_get (void **pp, void **ep, uword align, int zero, uword elt_sz) |
| { |
| uword len = 0; |
| void *p = pp[0]; |
| void *e; |
| vec_attr_t va = { .hdr_sz = sizeof (pool_header_t), |
| .elt_sz = elt_sz, |
| .align = align }; |
| |
| if (p) |
| { |
| pool_header_t *ph = pool_header (p); |
| uword n_free = vec_len (ph->free_indices); |
| |
| if (n_free) |
| { |
| uword index = ph->free_indices[n_free - 1]; |
| e = p + index * elt_sz; |
| ph->free_bitmap = |
| clib_bitmap_andnoti_notrim (ph->free_bitmap, index); |
| vec_set_len (ph->free_indices, n_free - 1); |
| clib_mem_unpoison (e, elt_sz); |
| goto done; |
| } |
| |
| if (ph->max_elts) |
| { |
| clib_warning ("can't expand fixed-size pool"); |
| os_out_of_memory (); |
| } |
| } |
| |
| len = vec_len (p); |
| |
| /* Nothing on free list, make a new element and return it. */ |
| p = _vec_realloc_internal (p, len + 1, &va); |
| e = p + len * elt_sz; |
| |
| _vec_update_pointer (pp, p); |
| |
| done: |
| ep[0] = e; |
| if (zero) |
| clib_memset_u8 (e, 0, elt_sz); |
| } |
| |
| #define _pool_get_aligned_internal(P, E, A, Z) \ |
| _pool_get ((void **) &(P), (void **) &(E), _vec_align (P, A), Z, \ |
| _vec_elt_sz (P)) |
| |
| /** Allocate an object E from a pool P with alignment A */ |
| #define pool_get_aligned(P,E,A) _pool_get_aligned_internal(P,E,A,0) |
| |
| /** Allocate an object E from a pool P with alignment A and zero it */ |
| #define pool_get_aligned_zero(P,E,A) _pool_get_aligned_internal(P,E,A,1) |
| |
| /** Allocate an object E from a pool P (unspecified alignment). */ |
| #define pool_get(P,E) pool_get_aligned(P,E,0) |
| |
| /** Allocate an object E from a pool P and zero it */ |
| #define pool_get_zero(P,E) pool_get_aligned_zero(P,E,0) |
| |
| always_inline int |
| _pool_get_will_expand (void *p, uword elt_sz) |
| { |
| pool_header_t *ph; |
| uword len; |
| |
| if (p == 0) |
| return 1; |
| |
| ph = pool_header (p); |
| |
| if (ph->max_elts) |
| len = ph->max_elts; |
| else |
| len = vec_len (ph->free_indices); |
| |
| /* Free elements, certainly won't expand */ |
| if (len > 0) |
| return 0; |
| |
| return _vec_resize_will_expand (p, 1, elt_sz); |
| } |
| |
| #define pool_get_will_expand(P) _pool_get_will_expand (P, sizeof ((P)[0])) |
| |
| always_inline int |
| _pool_put_will_expand (void *p, uword index, uword elt_sz) |
| { |
| pool_header_t *ph = pool_header (p); |
| |
| if (clib_bitmap_will_expand (ph->free_bitmap, index)) |
| return 1; |
| |
| if (vec_resize_will_expand (ph->free_indices, 1)) |
| return 1; |
| |
| return 0; |
| } |
| |
| #define pool_put_will_expand(P, E) \ |
| _pool_put_will_expand (P, (E) - (P), sizeof ((P)[0])) |
| |
| /** Use free bitmap to query whether given element is free. */ |
| static_always_inline int |
| pool_is_free_index (void *p, uword index) |
| { |
| pool_header_t *ph = pool_header (p); |
| return index < vec_len (p) ? clib_bitmap_get (ph->free_bitmap, index) : 1; |
| } |
| |
| #define pool_is_free(P, E) pool_is_free_index ((void *) (P), (E) - (P)) |
| |
| /** Free an object E in pool P. */ |
| static_always_inline void |
| _pool_put_index (void *p, uword index, uword elt_sz) |
| { |
| pool_header_t *ph = pool_header (p); |
| |
| ASSERT (index < ph->max_elts ? ph->max_elts : vec_len (p)); |
| ASSERT (!pool_is_free_index (p, index)); |
| |
| /* Add element to free bitmap and to free list. */ |
| ph->free_bitmap = clib_bitmap_ori_notrim (ph->free_bitmap, index); |
| |
| /* Preallocated pool? */ |
| if (ph->max_elts) |
| { |
| u32 len = _vec_len (ph->free_indices); |
| vec_set_len (ph->free_indices, len + 1); |
| ph->free_indices[len] = index; |
| } |
| else |
| vec_add1 (ph->free_indices, index); |
| |
| clib_mem_poison (p + index * elt_sz, elt_sz); |
| } |
| |
| #define pool_put_index(P, I) _pool_put_index ((void *) (P), I, _vec_elt_sz (P)) |
| #define pool_put(P, E) pool_put_index (P, (E) - (P)) |
| |
| /** Allocate N more free elements to pool (general version). */ |
| |
| static_always_inline void |
| _pool_alloc (void **pp, uword n_elts, uword align, void *heap, uword elt_sz) |
| { |
| pool_header_t *ph = pool_header (pp[0]); |
| uword len = vec_len (pp[0]); |
| const vec_attr_t va = { .hdr_sz = sizeof (pool_header_t), |
| .elt_sz = elt_sz, |
| .align = align, |
| .heap = heap }; |
| |
| if (ph && ph->max_elts) |
| { |
| clib_warning ("Can't expand fixed-size pool"); |
| os_out_of_memory (); |
| } |
| |
| pp[0] = _vec_resize_internal (pp[0], len + n_elts, &va); |
| _vec_set_len (pp[0], len, elt_sz); |
| clib_mem_poison (pp[0] + len * elt_sz, n_elts * elt_sz); |
| |
| ph = pool_header (pp[0]); |
| vec_resize (ph->free_indices, n_elts); |
| vec_dec_len (ph->free_indices, n_elts); |
| clib_bitmap_validate (ph->free_bitmap, (len + n_elts) ?: 1); |
| } |
| |
| #define pool_alloc_aligned_heap(P, N, A, H) \ |
| _pool_alloc ((void **) &(P), N, _vec_align (P, A), H, _vec_elt_sz (P)) |
| |
| #define pool_alloc_heap(P, N, H) pool_alloc_aligned_heap (P, N, 0, H) |
| #define pool_alloc_aligned(P, N, A) pool_alloc_aligned_heap (P, N, A, 0) |
| #define pool_alloc(P, N) pool_alloc_aligned_heap (P, N, 0, 0) |
| |
| static_always_inline void * |
| _pool_dup (void *p, uword align, uword elt_sz) |
| { |
| pool_header_t *nph, *ph = pool_header (p); |
| uword len = vec_len (p); |
| const vec_attr_t va = { .hdr_sz = sizeof (pool_header_t), |
| .elt_sz = elt_sz, |
| .align = align }; |
| void *n; |
| |
| if (ph && ph->max_elts) |
| { |
| clib_warning ("Can't expand fixed-size pool"); |
| os_out_of_memory (); |
| } |
| |
| n = _vec_alloc_internal (len, &va); |
| nph = pool_header (n); |
| clib_memset_u8 (nph, 0, sizeof (vec_header_t)); |
| |
| if (len) |
| { |
| u32 *fi; |
| vec_foreach (fi, ph->free_indices) |
| clib_mem_unpoison (p + elt_sz * fi[0], elt_sz); |
| |
| clib_memcpy_fast (n, p, len * elt_sz); |
| |
| nph->free_bitmap = clib_bitmap_dup (ph->free_bitmap); |
| nph->free_indices = vec_dup (ph->free_indices); |
| |
| vec_foreach (fi, ph->free_indices) |
| { |
| uword offset = elt_sz * fi[0]; |
| clib_mem_poison (p + offset, elt_sz); |
| clib_mem_poison (n + offset, elt_sz); |
| } |
| } |
| |
| return n; |
| } |
| |
| /** |
| * Return copy of pool with alignment |
| * |
| * @param P pool to copy |
| * @param A alignment (may be zero) |
| * @return copy of pool |
| */ |
| |
| #define pool_dup_aligned(P, A) \ |
| _pool_dup (P, _vec_align (P, A), _vec_elt_sz (P)) |
| |
| /** |
| * Return copy of pool without alignment |
| * |
| * @param P pool to copy |
| * @return copy of pool |
| */ |
| #define pool_dup(P) pool_dup_aligned(P,0) |
| |
| /** Low-level free pool operator (do not call directly). */ |
| always_inline void |
| _pool_free (void **v) |
| { |
| pool_header_t *p = pool_header (v[0]); |
| if (!p) |
| return; |
| |
| clib_bitmap_free (p->free_bitmap); |
| |
| vec_free (p->free_indices); |
| _vec_free (v); |
| } |
| #define pool_free(p) _pool_free ((void **) &(p)) |
| |
| static_always_inline uword |
| pool_get_first_index (void *pool) |
| { |
| pool_header_t *h = pool_header (pool); |
| return clib_bitmap_first_clear (h->free_bitmap); |
| } |
| |
| static_always_inline uword |
| pool_get_next_index (void *pool, uword last) |
| { |
| pool_header_t *h = pool_header (pool); |
| return clib_bitmap_next_clear (h->free_bitmap, last + 1); |
| } |
| |
| /** Optimized iteration through pool. |
| |
| @param LO pointer to first element in chunk |
| @param HI pointer to last element in chunk |
| @param POOL pool to iterate across |
| @param BODY operation to perform |
| |
| Optimized version which assumes that BODY is smart enough to |
| process multiple (LOW,HI) chunks. See also pool_foreach(). |
| */ |
| #define pool_foreach_region(LO,HI,POOL,BODY) \ |
| do { \ |
| uword _pool_var (i), _pool_var (lo), _pool_var (hi), _pool_var (len); \ |
| uword _pool_var (bl), * _pool_var (b); \ |
| pool_header_t * _pool_var (p); \ |
| \ |
| _pool_var (p) = pool_header (POOL); \ |
| _pool_var (b) = (POOL) ? _pool_var (p)->free_bitmap : 0; \ |
| _pool_var (bl) = vec_len (_pool_var (b)); \ |
| _pool_var (len) = vec_len (POOL); \ |
| _pool_var (lo) = 0; \ |
| \ |
| for (_pool_var (i) = 0; \ |
| _pool_var (i) <= _pool_var (bl); \ |
| _pool_var (i)++) \ |
| { \ |
| uword _pool_var (m), _pool_var (f); \ |
| _pool_var (m) = (_pool_var (i) < _pool_var (bl) \ |
| ? _pool_var (b) [_pool_var (i)] \ |
| : 1); \ |
| while (_pool_var (m) != 0) \ |
| { \ |
| _pool_var (f) = first_set (_pool_var (m)); \ |
| _pool_var (hi) = (_pool_var (i) * BITS (_pool_var (b)[0]) \ |
| + min_log2 (_pool_var (f))); \ |
| _pool_var (hi) = (_pool_var (i) < _pool_var (bl) \ |
| ? _pool_var (hi) : _pool_var (len)); \ |
| _pool_var (m) ^= _pool_var (f); \ |
| if (_pool_var (hi) > _pool_var (lo)) \ |
| { \ |
| (LO) = _pool_var (lo); \ |
| (HI) = _pool_var (hi); \ |
| do { BODY; } while (0); \ |
| } \ |
| _pool_var (lo) = _pool_var (hi) + 1; \ |
| } \ |
| } \ |
| } while (0) |
| |
| /** Iterate through pool. |
| |
| @param VAR A variable of same type as pool vector to be used as an |
| iterator. |
| @param POOL The pool to iterate across. |
| @param BODY The operation to perform, typically a code block. See |
| the example below. |
| |
| This macro will call @c BODY with each active pool element. |
| |
| It is a bad idea to allocate or free pool element from within |
| @c pool_foreach. Build a vector of indices and dispose of them later. |
| Or call pool_flush. |
| |
| |
| @par Example |
| @code{.c} |
| proc_t *procs; // a pool of processes. |
| proc_t *proc; // pointer to one process; used as the iterator. |
| |
| pool_foreach (proc, procs, ({ |
| if (proc->state != PROC_STATE_RUNNING) |
| continue; |
| |
| // check a running proc in some way |
| ... |
| })); |
| @endcode |
| |
| @warning Because @c pool_foreach is a macro, syntax errors can be |
| difficult to find inside @c BODY, let alone actual code bugs. One |
| can temporarily split a complex @c pool_foreach into a trivial |
| @c pool_foreach which builds a vector of active indices, and a |
| vec_foreach() (or plain for-loop) to walk the active index vector. |
| */ |
| |
| #define pool_foreach(VAR,POOL) \ |
| if (POOL) \ |
| for (VAR = POOL + pool_get_first_index (POOL); \ |
| VAR < vec_end (POOL); \ |
| VAR = POOL + pool_get_next_index (POOL, VAR - POOL)) |
| |
| /** Returns pointer to element at given index. |
| |
| ASSERTs that the supplied index is valid. |
| Even though one can write correct code of the form |
| @code |
| p = pool_base + index; |
| @endcode |
| use of @c pool_elt_at_index is strongly suggested. |
| */ |
| #define pool_elt_at_index(p,i) \ |
| ({ \ |
| typeof (p) _e = (p) + (i); \ |
| ASSERT (! pool_is_free (p, _e)); \ |
| _e; \ |
| }) |
| |
| /** Return next occupied pool index after @c i, useful for safe iteration. */ |
| #define pool_next_index(P,I) \ |
| ({ \ |
| pool_header_t * _pool_var (p) = pool_header (P); \ |
| uword _pool_var (rv) = (I) + 1; \ |
| \ |
| _pool_var(rv) = \ |
| (_pool_var (rv) < vec_len (P) ? \ |
| clib_bitmap_next_clear (_pool_var (p)->free_bitmap, _pool_var(rv)) \ |
| : ~0); \ |
| _pool_var(rv) = \ |
| (_pool_var (rv) < vec_len (P) ? \ |
| _pool_var (rv) : ~0); \ |
| _pool_var(rv); \ |
| }) |
| |
| #define pool_foreach_index(i, v) \ |
| if (v) \ |
| for (i = pool_get_first_index (v); i < vec_len (v); \ |
| i = pool_get_next_index (v, i)) |
| |
| /* Iterate pool by index from s to e */ |
| #define pool_foreach_stepping_index(i, s, e, v) \ |
| for ((i) = \ |
| (pool_is_free_index ((v), (s)) ? pool_get_next_index ((v), (s)) : \ |
| (s)); \ |
| (i) < (e); (i) = pool_get_next_index ((v), (i))) |
| |
| /* works only for pool of pointers, e is declared inside macro */ |
| #define pool_foreach_pointer(e, p) \ |
| if (p) \ |
| for (typeof ((p)[0]) *_t = (p) + pool_get_first_index (p), (e) = *_t, \ |
| *_end = vec_end (p); \ |
| _t < _end; _t = (p) + pool_get_next_index (p, _t - (p)), \ |
| (e) = _t < _end ? *_t : (e)) |
| |
| /** |
| * @brief Remove all elements from a pool in a safe way |
| * |
| * @param VAR each element in the pool |
| * @param POOL The pool to flush |
| * @param BODY The actions to perform on each element before it is returned to |
| * the pool. i.e. before it is 'freed' |
| */ |
| #define pool_flush(VAR, POOL, BODY) \ |
| { \ |
| uword *_pool_var(ii), *_pool_var(dv) = NULL; \ |
| \ |
| pool_foreach((VAR), (POOL)) \ |
| { \ |
| vec_add1(_pool_var(dv), (VAR) - (POOL)); \ |
| } \ |
| vec_foreach(_pool_var(ii), _pool_var(dv)) \ |
| { \ |
| (VAR) = pool_elt_at_index((POOL), *_pool_var(ii)); \ |
| do { BODY; } while (0); \ |
| pool_put((POOL), (VAR)); \ |
| } \ |
| vec_free(_pool_var(dv)); \ |
| } |
| |
| #endif /* included_pool_h */ |
| |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |