blob: 0d78dd711369f3602d4a973c3fd1a88ba27a86fc [file] [log] [blame]
/* Copyright (c) OASIS Open 2016. All Rights Reserved./
* /Distributed under the terms of the OASIS IPR Policy,
* [http://www.oasis-open.org/policies-guidelines/ipr], AS-IS, WITHOUT ANY
* IMPLIED OR EXPRESS WARRANTY; there is no warranty of MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE or NONINFRINGEMENT of the rights of others.
*/
/* Latest version of the specification:
* http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
*/
#ifndef _PKCS11_H_
#define _PKCS11_H_ 1
#ifdef __cplusplus
extern "C" {
#endif
/* Before including this file (pkcs11.h) (or pkcs11t.h by
* itself), 5 platform-specific macros must be defined. These
* macros are described below, and typical definitions for them
* are also given. Be advised that these definitions can depend
* on both the platform and the compiler used (and possibly also
* on whether a Cryptoki library is linked statically or
* dynamically).
*
* In addition to defining these 5 macros, the packing convention
* for Cryptoki structures should be set. The Cryptoki
* convention on packing is that structures should be 1-byte
* aligned.
*
* If you're using Microsoft Developer Studio 5.0 to produce
* Win32 stuff, this might be done by using the following
* preprocessor directive before including pkcs11.h or pkcs11t.h:
*
* #pragma pack(push, cryptoki, 1)
*
* and using the following preprocessor directive after including
* pkcs11.h or pkcs11t.h:
*
* #pragma pack(pop, cryptoki)
*
* If you're using an earlier version of Microsoft Developer
* Studio to produce Win16 stuff, this might be done by using
* the following preprocessor directive before including
* pkcs11.h or pkcs11t.h:
*
* #pragma pack(1)
*
* In a UNIX environment, you're on your own for this. You might
* not need to do (or be able to do!) anything.
*
*
* Now for the macros:
*
*
* 1. CK_PTR: The indirection string for making a pointer to an
* object. It can be used like this:
*
* typedef CK_BYTE CK_PTR CK_BYTE_PTR;
*
* If you're using Microsoft Developer Studio 5.0 to produce
* Win32 stuff, it might be defined by:
*
* #define CK_PTR *
*
* If you're using an earlier version of Microsoft Developer
* Studio to produce Win16 stuff, it might be defined by:
*
* #define CK_PTR far *
*
* In a typical UNIX environment, it might be defined by:
*
* #define CK_PTR *
*
*
* 2. CK_DECLARE_FUNCTION(returnType, name): A macro which makes
* an importable Cryptoki library function declaration out of a
* return type and a function name. It should be used in the
* following fashion:
*
* extern CK_DECLARE_FUNCTION(CK_RV, C_Initialize)(
* CK_VOID_PTR pReserved
* );
*
* If you're using Microsoft Developer Studio 5.0 to declare a
* function in a Win32 Cryptoki .dll, it might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType __declspec(dllimport) name
*
* If you're using an earlier version of Microsoft Developer
* Studio to declare a function in a Win16 Cryptoki .dll, it
* might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType __export _far _pascal name
*
* In a UNIX environment, it might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType name
*
*
* 3. CK_DECLARE_FUNCTION_POINTER(returnType, name): A macro
* which makes a Cryptoki API function pointer declaration or
* function pointer type declaration out of a return type and a
* function name. It should be used in the following fashion:
*
* // Define funcPtr to be a pointer to a Cryptoki API function
* // taking arguments args and returning CK_RV.
* CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtr)(args);
*
* or
*
* // Define funcPtrType to be the type of a pointer to a
* // Cryptoki API function taking arguments args and returning
* // CK_RV, and then define funcPtr to be a variable of type
* // funcPtrType.
* typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtrType)(args);
* funcPtrType funcPtr;
*
* If you're using Microsoft Developer Studio 5.0 to access
* functions in a Win32 Cryptoki .dll, in might be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType __declspec(dllimport) (* name)
*
* If you're using an earlier version of Microsoft Developer
* Studio to access functions in a Win16 Cryptoki .dll, it might
* be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType __export _far _pascal (* name)
*
* In a UNIX environment, it might be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType (* name)
*
*
* 4. CK_CALLBACK_FUNCTION(returnType, name): A macro which makes
* a function pointer type for an application callback out of
* a return type for the callback and a name for the callback.
* It should be used in the following fashion:
*
* CK_CALLBACK_FUNCTION(CK_RV, myCallback)(args);
*
* to declare a function pointer, myCallback, to a callback
* which takes arguments args and returns a CK_RV. It can also
* be used like this:
*
* typedef CK_CALLBACK_FUNCTION(CK_RV, myCallbackType)(args);
* myCallbackType myCallback;
*
* If you're using Microsoft Developer Studio 5.0 to do Win32
* Cryptoki development, it might be defined by:
*
* #define CK_CALLBACK_FUNCTION(returnType, name) \
* returnType (* name)
*
* If you're using an earlier version of Microsoft Developer
* Studio to do Win16 development, it might be defined by:
*
* #define CK_CALLBACK_FUNCTION(returnType, name) \
* returnType _far _pascal (* name)
*
* In a UNIX environment, it might be defined by:
*
* #define CK_CALLBACK_FUNCTION(returnType, name) \
* returnType (* name)
*
*
* 5. NULL_PTR: This macro is the value of a NULL pointer.
*
* In any ANSI/ISO C environment (and in many others as well),
* this should best be defined by
*
* #ifndef NULL_PTR
* #define NULL_PTR 0
* #endif
*/
/* All the various Cryptoki types and #define'd values are in the
* file pkcs11t.h.
*/
#include "pkcs11t.h"
#define __PASTE(x,y) x##y
/* ==============================================================
* Define the "extern" form of all the entry points.
* ==============================================================
*/
#define CK_NEED_ARG_LIST 1
#define CK_PKCS11_FUNCTION_INFO(name) \
extern CK_DECLARE_FUNCTION(CK_RV, name)
/* pkcs11f.h has all the information about the Cryptoki
* function prototypes.
*/
#include "pkcs11f.h"
#undef CK_NEED_ARG_LIST
#undef CK_PKCS11_FUNCTION_INFO
/* ==============================================================
* Define the typedef form of all the entry points. That is, for
* each Cryptoki function C_XXX, define a type CK_C_XXX which is
* a pointer to that kind of function.
* ==============================================================
*/
#define CK_NEED_ARG_LIST 1
#define CK_PKCS11_FUNCTION_INFO(name) \
typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, __PASTE(CK_,name))
/* pkcs11f.h has all the information about the Cryptoki
* function prototypes.
*/
#include "pkcs11f.h"
#undef CK_NEED_ARG_LIST
#undef CK_PKCS11_FUNCTION_INFO
/* ==============================================================
* Define structed vector of entry points. A CK_FUNCTION_LIST
* contains a CK_VERSION indicating a library's Cryptoki version
* and then a whole slew of function pointers to the routines in
* the library. This type was declared, but not defined, in
* pkcs11t.h.
* ==============================================================
*/
#define CK_PKCS11_FUNCTION_INFO(name) \
__PASTE(CK_,name) name;
struct CK_FUNCTION_LIST {
CK_VERSION version; /* Cryptoki version */
/* Pile all the function pointers into the CK_FUNCTION_LIST. */
/* pkcs11f.h has all the information about the Cryptoki
* function prototypes.
*/
#include "pkcs11f.h"
};
#undef CK_PKCS11_FUNCTION_INFO
#undef __PASTE
#ifdef __cplusplus
}
#endif
#endif /* _PKCS11_H_ */