blob: 0bff65c1c694e0c8df40cf1b87f31bef501048c2 [file] [log] [blame]
.. This work is licensed under a Creative Commons Attribution 4.0 International License.
.. http://creativecommons.org/licenses/by/4.0
.. Copyright 2020 ONAP
.. _docs_vFW_CNF_CDS:
.. contents::
:depth: 4
..
vFirewall CNF Use Case
----------------------
#FIXME - update all pod names
Source files
~~~~~~~~~~~~
- Heat/Helm/CDS models: `vFW_CNF_CDS Model`_
Description
~~~~~~~~~~~
This use case is a combination of `vFW CDS Dublin`_ and `vFW EDGEX K8S`_ use cases. The aim is to continue improving Kubernetes based Network Functions (a.k.a CNF) support in ONAP. Use case continues where `vFW EDGEX K8S`_ left and brings CDS support into picture like `vFW CDS Dublin`_ did for the old vFW Use case. Predecessor use case is also documented here `vFW EDGEX K8S In ONAP Wiki`_.
In a higher level this use case brings only two improvements yet important ones i.e. the ability to instantiate more than single CNF instance of same type (with same Helm package) and ability to embed into singular CSAR package more than one helm package what brings more service design options.
Following improvements were made in the Use Case or related ONAP components:
- Changed vFW Kubernetes Helm charts to support overrides (previously mostly hardcoded values)
- Combined all models (Heat, Helm, CBA) in to same git repo and a creating single CSAR package `vFW_CNF_CDS Model`_
- Compared to `vFW EDGEX K8S`_ use case **MACRO** workflow in SO is used instead of VNF a'la carte workflow. (this is general requirement to utilize CDS as part of instantiation flow)
- SDC accepts Onboarding Package with many helm packages what allows to keep decomposition of service instance similar to `vFW CDS Dublin`
- CDS is used to resolve instantiation time parameters (Helm override)
- Ip addresses with IPAM
- Unique names for resources with ONAP naming service
- Multicloud/k8s plugin changed to support identifiers of vf-module concept
- **multicloud/k8s profile** is not mandatory for instantiation of CNF
- CDS is used to create **multicloud/k8s profile** as part of instantiation flow (previously manual step)
Use case does not contain Closed Loop part of the vFW demo.
The vFW CNF Use Case
~~~~~~~~~~~~~~~~~~~~
The vFW CNF CDS use case shows how to instantiate multiple CNF instances in similar way as VNFs bringing CNFs closer to first class citizens in ONAP.
One of the biggest practical change compared to the old demos (any ONAP demo) is that whole network function content (user provided content) is collected to one place and more importantly into git repository (`vFW_CNF_CDS Model`_) that provides version control (that is pretty important thing). That is very basic thing but unfortunately this is a common problem when running any ONAP demo and trying to find all content from many different git repositories and even some files only in ONAP wiki.
Demo git directory has also `Data Dictionary`_ file (CDS model time resource) included.
Another founding idea from the start was to provide complete content in single CSAR available directly from that git repository. Not any revolutionary idea as that's the official package format ONAP supports and all content supposed to be in that same package for single service regardless of the models and closed loops and configurations etc.
Following table describes all the source models to which this demo is based on.
=============== ================= ===========
Model Git reference Description
--------------- ----------------- -----------
Heat `vFW_NextGen`_ Heat templates used in original vFW demo but split into multiple vf-modules
Helm `vFW_Helm Model`_ Helm templates used in `vFW EDGEX K8S`_ demo
CDS model `vFW CBA Model`_ CDS CBA model used in `vFW CDS Dublin`_ demo
=============== ================= ===========
All changes to related ONAP components and Use Case can be found from this `Jira Epic`_ ticket.
Modeling CSAR/Helm
..................
The starting point for this demo was Helm package containing one Kubernetes application, see `vFW_Helm Model`_. In this demo we decided to follow SDC/SO vf-module concept the same way as original vFW demo was split into multiple vf-modules instead of one (`vFW_NextGen`_). The same way we splitted Helm version of vFW into multiple Helm packages each matching one dedicated vf-module.
Produced CSAR package has following MANIFEST file (csar/MANIFEST.json) having all Helm packages modeled as dummy Heat resources matching to vf-module concept (that is originated from Heat), so basically each Helm application is visible to ONAP as own vf-module. Actual Helm package is delivered as CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT package through SDC and SO. Dummy heat templates are matched to helm packages by the same prefix of the file name.
CDS model (CBA package) is delivered as SDC supported own type CONTROLLER_BLUEPRINT_ARCHIVE.
::
{
"name": "virtualFirewall",
"description": "",
"data": [
{
"file": "vFW_CDS_CNF.zip",
"type": "CONTROLLER_BLUEPRINT_ARCHIVE"
},
{
"file": "base_template.yaml",
"type": "HEAT",
"isBase": "true",
"data": [
{
"file": "base_template.env",
"type": "HEAT_ENV"
}
]
},
{
"file": "base_template_cloudtech_k8s_charts.tgz",
"type": "CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT"
},
{
"file": "vfw.yaml",
"type": "HEAT",
"isBase": "false",
"data": [
{
"file": "vfw.env",
"type": "HEAT_ENV"
}
]
},
{
"file": "vfw_cloudtech_k8s_charts.tgz",
"type": "CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT"
},
{
"file": "vpkg.yaml",
"type": "HEAT",
"isBase": "false",
"data": [
{
"file": "vpkg.env",
"type": "HEAT_ENV"
}
]
},
{
"file": "vpkg_cloudtech_k8s_charts.tgz",
"type": "CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT"
},
{
"file": "vsn.yaml",
"type": "HEAT",
"isBase": "false",
"data": [
{
"file": "vsn.env",
"type": "HEAT_ENV"
}
]
},
{
"file": "vsn_cloudtech_k8s_charts.tgz",
"type": "CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT"
}
]
}
Multicloud/k8s
..............
K8s plugin was changed to support new way to identify k8s application and related multicloud/k8s profile.
Changes done:
- SDC distribution broker
SDC distribution broker is responsible for transformation of the CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACTS into *Definition* object holding the helm package. The change for Frankfurt release considers that singular CSAR package can have many CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACTS, each one for dedicated vf-module associated with dummy heat template. The mapping between vf-module and CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACTS is done on file prefixes. In example, *vfw.yaml* Heat template will result with creation of *vfw* vf-module and its Definition will be created from CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACTS file of name vfw_cloudtech_k8s_charts.tgz. More examples can be found in `Modeling CSAR/Helm`_ section.
- K8S plugin APIs changed to use VF Module Model Identifiers
Previously K8S plugin's used user given values in to identify object created/modified. Names were basing on VF-Module's "model-name"/"model-version" like "VfwLetsHopeLastOne..vfw..module-3" and "1". SO request has user_directives from where values was taken.
**VF Module Model Invariant ID** and **VF Module Model Version ID** is now used to identify artifact in SO request to Multicloud/k8s plugin. This does not require user to give extra parameters for the SO request as vf-module related parameters are there already by default. `MULTICLOUD-941`_
Note that API endpoints are not changed but only the semantics.
*Examples:*
Definition
::
/api/multicloud-k8s/v1/v1/rb/definition/{VF Module Model Invariant ID}/{VF Module Model Version ID}/content
Profile creation API
::
curl -i -d @create_rbprofile.json -X POST http://${K8S_NODE_IP}:30280/api/multicloud-k8s/v1/v1/rb/definition/{VF Module Model Invariant ID}/{VF Module Model Version ID}/profile
{ "rb-name": “{VF Module Model Invariant ID}",
"rb-version": "{VF Module Model Version ID}",
"profile-name": "p1",
"release-name": "r1",
"namespace": "testns1",
"kubernetes-version": "1.13.5"
}
Upload Profile content API
::
curl -i --data-binary @profile.tar.gz -X POST http://${K8S_NODE_IP}:30280/api/multicloud-k8s/v1/v1/rb/definition/{VF Module Model Invariant ID}/{VF Module Model Version ID}/profile/p1/content
- Instantiation broker
The broker implements `infra_workload`_ API used to handle vf-module instantiation request comming from the SO. User directives were changed by SDNC directives what impacts also the way how a'la carte instantiation method works from the VID. There is no need to specify the user directives delivered from the separate file. Instead SDNC directives are delivered through SDNC preloading (a'la carte instantiation) or through the resource assignment performed by the CDS (Macro flow instantiation).
For helm package instantiation following parameters have to be delivered in the SDNC directives:
======================== ==============================================
Variable Description
------------------------ ----------------------------------------------
k8s-rb-profile-name Name of the override profile
k8s-rb-profile-namespace Name of the namespace for created helm package
======================== ==============================================
- Default override support was added to the plugin
**TODO: Some content here, maybe also picture**
- Instantiation time override support was added to the plugin
**TODO: Some content here, maybe also picture**
CDS Model (CBA)
...............
Creating CDS model was the core of the use case work and also the most difficult and time consuming part. There are many reasons for this e.g.
- CDS documentation (even being new component) is inadequate or non-existent for service modeler user. One would need to be CDS developer to be able to do something with it.
- CDS documentation what exists is non-versioned (in ONAP wiki when should be in git) so it's mostly impossible to know what features are for what release.
- Our little experience of CDS (not CDS developers)
At first the target was to keep CDS model as close as possible to `vFW_CNF_CDS Model`_ use case model and only add smallest possible changes to enable also k8s usage. That is still the target but in practice model deviated from the original one already and time pressure pushed us to not care about sync. Basically the end result could be possible much streamlined if wanted to be smallest possible to working only for K8S based network functions.
As K8S application was splitted into multiple Helm packages to match vf-modules, CBA modeling follows the same and for each vf-module there's own template in CBA package.
::
"artifacts" : {
"base_template-template" : {
"type" : "artifact-template-velocity",
"file" : "Templates/base_template-template.vtl"
},
"base_template-mapping" : {
"type" : "artifact-mapping-resource",
"file" : "Templates/base_template-mapping.json"
},
"vpkg-template" : {
"type" : "artifact-template-velocity",
"file" : "Templates/vpkg-template.vtl"
},
"vpkg-mapping" : {
"type" : "artifact-mapping-resource",
"file" : "Templates/vpkg-mapping.json"
},
"vfw-template" : {
"type" : "artifact-template-velocity",
"file" : "Templates/vfw-template.vtl"
},
"vfw-mapping" : {
"type" : "artifact-mapping-resource",
"file" : "Templates/vfw-mapping.json"
},
"vnf-template" : {
"type" : "artifact-template-velocity",
"file" : "Templates/vnf-template.vtl"
},
"vnf-mapping" : {
"type" : "artifact-mapping-resource",
"file" : "Templates/vnf-mapping.json"
},
"vsn-template" : {
"type" : "artifact-template-velocity",
"file" : "Templates/vsn-template.vtl"
},
"vsn-mapping" : {
"type" : "artifact-mapping-resource",
"file" : "Templates/vsn-mapping.json"
}
}
Only **resource-assignment** workflow of the CBA model is utilized in this demo. If final CBA model contains also **config-deploy** workflow it's there just to keep parity with original vFW CBA (for VMs). Same applies for the related template *Templates/nf-params-template.vtl* and it's mapping file.
The interesting part on CBA model is the **profile-upload** sub step of imperative workflow where Kotlin script is used to upload K8S profile into multicloud/k8s API.
::
"profile-upload" : {
"type" : "component-script-executor",
"interfaces" : {
"ComponentScriptExecutor" : {
"operations" : {
"process" : {
"inputs" : {
"script-type" : "kotlin",
"script-class-reference" : "org.onap.ccsdk.cds.blueprintsprocessor.services.execution.scripts.K8sProfileUpload",
"dynamic-properties" : "*profile-upload-properties"
}
}
}
}
}
}
Kotlin script expects that K8S profile package named like "k8s-rb-profile-name".tar.gz is present in CBA "Templates/k8s-profiles directory" where "k8s-rb-profile-name" is one of the CDS resolved parameters (user provides as input parameter).
**TODO: something about the content and structure of profile package**
As `Data Dictionary`_ is also included into demo git directory, re-modeling and making changes into model utilizing CDS model time / runtime is easier as used DD is also known.
UAT
+++
During testing of the use case **uat.yml** file was recorded according to `CDS UAT Testing`_ instructions. Generated uat.yml is stored within CBA package into **Tests** folder.
Recorded uat.yml is an example run with example values (the values we used when demo was run) and can be used later to test CBA model in isolation (unit test style). This is very useful when changes are made to CBA model and those changes are needed to be tested fast. With uat.yml file only CDS is needed as all external interfaces are mocked. However, note that mocking is possible for REST interfaces only (e.g. Netconf is not supported).
Another benefit of uat.yml is that it documents the runtime functionality of the CBA.
To verify CBA with uat.yaml and CDS runtime do following:
- Enable UAT testing for CDS runtime
::
kubectl -n onap edit deployment onap-cds-cds-blueprints-processor
# add env variable for cds-blueprints-processor container:
name: spring_profiles_active
value: uat
- Spy CBA functionality with UAT initial seed file
::
curl -X POST -u ccsdkapps:ccsdkapps -F cba=@my_cba.zip -F uat=@input_uat.yaml http://<kube-node>:30499/api/v1/uat/spy
where my_cba.zip is the original cba model and input_uat.yml is following in this use case:
::
%YAML 1.1
---
processes:
- name: resource-assignment for vnf
request:
commonHeader: &commonHeader
originatorId: SDNC_DG
requestId: "98397f54-fa57-485f-a04e-1e220b7b1779"
subRequestId: "6bfca5dc-993d-48f1-ad27-a7a9ea91836b"
actionIdentifiers: &actionIdentifiers
blueprintName: vFW_CNF_CDS
blueprintVersion: "1.0.7"
actionName: resource-assignment
mode: sync
payload:
resource-assignment-request:
template-prefix:
- "vnf"
resource-assignment-properties:
service-instance-id: &service-id "0362acff-38e7-4ecc-8ac0-4780161f3ca0"
vnf-model-customization-uuid: &vnf-model-cust-uuid "366c007e-7684-4a0b-a2f4-9815174bec55"
vnf-id: &vnf-id "6bfca5dc-993d-48f1-ad27-a7a9ea91836b"
aic-cloud-region: &cloud-region "k8sregionfour"
- name: resource-assignment for base_template
request:
commonHeader: *commonHeader
actionIdentifiers: *actionIdentifiers
payload:
resource-assignment-request:
template-prefix:
- "base_template"
resource-assignment-properties:
nfc-naming-code: "base_template"
k8s-rb-profile-name: &k8s-profile-name "vfw-cnf-cds-base-profile"
service-instance-id: *service-id
vnf-id: *vnf-id
vf-module-model-customization-uuid: "603eadfe-50d6-413a-853c-46f5a8e2ddc7"
vnf-model-customization-uuid: *vnf-model-cust-uuid
vf-module-id: "34c190c7-e5bc-4e61-a0d9-5fd44416dd96"
aic-cloud-region: *cloud-region
- name: resource-assignment for vpkg
request:
commonHeader: *commonHeader
actionIdentifiers: *actionIdentifiers
payload:
resource-assignment-request:
template-prefix:
- "vpkg"
resource-assignment-properties:
nfc-naming-code: "vpkg"
k8s-rb-profile-name: *k8s-profile-name
service-instance-id: *service-id
vnf-id: *vnf-id
vf-module-model-customization-uuid: "32ffad03-d38d-46d5-b4a6-a3b0b6112ffc"
vnf-model-customization-uuid: *vnf-model-cust-uuid
vf-module-id: "0b3c70f3-a462-4340-b08f-e39f6baa364e"
aic-cloud-region: *cloud-region
- name: resource-assignment for vsn
request:
commonHeader: *commonHeader
actionIdentifiers: *actionIdentifiers
payload:
resource-assignment-request:
template-prefix:
- "vsn"
resource-assignment-properties:
nfc-naming-code: "vsn"
k8s-rb-profile-name: *k8s-profile-name
service-instance-id: *service-id
vnf-id: *vnf-id
vf-module-model-customization-uuid: "f75c3628-12e9-4c70-be98-d347045a3f70"
vnf-model-customization-uuid: *vnf-model-cust-uuid
vf-module-id: "960c9189-4a68-49bc-8bef-88e621fef250"
aic-cloud-region: *cloud-region
- name: resource-assignment for vfw
request:
commonHeader: *commonHeader
actionIdentifiers: *actionIdentifiers
payload:
resource-assignment-request:
template-prefix:
- "vfw"
resource-assignment-properties:
nfc-naming-code: "vfw"
k8s-rb-profile-name: *k8s-profile-name
service-instance-id: *service-id
vnf-id: *vnf-id
vf-module-model-customization-uuid: "f9afd9bb-7796-4aff-8f53-681513115742"
vnf-model-customization-uuid: *vnf-model-cust-uuid
vf-module-id: "1ff35d90-623b-450e-abb2-10a515249fbe"
aic-cloud-region: *cloud-region
**NOTE:** This call will run all the calls (given in input_uat.yml) towards CDS and records the functionality, so there needs to be working environment (SDNC, AAI, Naming, Netbox, etc.) to record valid final uat.yml.
As an output of this call final uat.yml content is received. Final uat.yml in this use case looks like this:
::
TODO: the content.
Currently UAT is broken in master `CCSDK-2155`_
- Verify CBA with UAT
::
curl -X POST -u ccsdkapps:ccsdkapps -F cba=@my_cba.zip http://<kube-node>:30499/api/v1/uat/verify
where my_cba.zip is the CBA model with uat.yml (generated in spy step) inside Test folder.
**TODO: add UAT POST to postman**
Instantiation Overview
......................
The figure below shows all the interactions that take place during vFW CNF instantiation. It's not describing flow of actions (ordered steps) but rather component dependencies.
.. figure:: files/vFW_CNF_CDS/Instantiation_topology.png
:align: center
vFW CNF CDS Use Case Runtime interactions.
PART 1 - ONAP Installation
--------------------------
1-1 Deployment components
~~~~~~~~~~~~~~~~~~~~~~~~~
In order to run the vFW_CNF_CDS use case, we need ONAP Frankfurt Release (or later) and at least following components:
======================================================= ===========
ONAP Component name Describtion
------------------------------------------------------- -----------
AAI Required for Inventory Cloud Owner, Customer, Owning Entity, Service, Generic VNF, VF Module
SDC VSP, VF and Service Modeling of the CNF
DMAAP Distribution of the CSAR including CBA to all ONAP components
SO Requires for Macro Orchestration using the generic building blocks
CDS Resolution of cloud parameters including Helm override parameters for the CNF. Creation of the multicloud/k8s profile for CNF instantion.
SDNC (needs to include netbox and Naming Generation mS) Provides GENERIC-RESOURCE-API for cloud Instantiation orchestration via CDS.
Policy Used to Store Naming Policy
AAF Used for Authentication and Authorization of requests
Portal Required to access SDC.
MSB Exposes multicloud interfaces used by SO.
Multicloud K8S plugin part used to pass SO instantiation requests to external Kubernetes cloud region.
Contrib Netbox utility #FIXME
Robot Optional. Can be used for running automated tasks, like provisioning cloud customer, cloud region, service subscription, etc ..
Shared Cassandra DB Used as a shared storage for ONAP components that rely on Cassandra DB, like AAI
Shared Maria DB Used as a shared storage for ONAP components that rely on Maria DB, like SDNC, and SO
======================================================= ===========
1-2 Deployment
~~~~~~~~~~~~~~
In order to deploy such an instance, follow the `ONAP Deployment Guide`_
As we can see from the guide, we can use an override file that helps us customize our ONAP deployment, without modifying the OOM Folder, so you can download this override file here, that includes the necessary components mentioned above.
**override.yaml** file where enabled: true is set for each component needed in demo (by default all components are disabled).
::
aai:
enabled: true
aaf:
enabled: true
cassandra:
enabled: true
cds:
enabled: true
contrib:
enabled: true
dmaap:
enabled: true
mariadb-galera:
enabled: true
msb:
enabled: true
multicloud:
enabled: true
policy:
enabled: true
portal:
enabled: true
robot:
enabled: true
sdc:
enabled: true
sdnc:
enabled: true
so:
enabled: true
Then deploy ONAP with Helm with your override file.
::
helm deploy onap local/onap --namespace onap -f ~/override.yaml
In case redeployment needed `Helm Healer`_ could be a faster and convenient way to redeploy.
::
helm-healer.sh -n onap -f ~/override.yaml -s /dockerdata-nfs --delete-all
Or redeploy (clean re-deploy also data removed) just wanted components (Helm releases), cds in this example.
::
helm-healer.sh -f ~/override.yaml -s /dockerdata-nfs/ -n onap -c onap-cds
There are many instructions in ONAP wiki how to follow your deployment status and does it succeeded or not, mostly using Robot Health checks. One way we used is to skip the outermost Robot wrapper and use directly ete-k8s.sh to able to select checked components easily. Script is found from OOM git repository *oom/kubernetes/robot/ete-k8s.sh*.
::
{
failed=
for comp in {aaf,aai,dmaap,msb,multicloud,policy,portal,sdc,sdnc,so}; do
if ! ./ete-k8s.sh onap health-$comp; then
failed=$failed,$comp
fi
done
if [ -n "$failed" ]; then
echo "These components failed: $failed"
false
else
echo "Healthcheck successful"
fi
}
And check status of pods, deployments, jobs etc.
::
kubectl -n onap get pods | grep -vie 'completed' -e 'running'
kubectl -n onap get deploy,sts,jobs
1-3 Post Deployment
~~~~~~~~~~~~~~~~~~~
After completing the first part above, we should have a functional ONAP deployment for the Frankfurt Release.
We will need to apply a few modifications to the deployed ONAP Frankfurt instance in order to run the use case.
Retrieving logins and passwords of ONAP components
..................................................
Since Frankfurt release hardcoded passwords were mostly removed and it is possible to configure passwords of ONAP components in time of installation. In order to retrieve these passwords with associated logins it is required to get them with kubectl. Below is the procedure on mariadb-galera DB example.
::
kubectl get secret `kubectl get secrets | grep mariadb-galera-db-root-password | awk {'print $1'}` -o jsonpath="{.data.login}" | base64 --decode
kubectl get secret `kubectl get secrets | grep mariadb-galera-db-root-password | awk {'print $1'}` -o jsonpath="{.data.password}" | base64 --decode
In this case login is empty as the secret is dedicated to root user.
Postman collection setup
........................
In this demo we have on purpose created all manual ONAP preparation steps (which in real life are automated) by using Postman so it will be clear what exactly is needed. Some of the steps like AAI population is automated by Robot scripts in other ONAP demos (**./demo-k8s.sh onap init**) and Robot script could be used for many parts also in this demo. Later when this demo is fully automated we probably update also Robot scripts to support this demo.
Postman collection is used also to trigger instantion using SO APIs.
Following steps are needed to setup postman:
- Import this postman collection zip
:download: `Postman collection <files/vFW_CNF_CDS/postman.zip>`
- Extract the zip and import 2 postman collection and environment files into Postman
- `vFW_CNF_CDS.postman_collection.json`
- `vFW_CNF_CDS.postman_environment.json`
- For use case debugging purposes to get Kubernetes cluster external access to SO CatalogDB (GET operations only), modify SO CatalogDB service to NodePort instead of ClusterIP. You may also create separate own NodePort if you wish, but here we have just edited directly the service with kubectl. Note that the port number 30120 is used in postman collection.
::
kubectl -n onap edit svc so-catalog-db-adapter
- .spec.type: ClusterIP
+ .spec.type: NodePort
+ .spec.ports[0].nodePort: 30120
**Postman variables:**
Most of the postman variables are automated by postman scripts and environment file provided, but there are few mandatory variables to fill by user.
=================== ===================
Variable Description
------------------- -------------------
k8s ONAP Kubernetes host
sdnc_port port of sdnc service for accessing MDSAL
cds-service-name name of service as defined in SDC
cds-instance-name name of instantiated service (if ending with -{num}, will be autoincremented for each instantiation request)
=================== ===================
You can get the sdnc_port value with
::
kubectl -n onap get svc sdnc -o json | jq '.spec.ports[]|select(.port==8282).nodePort'
**TODO: change variable names something else than cds-xxx**
AAI
...
Some basic entries are needed in ONAP AAI. These entries are needed ones per onap installation and do not need to be repeated when running multiple demos based on same definitions.
Create all these entries into AAI in this order. Postman collection provided in this demo can be used for creating each entry.
**Postman -> Robot Init Stuff**
- Create Customer
- Create Owning-entity
- Create Platform
- Create Project
- Create Line Of Business
Corresponding GET operations in postman can be used to verify entries created. Postman collection also includes some code that tests/verifies some basic issues e.g. gives error if entry already exists.
SO BPMN endpoint fix for VNF adapter requests (v1 -> v2)
........................................................
SO Openstack adapter needs to be updated to use newer version. Here is also possible improvement area in SO. Openstack adapter is confusing in context of this use case as VIM is not Openstack but Kubernetes cloud region. In this use case we did not used Openstack at all.
::
kubectl -n onap edit configmap onap-so-bpmn-infra-app-configmap
- .data."override.yaml".mso.adapters.vnf.rest.endpoint: http://so-openstack-adapter.onap:8087/services/rest/v1/vnfs
+ .data."override.yaml".mso.adapters.vnf.rest.endpoint: http://so-openstack-adapter.onap:8087/services/rest/v2/vnfs
kubectl -n onap delete pod -l app=so-bpmn-infra
Naming Policy
.............
Naming policy is needed to generate unique names for all instance time resources that are wanted to be modeled in the way naming policy is used. Those are normally VNF, VNFC and VF-module names, network names etc. Naming is general ONAP feature and not limited to this use case.
The override.yaml file above has an option **"preload=true"**, that will tell the POLICY component to run the push_policies.sh script as the POLICY PAP pod starts up, which will in turn create the Naming Policy and push it.
To check that the naming policy is created and pushed OK, we can run the commands below.
FIXME - add instruction for uploading own naming policy !!!
Network Naming mS
+++++++++++++++++
There's a strange feature or bug in naming service still at ONAP Frankfurt and following hack needs to be done to make it work.
::
# Go into naming service database
kubectl -n onap exec onap-mariadb-galera-0 -it -- mysql -uroot -psecretpassword -D nengdb
select * from EXTERNAL_INTERFACE;
# Delete entries from EXTERNAL_INTERFACE table
delete from EXTERNAL_INTERFACE;
select * from EXTERNAL_INTERFACE;
.. note:: The required credentials can be retrieved with instruction `Retrieving logins and passwords of ONAP components`_
PART 2 - Installation of managed Kubernetes cluster
---------------------------------------------------
In this demo the target cloud region is a Kubernetes cluster of your choice basically just like with Openstack. ONAP platform is a bit too much hard wired to Openstack and it's visible in many demos.
2-1 Installation of Managed Kubernetes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this demo we use Kubernetes deployment used by ONAP multicloud/k8s team to test their plugin features see `KUD readthedocs`_. There's also some outdated instructions in ONAP wiki `KUD in Wiki`_.
KUD deployment is fully automated and also used in ONAP's CI/CD to automatically verify all `Multicloud k8s gerrit`_ commits (see `KUD Jenkins ci/cd verification`_) and that's quite good (and rare) level of automated integration testing in ONAP. KUD deployemnt is used as it's installation is automated and it also includes bunch of Kubernetes plugins used to tests various k8s plugin features. In addition to deployement, KUD repository also contains test scripts to automatically test multicloud/k8s plugin features. Those scripts are run in CI/CD.
See `KUD subproject in github`_ for a list of additional plugins this Kubernetes deployment has. In this demo the tested CNF is dependent on following plugins:
- ovn4nfv
- Multus
- Virtlet
Follow instructions in `KUD readthedocs`_ and install target Kubernetes cluster in your favorite machine(s), simplest being just one machine. Your cluster nodes(s) needs to be accessible from ONAP Kuberenetes nodes.
2-2 Cloud Registration
~~~~~~~~~~~~~~~~~~~~~~
Managed Kubernetes cluster is registered here into ONAP as one cloud region. This obviously is done just one time for this particular cloud. Cloud registration information is kept in AAI.
Postman collection have folder/entry for each step. Execute in this order.
**Postman -> AAI -> Create**
- Create Complex
- Create Cloud Region
- Create Complex-Cloud Region Relationship
- Create Service
- Create Service Subscription
- Create Cloud Tenant
- Create Availability Zone
**Postman -> Multicloud**
- Upload Connectivity Info **TODO: where to get kubeconfig file?**
**SO Cloud region configuration**
SO database needs to be (manually) modified for SO to know that this particular cloud region is to be handled by multicloud. Values we insert needs to obviously match to the ones we populated into AAI.
The related code part in SO is here: `SO Cloud Region Selection`_
It's possible improvement place in SO to rather get this information directly from AAI.
::
kubectl -n onap exec onap-mariadb-galera-0 -it -- mysql -uroot -psecretpassword -D catalogdb
select * from cloud_sites;
insert into cloud_sites(ID, REGION_ID, IDENTITY_SERVICE_ID, CLOUD_VERSION, CLLI, ORCHESTRATOR) values("k8sregionfour", "k8sregionfour", "DEFAULT_KEYSTONE", "2.5", "clli2", "multicloud");
select * from cloud_sites;
exit
.. note:: The required credentials can be retrieved with instruction `Retrieving logins and passwords of ONAP components`_
PART 3 - Execution of the Use Case
----------------------------------
This part contains all the steps to run the use case by using ONAP GUIs and Postman.
Following picture describes the overall sequential flow of the use case.
.. figure:: files/vFW_CNF_CDS/vFW_CNF_CDS_Flow.png
:align: center
vFW CNF CDS Use Case sequence flow.
3-1 Onboarding
~~~~~~~~~~~~~~
Creating CSAR
.............
Whole content of this use case is stored into single git repository and ONAP user content package CSAR package can be created with provided Makefile.
Complete content can be packaged to single CSAR file in following way:
(Note: requires Helm installed)
::
git clone https://gerrit.onap.org/r/demo
cd heat/vFW_CNF_CDS/templates
make
The output looks like:
::
mkdir csar/
make -C helm
make[1]: Entering directory '/home/samuli/onapCode/demo/heat/vFW_CNF_CDS/templates/helm'
rm -f base_template-*.tgz
rm -f base_template_cloudtech_k8s_charts.tgz
helm package base_template
Successfully packaged chart and saved it to: /home/samuli/onapCode/demo/heat/vFW_CNF_CDS/templates/helm/base_template-0.2.0.tgz
mv base_template-*.tgz base_template_cloudtech_k8s_charts.tgz
rm -f vpkg-*.tgz
rm -f vpkg_cloudtech_k8s_charts.tgz
helm package vpkg
Successfully packaged chart and saved it to: /home/samuli/onapCode/demo/heat/vFW_CNF_CDS/templates/helm/vpkg-0.2.0.tgz
mv vpkg-*.tgz vpkg_cloudtech_k8s_charts.tgz
rm -f vfw-*.tgz
rm -f vfw_cloudtech_k8s_charts.tgz
helm package vfw
Successfully packaged chart and saved it to: /home/samuli/onapCode/demo/heat/vFW_CNF_CDS/templates/helm/vfw-0.2.0.tgz
mv vfw-*.tgz vfw_cloudtech_k8s_charts.tgz
rm -f vsn-*.tgz
rm -f vsn_cloudtech_k8s_charts.tgz
helm package vsn
Successfully packaged chart and saved it to: /home/samuli/onapCode/demo/heat/vFW_CNF_CDS/templates/helm/vsn-0.2.0.tgz
mv vsn-*.tgz vsn_cloudtech_k8s_charts.tgz
make[1]: Leaving directory '/home/samuli/onapCode/demo/heat/vFW_CNF_CDS/templates/helm'
mv helm/*.tgz csar/
cp base/* csar/
cd cba/ && zip -r vFW_CDS_CNF.zip .
adding: TOSCA-Metadata/ (stored 0%)
adding: TOSCA-Metadata/TOSCA.meta (deflated 38%)
adding: Templates/ (stored 0%)
adding: Templates/base_template-mapping.json (deflated 92%)
adding: Templates/vfw-template.vtl (deflated 87%)
adding: Templates/nf-params-mapping.json (deflated 86%)
adding: Templates/vsn-mapping.json (deflated 94%)
adding: Templates/vnf-template.vtl (deflated 90%)
adding: Templates/vpkg-mapping.json (deflated 94%)
adding: Templates/vsn-template.vtl (deflated 87%)
adding: Templates/nf-params-template.vtl (deflated 44%)
adding: Templates/base_template-template.vtl (deflated 85%)
adding: Templates/vfw-mapping.json (deflated 94%)
adding: Templates/vnf-mapping.json (deflated 92%)
adding: Templates/vpkg-template.vtl (deflated 86%)
adding: Templates/k8s-profiles/ (stored 0%)
adding: Templates/k8s-profiles/vfw-cnf-cds-base-profile.tar.gz (stored 0%)
adding: Scripts/ (stored 0%)
adding: Scripts/kotlin/ (stored 0%)
adding: Scripts/kotlin/KotlinK8sProfileUpload.kt (deflated 75%)
adding: Scripts/kotlin/README.md (stored 0%)
adding: Definitions/ (stored 0%)
adding: Definitions/artifact_types.json (deflated 57%)
adding: Definitions/vFW_CNF_CDS.json (deflated 81%)
adding: Definitions/node_types.json (deflated 86%)
adding: Definitions/policy_types.json (stored 0%)
adding: Definitions/data_types.json (deflated 93%)
adding: Definitions/resources_definition_types.json (deflated 95%)
adding: Definitions/relationship_types.json (stored 0%)
mv cba/vFW_CDS_CNF.zip csar/
#Can't use .csar extension or SDC will panic
cd csar/ && zip -r vfw_k8s_demo.zip .
adding: base_template_cloudtech_k8s_charts.tgz (stored 0%)
adding: MANIFEST.json (deflated 83%)
adding: base_template.yaml (deflated 63%)
adding: vsn_cloudtech_k8s_charts.tgz (stored 0%)
adding: vfw_cloudtech_k8s_charts.tgz (stored 0%)
adding: vpkg_cloudtech_k8s_charts.tgz (stored 0%)
adding: vsn.yaml (deflated 75%)
adding: vpkg.yaml (deflated 76%)
adding: vfw.yaml (deflated 77%)
adding: vFW_CDS_CNF.zip (stored 0%)
adding: base_template.env (deflated 23%)
adding: vsn.env (deflated 53%)
adding: vpkg.env (deflated 55%)
adding: vfw.env (deflated 58%)
mv csar/vfw_k8s_demo.zip .
$
and package **vfw_k8s_demo.zip** file is created containing all sub-models.
Import this package into SDC and follow onboarding steps.
Service Creation with SDC
.........................
Create VSP, VLM, VF, ..., Service in SDC
- Remember during VSP onboard to choose "Network Package" Onboarding procedure
**TODO: make better steps**
On VF level, add CBA separately as it's not onboarded by default from CSAR correctly
Service -> Properties Assignment -> Choose VF (at right box):
- skip_post_instantiation_configuration - True
- sdnc_artifact_name - vnf
- sdnc_model_name - vFW_CNF_CDS
- sdnc_model_version - 1.0.0
Distribution Of Service
.......................
Distribute service. **TODO: add screenshot to distribution SDC UI**
Verify distribution for:
- SDC:
SDC Catalog database should have our service now defined.
**Postman -> SDC/SO -> SDC Catalog Service**
::
{
"uuid": "40f4cca8-1025-4f2e-8435-dda898f0caab",
"invariantUUID": "b0ecfa3b-4394-4727-be20-c2c718002093",
"name": "TestvFWService",
"version": "3.0",
"toscaModelURL": "/sdc/v1/catalog/services/40f4cca8-1025-4f2e-8435-dda898f0caab/toscaModel",
"category": "Mobility",
"lifecycleState": "CERTIFIED",
"lastUpdaterUserId": "jm0007",
"distributionStatus": "DISTRIBUTED"
}
Listing should contain entry with our service name **TestvFWService** **TODO: Let's use service name different from other demos**
- SO:
SO Catalog database should have our service NFs defined now.
**Postman -> SDC/SO -> SO Catalog DB Service xNFs**
::
{
"serviceVnfs":[
{
"modelInfo":{
"modelName":"FixedVFW",
"modelUuid":"a6c43cc8-677d-447d-afc2-795212182dc0",
"modelInvariantUuid":"074555e3-21b9-47ba-9ad9-78028029a36d",
"modelVersion":"1.0",
"modelCustomizationUuid":"366c007e-7684-4a0b-a2f4-9815174bec55",
"modelInstanceName":"FixedVFW 0"
},
"toscaNodeType":"org.openecomp.resource.vf.Fixedvfw",
"nfFunction":null,
"nfType":null,
"nfRole":null,
"nfNamingCode":null,
"multiStageDesign":"false",
"vnfcInstGroupOrder":null,
"resourceInput":"{\"vf_module_id\":\"vFirewallCL\",\"skip_post_instantiation_configuration\":\"true\",\"vsn_flavor_name\":\"PUT THE VM FLAVOR NAME HERE (m1.medium suggested)\",\"vfw_int_private2_ip_0\":\"192.168.20.100\",\"int_private1_subnet_id\":\"zdfw1fwl01_unprotected_sub\",\"public_net_id\":\"PUT THE PUBLIC NETWORK ID HERE\",\"vnf_name\":\"vFW_NextGen\",\"onap_private_subnet_id\":\"PUT THE ONAP PRIVATE NETWORK NAME HERE\",\"vsn_int_private2_ip_0\":\"192.168.20.250\",\"sec_group\":\"PUT THE ONAP SECURITY GROUP HERE\",\"vfw_name_0\":\"zdfw1fwl01fwl01\",\"nexus_artifact_repo\":\"https://nexus.onap.org\",\"onap_private_net_cidr\":\"10.0.0.0/16\",\"vpg_onap_private_ip_0\":\"10.0.100.2\",\"dcae_collector_ip\":\"10.0.4.1\",\"vsn_image_name\":\"PUT THE VM IMAGE NAME HERE (UBUNTU 1404)\",\"vnf_id\":\"vSink_demo_app\",\"vpg_flavor_name\":\"PUT THE VM FLAVOR NAME HERE (m1.medium suggested)\",\"dcae_collector_port\":\"30235\",\"vfw_int_private2_floating_ip\":\"192.168.10.200\",\"vpg_name_0\":\"zdfw1fwl01pgn01\",\"int_private2_subnet_id\":\"zdfw1fwl01_protected_sub\",\"int_private2_net_cidr\":\"192.168.20.0/24\",\"nf_naming\":\"true\",\"vsn_name_0\":\"zdfw1fwl01snk01\",\"multi_stage_design\":\"false\",\"vpg_image_name\":\"PUT THE VM IMAGE NAME HERE (UBUNTU 1404)\",\"onap_private_net_id\":\"PUT THE ONAP PRIVATE NETWORK NAME HERE\",\"availability_zone_max_count\":\"1\",\"sdnc_artifact_name\":\"vnf\",\"vsn_onap_private_ip_0\":\"10.0.100.3\",\"vfw_flavor_name\":\"PUT THE VM FLAVOR NAME HERE (m1.medium suggested)\",\"demo_artifacts_version\":\"1.6.0-SNAPSHOT\",\"pub_key\":\"ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDQXYJYYi3/OUZXUiCYWdtc7K0m5C0dJKVxPG0eI8EWZrEHYdfYe6WoTSDJCww+1qlBSpA5ac/Ba4Wn9vh+lR1vtUKkyIC/nrYb90ReUd385Glkgzrfh5HdR5y5S2cL/Frh86lAn9r6b3iWTJD8wBwXFyoe1S2nMTOIuG4RPNvfmyCTYVh8XTCCE8HPvh3xv2r4egawG1P4Q4UDwk+hDBXThY2KS8M5/8EMyxHV0ImpLbpYCTBA6KYDIRtqmgS6iKyy8v2D1aSY5mc9J0T5t9S2Gv+VZQNWQDDKNFnxqYaAo1uEoq/i1q63XC5AD3ckXb2VT6dp23BQMdDfbHyUWfJN\",\"key_name\":\"vfw_key\",\"vfw_int_private1_ip_0\":\"192.168.10.100\",\"sdnc_model_version\":\"1.0.0\",\"int_private1_net_cidr\":\"192.168.10.0/24\",\"install_script_version\":\"1.6.0-SNAPSHOT\",\"vfw_image_name\":\"PUT THE VM IMAGE NAME HERE (UBUNTU 1404)\",\"vfw_onap_private_ip_0\":\"10.0.100.1\",\"vpg_int_private1_ip_0\":\"192.168.10.200\",\"int_private2_net_id\":\"zdfw1fwl01_protected\",\"cloud_env\":\"PUT openstack OR rackspace HERE\",\"sdnc_model_name\":\"vFW_CNF_CDS\",\"int_private1_net_id\":\"zdfw1fwl01_unprotected\"}",
"vfModules":[
{
"modelInfo":{
"modelName":"Fixedvfw..base_template..module-0",
"modelUuid":"8bb9fa50-3e82-4664-bd1c-a29267be726a",
"modelInvariantUuid":"750b39d0-7f99-4b7f-9a22-c15c7348221d",
"modelVersion":"1",
"modelCustomizationUuid":"603eadfe-50d6-413a-853c-46f5a8e2ddc7"
},
"isBase":true,
"vfModuleLabel":"base_template",
"initialCount":1,
"hasVolumeGroup":false
},
{
"modelInfo":{
"modelName":"Fixedvfw..vsn..module-1",
"modelUuid":"027696a5-a605-44ea-9362-391a6b217de0",
"modelInvariantUuid":"2e3b182d-7ee3-4a8d-9c2b-056188b6eb53",
"modelVersion":"1",
"modelCustomizationUuid":"f75c3628-12e9-4c70-be98-d347045a3f70"
},
"isBase":false,
"vfModuleLabel":"vsn",
"initialCount":0,
"hasVolumeGroup":false
},
{
"modelInfo":{
"modelName":"Fixedvfw..vpkg..module-2",
"modelUuid":"64af8ad0-cb81-42a2-a069-7d246d8bff5d",
"modelInvariantUuid":"5c9f3097-26ba-41fb-928b-f7ddc31f6f52",
"modelVersion":"1",
"modelCustomizationUuid":"32ffad03-d38d-46d5-b4a6-a3b0b6112ffc"
},
"isBase":false,
"vfModuleLabel":"vpkg",
"initialCount":0,
"hasVolumeGroup":false
},
{
"modelInfo":{
"modelName":"Fixedvfw..vfw..module-3",
"modelUuid":"55d889e4-ff38-4ed0-a159-60392c968042",
"modelInvariantUuid":"5c6a06e9-1168-4b01-bd2a-38d544c6d131",
"modelVersion":"1",
"modelCustomizationUuid":"f9afd9bb-7796-4aff-8f53-681513115742"
},
"isBase":false,
"vfModuleLabel":"vfw",
"initialCount":0,
"hasVolumeGroup":false
}
],
"groups":[
]
}
]
}
- SDNC:
SDNC should have it's database updated with sdnc_* properties that were set during service modeling.
**TODO: verify below the customization_uuid where it is got**
::
kubectl -n onap exec onap-mariadb-galera-mariadb-galera-0 -it -- sh
mysql -uroot -psecretpassword -D sdnctl
MariaDB [sdnctl]> select sdnc_model_name, sdnc_model_version, sdnc_artifact_name from VF_MODEL WHERE customization_uuid = '88e0e9a7-5bd2-4689-ae9e-7fc167d685a2';
+-----------------+--------------------+--------------------+
| sdnc_model_name | sdnc_model_version | sdnc_artifact_name |
+-----------------+--------------------+--------------------+
| vFW_CNF_CDS | 1.0.0 | vnf |
+-----------------+--------------------+--------------------+
1 row in set (0.00 sec)
# Where customization_uuid is the modelCustomizationUuid of the VNf (serviceVnfs response in 2nd postman call from SO Catalog DB)
.. note:: The required credentials can be retrieved with instruction `Retrieving logins and passwords of ONAP components`_
- CDS:
CDS should onboard CBA uploaded as part of VF.
**Postman -> CDS -> CDS Blueprint List CBAs**
::
{
"blueprintModel": {
"id": "761bbe69-8357-454b-9f37-46d9da8ecad6",
"artifactUUId": null,
"artifactType": "SDNC_MODEL",
"artifactVersion": "1.0.0",
"artifactDescription": "Controller Blueprint for vFW_CNF_CDS:1.0.0",
"internalVersion": null,
"createdDate": "2020-02-21T12:57:43.000Z",
"artifactName": "vFW_CNF_CDS",
"published": "Y",
"updatedBy": "Samuli Silvius <s.silvius@partner.samsung.com>",
"tags": "Samuli Silvius, vFW_CNF_CDS"
}
}
The list should have the matching entries with SDNC database:
- sdnc_model_name == artifactName
- sdnc_model_version == artifactVersion
- K8splugin:
K8splugin should onboard 4 resource bundles related to helm resources:
**Postman -> Multicloud -> List Resource Bundle Definitions**
::
[
{
"rb-name": "750b39d0-7f99-4b7f-9a22-c15c7348221d",
"rb-version": "8bb9fa50-3e82-4664-bd1c-a29267be726a",
"chart-name": "base_template",
"description": "",
"labels": {
"vnf_customization_uuid": "603eadfe-50d6-413a-853c-46f5a8e2ddc7"
}
},
{
"rb-name": "2e3b182d-7ee3-4a8d-9c2b-056188b6eb53",
"rb-version": "027696a5-a605-44ea-9362-391a6b217de0",
"chart-name": "vsn",
"description": "",
"labels": {
"vnf_customization_uuid": "f75c3628-12e9-4c70-be98-d347045a3f70"
}
},
{
"rb-name": "5c9f3097-26ba-41fb-928b-f7ddc31f6f52",
"rb-version": "64af8ad0-cb81-42a2-a069-7d246d8bff5d",
"chart-name": "vpkg",
"description": "",
"labels": {
"vnf_customization_uuid": "32ffad03-d38d-46d5-b4a6-a3b0b6112ffc"
}
},
{
"rb-name": "5c6a06e9-1168-4b01-bd2a-38d544c6d131",
"rb-version": "55d889e4-ff38-4ed0-a159-60392c968042",
"chart-name": "vfw",
"description": "",
"labels": {
"vnf_customization_uuid": "f9afd9bb-7796-4aff-8f53-681513115742"
}
}
]
3-2 CNF Instantiation
~~~~~~~~~~~~~~~~~~~~~
This is the whole beef of the use case and furthermore the core of it is that we can instantiate any amount of instances of the same CNF each running and working completely of their own. Very basic functionality in VM (VNF) side but for Kubernetes and ONAP integration this is the first milestone towards other normal use cases familiar for VNFs.
Use again Postman to trigger instantion from SO interface. Postman collection is automated to populate needed parameters when queries are run in correct order. If you did not already run following 2 queries after distribution (to verify distribution), run those now:
- **Postman -> SDC/SO -> SDC Catalog Service**
- **Postman -> SDC/SO -> SO Catalog DB Service xNFs**
Now actual instantiation can be triggered with:
**Postman -> SDC/SO -> SO Self-Serve Service Assign & Activate**
Follow progress with SO's GET request:
**Postman -> SDC/SO -> SO Infra Active Requests**
The successful reply payload in that query should start like this:
::
{
"clientRequestId": null,
"action": "createInstance",
"requestStatus": "COMPLETED",
"statusMessage": "Failed to create self-serve assignment for vf-module with vf-module-id=b70112fd-f6b2-44fe-a55c-6928d61843bf with error: Encountered error from self-serve-generate-name with error: Error from NameGenerationNode Assign",
"rollbackStatusMessage": null,
"flowStatus": "Execution of UnassignVfModuleBB has completed successfully, next invoking UnassignVfModuleBB (Execution Path progress: BBs completed = 1; BBs remaining = 4).",
"retryStatusMessage": null,
...
**TODO: fix COMPLETED payload**
Progress can be followed also with `SO Monitoring`_.
Second instance Instantion
..........................
To finally verify that all the work done within this demo, it should be possible to instantiate second vFW instance successfully.
Trigger again:
**Postman -> SDC/SO -> SO Self-Serve Service Assign & Activate**
**TODO: update to seconf call in postman**
3-3 Results and Logs
~~~~~~~~~~~~~~~~~~~~
Now Kubernetes version of vFW multiple instances are running in target VIM (KUD deployment).
.. figure:: files/vFW_CNF_CDS/vFW_Instance_In_Kubernetes.png
:align: center
vFW Instance In Kubernetes
To review situation after instantiation from different ONAP components, most of the info can be found using Postman queries provided. For each query, example response payload(s) is/are saved and can be found from top right corner of the Postman window.
Execute following Postman queries and check example section to see the valid results.
======================== =================
Verify Target Postman query
------------------------ -----------------
Service Instances in AAI **Postman -> AAI -> List Service Instances**
Generic VNFs in AAI **Postman -> AAI -> List VNF Instances**
K8S Instances in KUD **Postman -> Multicloud -> List Instances**
======================== =================
Query also directly from VIM:
**TODO: label filters needed here. Namespace?**
::
#
ubuntu@kud-host:~$ kubectl get pods,svc,networks,cm,network-attachment-definition,deployments
NAME READY STATUS RESTARTS AGE
pod/vfw-17f6f7d3-8424-4550-a188-cd777f0ab48f-7cfb9949d9-8b5vg 1/1 Running 0 22s
pod/vfw-19571429-4af4-49b3-af65-2eb1f97bba43-75cd7c6f76-4gqtz 1/1 Running 0 11m
pod/vpg-5ea0d3b0-9a0c-4e88-a2e2-ceb84810259e-f4485d485-pln8m 1/1 Running 0 11m
pod/vpg-8581bc79-8eef-487e-8ed1-a18c0d638b26-6f8cff54d-dvw4j 1/1 Running 0 32s
pod/vsn-8e7ac4fc-2c31-4cf8-90c8-5074c5891c14-5879c56fd-q59l7 2/2 Running 0 11m
pod/vsn-fdc9b4ba-c0e9-4efc-8009-f9414ae7dd7b-5889b7455-96j9d 2/2 Running 0 30s
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.244.0.1 <none> 443/TCP 48d
service/vpg-5ea0d3b0-9a0c-4e88-a2e2-ceb84810259e-management-api NodePort 10.244.43.245 <none> 2831:30831/TCP 11m
service/vpg-8581bc79-8eef-487e-8ed1-a18c0d638b26-management-api NodePort 10.244.1.45 <none> 2831:31831/TCP 33s
service/vsn-8e7ac4fc-2c31-4cf8-90c8-5074c5891c14-darkstat-ui NodePort 10.244.16.187 <none> 667:30667/TCP 11m
service/vsn-fdc9b4ba-c0e9-4efc-8009-f9414ae7dd7b-darkstat-ui NodePort 10.244.20.229 <none> 667:31667/TCP 30s
NAME AGE
network.k8s.plugin.opnfv.org/55118b80-8470-4c99-bfdf-d122cd412739-management-network 40s
network.k8s.plugin.opnfv.org/55118b80-8470-4c99-bfdf-d122cd412739-protected-network 40s
network.k8s.plugin.opnfv.org/55118b80-8470-4c99-bfdf-d122cd412739-unprotected-network 40s
network.k8s.plugin.opnfv.org/567cecc3-9692-449e-877a-ff0b560736be-management-network 11m
network.k8s.plugin.opnfv.org/567cecc3-9692-449e-877a-ff0b560736be-protected-network 11m
network.k8s.plugin.opnfv.org/567cecc3-9692-449e-877a-ff0b560736be-unprotected-network 11m
NAME DATA AGE
configmap/vfw-17f6f7d3-8424-4550-a188-cd777f0ab48f-configmap 6 22s
configmap/vfw-19571429-4af4-49b3-af65-2eb1f97bba43-configmap 6 11m
configmap/vpg-5ea0d3b0-9a0c-4e88-a2e2-ceb84810259e-configmap 6 11m
configmap/vpg-8581bc79-8eef-487e-8ed1-a18c0d638b26-configmap 6 33s
configmap/vsn-8e7ac4fc-2c31-4cf8-90c8-5074c5891c14-configmap 2 11m
configmap/vsn-fdc9b4ba-c0e9-4efc-8009-f9414ae7dd7b-configmap 2 30s
NAME AGE
networkattachmentdefinition.k8s.cni.cncf.io/55118b80-8470-4c99-bfdf-d122cd412739-ovn-nat 40s
networkattachmentdefinition.k8s.cni.cncf.io/567cecc3-9692-449e-877a-ff0b560736be-ovn-nat 11m
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.extensions/vfw-17f6f7d3-8424-4550-a188-cd777f0ab48f 1/1 1 1 22s
deployment.extensions/vfw-19571429-4af4-49b3-af65-2eb1f97bba43 1/1 1 1 11m
deployment.extensions/vpg-5ea0d3b0-9a0c-4e88-a2e2-ceb84810259e 1/1 1 1 11m
deployment.extensions/vpg-8581bc79-8eef-487e-8ed1-a18c0d638b26 1/1 1 1 33s
deployment.extensions/vsn-8e7ac4fc-2c31-4cf8-90c8-5074c5891c14 1/1 1 1 11m
deployment.extensions/vsn-fdc9b4ba-c0e9-4efc-8009-f9414ae7dd7b 1/1 1 1 30s
Component Logs From The Execution
.................................
All logs from the use case execution are here:
:download: `logs <files/vFW_CNF_CDS/logs.zip>`
- `so-bpmn-infra_so-bpmn-infra_debug.log`
- SO openstack adapter
- `sdnc_sdnc_karaf.log`
From karaf.log all requests (payloads) to CDS can be found by searching following string:
``'Sending request below to url http://cds-blueprints-processor-http:8080/api/v1/execution-service/process'``
- `cds-blueprints-processor_cds-blueprints-processor_POD_LOG.log`
- `multicloud-k8s_multicloud-k8s_POD_LOG.log`
- network naming
Debug log
+++++++++
In case more detailed logging is needed, here's instructions how to setup DEBUG logging for few components.
- SDNC
::
kubectl -n onap exec -it onap-sdnc-sdnc-0 -c sdnc /opt/opendaylight/bin/client log:set DEBUG
- CDS Blueprint Processor
::
# Edit configmap
kubectl -n onap edit configmap onap-cds-cds-blueprints-processor-configmap
# Edit logback.xml content change root logger level from info to debug.
<root level="debug">
<appender-ref ref="STDOUT"/>
</root>
# Delete the POd to make changes effective
kubectl -n onap delete pod $(kubectl -n onap get pod -l app=cds-blueprints-processor --no-headers | cut -d" " -f1)
PART 4 - Summary and Future improvements needed
-----------------------------------------------
This use case made CNFs onboarding and instantiation a little bit easier and closer to "normal" VNF way. Also CDS resource resolution capabilities were taken into use (compared to earlier demos) together with SO's MACRO workflow.
CNF application in vFW (Helm charts) were divided to multiple Helm charts comply with vf-module structure of a Heat based VNF.
Future development areas for this use case and in general for CNF support could be:
- Automate manual initialization steps in to Robot init. Now all was done with Postman or manual step on command line.
- Automate use case in ONAP daily CI
- Include Closed Loop part of the vFW demo.
- Use multicloud/k8S API v2. Also consider profile concept future.
- Sync CDS model with `vFW_CNF_CDS Model`_ use case i.e. try to keep only single model regardless of xNF being Openstack or Kubernetes based.
- TOSCA based service and xNF models instead of dummy Heat wrapper. Won't work directly with current vf-module oriented SO workflows.
- vFW service with Openstack VNF and Kubernetes CNF
- Post instantiation configuration with Day 2 configuration APIs of multicloud/k8S API
- Auto generation of instantiation specific helm resources in CDS and their population through profiles
Multiple lower level bugs/issues were also found during use case development
- Distribution of Helm package directly from CSAR package `SDC-2776`_
.. _ONAP Deployment Guide: https://docs.onap.org/en/frankfurt/submodules/oom.git/docs/oom_quickstart_guide.html#quick-start-label
.. _vFW_CNF_CDS Model: https://git.onap.org/demo/tree/heat/vFW_CNF_CDS?h=frankfurt
.. _vFW CDS Dublin: https://wiki.onap.org/display/DW/vFW+CDS+Dublin
.. _vFW CBA Model: https://git.onap.org/ccsdk/cds/tree/components/model-catalog/blueprint-model/service-blueprint/vFW?h=frankfurt
.. _vFW_Helm Model: https://git.onap.org/multicloud/k8s/tree/kud/demo/firewall?h=elalto
.. _vFW_NextGen: https://git.onap.org/demo/tree/heat/vFW_NextGen?h=elalto
.. _vFW EDGEX K8S: https://onap.readthedocs.io/en/elalto/submodules/integration.git/docs/docs_vfw_edgex_k8s.html
.. _vFW EDGEX K8S In ONAP Wiki: https://wiki.onap.org/display/DW/Deploying+vFw+and+EdgeXFoundry+Services+on+Kubernets+Cluster+with+ONAP
.. _KUD readthedocs: https://docs.onap.org/en/frankfurt/submodules/multicloud/k8s.git/docs
.. _KUD in Wiki: https://wiki.onap.org/display/DW/Kubernetes+Baremetal+deployment+setup+instructions
.. _Multicloud k8s gerrit: https://gerrit.onap.org/r/q/status:open+project:+multicloud/k8
.. _KUD subproject in github: https://github.com/onap/multicloud-k8s/tree/master/kud
.. _KUD Jenkins ci/cd verification: https://jenkins.onap.org/job/multicloud-k8s-master-kud-deployment-verify-shell/
.. _SO Cloud Region Selection: https://git.onap.org/so/tree/adapters/mso-openstack-adapters/src/main/java/org/onap/so/adapters/vnf/MsoVnfPluginAdapterImpl.java?h=elalto#n1149
.. _SO Monitoring: http://so-monitoring:30224
.. _Jira Epic: https://jira.onap.org/browse/INT-1184
.. _Data Dictionary: https://git.onap.org/demo/tree/heat/vFW_CNF_CDS/templates/cba-dd.json?h=frankfurt
.. _Helm Healer: https://git.onap.org/oom/offline-installer/tree/tools/helm-healer.sh
.. _CDS UAT Testing: https://wiki.onap.org/display/DW/Modeling+Concepts
.. _postman.zip: files/vFW_CNF_CDS/postman.zip
.. _logs.zip: files/vFW_CNF_CDS/logs.zip
.. _SDC-2776: https://jira.onap.org/browse/SDC-2776
.. _MULTICLOUD-941: https://jira.onap.org/browse/MULTICLOUD-941
.. _CCSDK-2155: https://jira.onap.org/browse/CCSDK-2155
.. _infra_workload: https://docs.onap.org/en/latest/submodules/multicloud/framework.git/docs/specs/multicloud_infra_workload.html
.. _SDNC-1116: https://jira.onap.org/browse/SDNC-1116
.. _SO-2727: https://jira.onap.org/browse/SO-2727
.. _SDNC-1109: https://jira.onap.org/browse/SDNC-1109
.. _SDC-2776: https://jira.onap.org/browse/SDC-2776
.. _INT-1255: https://jira.onap.org/browse/INT-1255
.. _SDNC-1130: https://jira.onap.org/browse/SDNC-1130