blob: 524f3e4d4897c01024258742eba2c73f1c8b6b2c [file] [log] [blame]
PatrikBuhr608883c2023-04-06 13:17:36 +02001.. This work is licensed under a Creative Commons Attribution 4.0 International License.
2.. SPDX-License-Identifier: CC-BY-4.0
3.. Copyright (C) 2023 Nordix
4
5
6PM Producer
7~~~~~~~~~~~~~
8
9************
10Introduction
11************
12
13The task of the PM Producer is to process PM reports and to distribute requested information to subscribers.
14The main use case is:
15
16* The PM Producer receives a Json object from Kafka which notifies that a new PM report is fetched and is available to processed.
17
18* The actual PM report is in a file, which is stored in an S3 Object store bucket or in the file system (in a mounted volume). The file has the same structure as 3GPP TS 32.432/3GPP TS 32.435, but is converted to json and is extended to contain the information that is encoded the 3GPP measurement report xml file name.
19
20* The PM Producer loads the file and distribute the contents to the subscribers over Kafka according to their subscription parameters. These subscription parameters defines wanted measurement types from given parts of of the network.
21
22The PM Producer registers itself as an information producer of PM measurement data in Information Coordination Service (ICS).
23
24A data consumer can create an information job (data subscription) using the ICS consumer API (for rApps) or the A1-EI (Enrichment Information) API (for NearRT-RICs).
25The PM Producer will get notified when information jobs of type 'PM measurements' are created.
26
27The service is implemented in Java Spring Boot.
28
29.. image:: ./Architecture.png
30 :width: 500pt
31
32This product is a part of :doc:`NONRTRIC <nonrtric:index>`.
33
34**************
35Delivered data
36**************
37When a data consumer (e.g an rApp) creates an Information Job, a Kafka Topic is given as output for the job.
38After filtering, the data will be delivered to the output topic.
39
40The format of the delivered PM measurement is the same as the input format (which in turn is a Json mapping done from
413GPP TS 32.432/3GPP TS 32.435).
42
43The result of the PM filtering preserves the structure of a 3GPP PM report.
44Here follows an example of a resulting delivered PM report.
45
46.. code-block:: javascript
47
48 {
49 "event":{
50 "commonEventHeader":{
51 "domain":"perf3gpp",
52 "eventId":"9efa1210-f285-455f-9c6a-3a659b1f1882",
53 "eventName":"perf3gpp_gnb-Ericsson_pmMeasResult",
54 "sourceName":"O-DU-1122",
55 "reportingEntityName":"",
56 "startEpochMicrosec":951912000000,
57 "lastEpochMicrosec":951912900000,
58 "timeZoneOffset":"+00:00"
59 },
60 "perf3gppFields":{
61 "perf3gppFieldsVersion":"1.0",
62 "measDataCollection":{
63 "granularityPeriod":900,
64 "measuredEntityUserName":"RNC Telecomville",
65 "measuredEntityDn":"SubNetwork=CountryNN,MeContext=MEC-Gbg-1,ManagedElement=RNC-Gbg-1",
66 "measuredEntitySoftwareVersion":"",
67 "measInfoList":[
68 {
69 "measInfoId":{
70 "sMeasInfoId":""
71 },
72 "measTypes":{
73 "map":{
74 "succImmediateAssignProcs":1
75 },
76 "sMeasTypesList":[
77 "succImmediateAssignProcs"
78 ]
79 },
80 "measValuesList":[
81 {
82 "measObjInstId":"RncFunction=RF-1,UtranCell=Gbg-997",
83 "suspectFlag":"false",
84 "measResults":[
85 {
86 "p":1,
87 "sValue":"1113"
88 }
89 ]
90 },
91 {
92 "measObjInstId":"RncFunction=RF-1,UtranCell=Gbg-998",
93 "suspectFlag":"false",
94 "measResults":[
95 {
96 "p":1,
97 "sValue":"234"
98 }
99 ]
100 },
101 {
102 "measObjInstId":"RncFunction=RF-1,UtranCell=Gbg-999",
103 "suspectFlag":"true",
104 "measResults":[
105 {
106 "p":1,
107 "sValue":"789"
108 }
109 ]
110 }
111 ]
112 }
113 ]
114 }
115 }
116 }
117 }
118
119==================
120Sent Kafka headers
121==================
122
123For each filtered result sent to a Kafka topic, there will the following proerties in the Kafa header:
124
125* type-id, this propery is used to indicate the ID of the information type. The value is a string.
126* gzip, if this property exists the object is gzipped (otherwise not). The property has no value.
127* source-name, the name of the source traffical element for the measurements.
128
129
130******************
131Configuration File
132******************
133
134The configuration file defines Kafka topics that should be listened to and registered as subscribeable information types.
135There is an example configuration file in config/application_configuration.json
136
137Each entry will be registered as a subscribe information type in ICS. The following attributes can be used in each entry:
138
139* id, the information type identifier.
140
141* kafkaInputTopic, a Kafka topic to listen to for new file events.
142
143* inputJobType, the information type for new file events subscription.
144
145* inputJobDefinition, the parameters for the new file events subscription.
146
147The last two parameters are used to create the subscription for the input to this component (subscription of file ready events).
148
149
150Below follows an example of a configuration file.
151
152.. code-block:: javascript
153
154 {
155 "types": [
156 {
157 "id": "PmDataOverKafka",
158 "kafkaInputTopic": "FileReadyEvent",
159 "inputJobType": "xml-file-data-to-filestore",
160 "inputJobDefinition": {
161 "kafkaOutputTopic": "FileReadyEvent",
162 "filestore-output-bucket": "pm-files-json",
163 "filterType": "pmdata",
164 "filter": {
165 "inputCompression": "xml.gz",
166 "outputCompression": "none"
167 }
168 }
169 }
170 ]
171 }
172
173**************************
174Information Job Parameters
175**************************
176
177The schema for the parameters for PM measurements subscription is defined in file src/main/resources/typeSchemaPmData.json.
178
179=====================
180typeSchemaPmData.json
181=====================
182
183The type specific json schema for the subscription of PM measurement:
184
185.. code-block:: javascript
186
187 {
188 "$schema": "http://json-schema.org/draft-04/schema#",
189 "type": "object",
190 "additionalProperties": false,
191 "properties": {
192 "filter": {
193 "type": "object",
194 "additionalProperties": false,
195 "properties": {
196 "sourceNames": {
197 "type": "array",
198 "items": [
199 {
200 "type": "string"
201 }
202 ]
203 },
204 "measObjInstIds": {
205 "type": "array",
206 "items": [
207 {
208 "type": "string"
209 }
210 ]
211 },
212 "measTypeSpecs": {
213 "type": "array",
214 "items": [
215 {
216 "type": "object",
217 "properties": {
218 "measuredObjClass": {
219 "type": "string"
220 },
221 "measTypes": {
222 "type": "array",
223 "items": [
224 {
225 "type": "string"
226 }
227 ]
228 }
229 },
230 "required": [
231 "measuredObjClass"
232 ]
233 }
234 ]
235 },
236 "measuredEntityDns": {
237 "type": "array",
238 "items": [
239 {
240 "type": "string"
241 }
242 ]
243 },
244 "pmRopStartTime": {
245 "type": "string"
246 },
247 "pmRopEndTime": {
248 "type": "string"
249 }
250 }
251 },
252 "deliveryInfo": {
253 "type": "object",
254 "additionalProperties": false,
255 "properties": {
256 "topic": {
257 "type": "string"
258 },
259 "bootStrapServers": {
260 "type": "string"
261 }
262 },
263 "required": [
264 "topic"
265 ]
266 }
267 },
268 "required": [
269 "filter", "deliveryInfo"
270 ]
271 }
272
273
274The following properties are defined:
275
276* filter, the value of the filter expression. This selects which data to subscribe for. All fields are optional and excluding a field means that everything is selected.
277
278 * sourceNames, section of the names of the reporting traffical nodes
279 * measObjInstIds, selection of the measured resources. This is the Relative Distingusished Name of the MO that
280 has the counter.
281 If a given value is contained in the filter definition, it will match (partial matching).
282 For instance a value like "NRCellCU" will match "ManagedElement=seliitdus00487,GNBCUCPFunction=1,NRCellCU=32".
283 * measTypeSpecs, selection of measurement types (counters). This consists of:
284
285 * measuredObjClass, the name of the class of the measured resources.
286 * measTypes, the name of the measurement type (counter). The measurement type name is only
287 unique in the scope of an MO class (measured resource).
288
289 * measuredEntityDns, selection of DNs for the traffical elements.
290
291 * pmRopStartTime, if this parameter is specified already collected PM measurements files will be scanned to retrieve historical data.
292 The start file is the time from when the information shall be returned.
293 In this case, the query is only done for files from the given "sourceNames".
294 If this parameter is excluded, only "new" reports will be delivered as they are collected from the traffical nodes.
295
296 * pmRopEndTime, for querying already collected PM measurements. Only relevant if pmRopStartTime.
297 If this parameters is given, no reports will be sent as new files are collected.
298
299* deliveryInfo, defines where the subscribed PM measurements shall be sent.
300
301 * topic, the name of the kafka topic
302 * bootStrapServers, reference to the kafka bus to used. This is optional, if this is omitted the default configured kafka bus is used (which is configured in the application.yaml file).
303
304
305
306Below follows examples of some filters.
307
308.. code-block:: javascript
309
310 {
311 "filter":{
312 "sourceNames":[
313 "O-DU-1122"
314 ],
315 "measObjInstIds":[
316 "UtranCell=Gbg-997"
317 ],
318 "measTypeSpecs":[
319 {
320 "measuredObjClass":"UtranCell",
321 "measTypes":[
322 "succImmediateAssignProcs"
323 ]
324 {
325 ]
326 }
327 }
328
329Here follows an example of a filter that will
330match two counters from all cells in two traffical nodes.
331
332.. code-block:: javascript
333
334 {
335 "filterType":"pmdata",
336 "filter": {
337 "sourceNames":[
338 "O-DU-1122", "O-DU-1123"
339 ],
340 "measTypeSpecs":[
341 {
342 "measuredObjClass":"NRCellCU",
343 "measTypes":[
344 "pmCounterNumber0", "pmCounterNumber1"
345 ]
346 }
347 ],
348
349 }
350 }
351
352
353****************************
354PM measurements subscription
355****************************
356
357The sequence is that a "new file event" is received (from a Kafka topic).
358The file is read from local storage (file storage or S3 object store). For each Job, the specified PM filter is applied to the data
359and the result is sent to the Kafka topic specified by the Job (by the data consumer).
360
361.. image:: ./dedicatedTopics.png
362 :width: 500pt
363
364If several jobs publish to the same Kafka topic (shared topic), the resulting filtered output will be an aggregate of all matching filters.
365So, each consumer will then get more data than requested.
366
367.. image:: ./sharedTopics.png
368 :width: 500pt
369