blob: 9bf49c1ad1b89eacc6b0c185b1d5ed3b14762747 [file] [log] [blame]
/******************************************************************************
*
* Copyright (c) 2019 Intel.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*******************************************************************************/
/**
* @brief This file has all definitions for the Ethernet Data Interface Layer
* @file ethernet.c
* @ingroup group_lte_source_auxlib
* @author Intel Corporation
**/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <errno.h>
#include <sys/queue.h>
#include <err.h>
#include <assert.h>
#include <linux/limits.h>
#include <sys/types.h>
#include <stdlib.h>
#include <math.h>
#include <rte_config.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_errno.h>
#include "ethernet.h"
#include "ethdi.h"
/* Our mbuf pools. */
struct rte_mempool *_eth_mbuf_pool = NULL;
struct rte_mempool *_eth_mbuf_pool_inderect = NULL;
struct rte_mempool *_eth_mbuf_pool_rx = NULL;
struct rte_mempool *_eth_mbuf_pool_small = NULL;
struct rte_mempool *_eth_mbuf_pool_big = NULL;
struct rte_mempool *socket_direct_pool = NULL;
struct rte_mempool *socket_indirect_pool = NULL;
/*
* Make sure the ring indexes are big enough to cover buf space x2
* This ring-buffer maintains the property head - tail <= RINGSIZE.
* head == tail: ring buffer empty
* head - tail == RINGSIZE: ring buffer full
*/
typedef uint16_t ring_idx;
static struct {
ring_idx head;
ring_idx read_head;
ring_idx tail;
char buf[1024]; /* needs power of 2! */
} io_ring = { {0}, 0, 0};
#define RINGSIZE sizeof(io_ring.buf)
#define RINGMASK (RINGSIZE - 1)
int __xran_delayed_msg(const char *fmt, ...)
{
#if 0
va_list ap;
int msg_len;
char localbuf[RINGSIZE];
ring_idx old_head, new_head;
ring_idx copy_len;
/* first prep a copy of the message on the local stack */
va_start(ap, fmt);
msg_len = vsnprintf(localbuf, RINGSIZE, fmt, ap);
va_end(ap);
/* atomically reserve space in the ring */
for (;;) {
old_head = io_ring.head; /* snapshot head */
/* free always within range of [0, RINGSIZE] - proof by induction */
const ring_idx free = RINGSIZE - (old_head - io_ring.tail);
copy_len = RTE_MIN(msg_len, free);
if (copy_len <= 0)
return 0; /* vsnprintf error or ringbuff full. Drop log. */
new_head = old_head + copy_len;
RTE_ASSERT((ring_idx)(new_head - io_ring.tail) <= RINGSIZE);
if (likely(__atomic_compare_exchange_n(&io_ring.head, &old_head,
new_head, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)))
break;
}
/* Now copy data in at ease. */
const int copy_start = (old_head & RINGMASK);
if (copy_start < (new_head & RINGMASK)) /* no wrap */
memcpy(io_ring.buf + copy_start, localbuf, copy_len);
else { /* wrap-around */
const int chunk_len = RINGSIZE - copy_start;
memcpy(io_ring.buf + copy_start, localbuf, chunk_len);
memcpy(io_ring.buf, localbuf + chunk_len, copy_len - chunk_len);
}
/* wait for previous writes to complete before updating read_head. */
while (io_ring.read_head != old_head)
rte_pause();
io_ring.read_head = new_head;
return copy_len;
#endif
return 0;
}
/*
* Display part of the message stored in the ring buffer.
* Might require multiple calls to print the full message.
* Will return 0 when nothing left to print.
*/
#if 0
int xran_show_delayed_message(void)
{
ring_idx tail = io_ring.tail;
ring_idx wlen = io_ring.read_head - tail; /* always within [0, RINGSIZE] */
if (wlen <= 0)
return 0;
tail &= RINGMASK; /* modulo the range down now that we have wlen */
/* Make sure we're not going over buffer end. Next call will wrap. */
if (tail + wlen > RINGSIZE)
wlen = RINGSIZE - tail;
RTE_ASSERT(tail + wlen <= RINGSIZE);
/* We use write() here to avoid recaculating string length in fwrite(). */
const ssize_t written = write(STDOUT_FILENO, io_ring.buf + tail, wlen);
if (written <= 0)
return 0; /* To avoid moving tail the wrong way on error. */
/* Move tail up. Only we touch it. And we only print from one core. */
io_ring.tail += written;
return written; /* next invocation will print the rest if any */
}
#endif
void xran_init_mbuf_pool(void)
{
/* Init the buffer pool */
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
_eth_mbuf_pool = rte_pktmbuf_pool_create("mempool", NUM_MBUFS,
MBUF_CACHE, 0, MBUF_POOL_ELEMENT, rte_socket_id());
#ifdef XRAN_ATTACH_MBUF
_eth_mbuf_pool_inderect = rte_pktmbuf_pool_create("mempool_indirect", NUM_MBUFS,
MBUF_CACHE, 0, MBUF_POOL_ELEMENT, rte_socket_id());*/
#endif
_eth_mbuf_pool_rx = rte_pktmbuf_pool_create("mempool_rx", NUM_MBUFS,
MBUF_CACHE, 0, MBUF_POOL_ELEMENT, rte_socket_id());
_eth_mbuf_pool_small = rte_pktmbuf_pool_create("mempool_small",
NUM_MBUFS, MBUF_CACHE, 0, MBUF_POOL_ELM_SMALL, rte_socket_id());
_eth_mbuf_pool_big = rte_pktmbuf_pool_create("mempool_big",
NUM_MBUFS_BIG, 0, 0, MBUF_POOL_ELM_BIG, rte_socket_id());
} else {
_eth_mbuf_pool = rte_mempool_lookup("mempool");
_eth_mbuf_pool_inderect = rte_mempool_lookup("mempool_indirect");
_eth_mbuf_pool_rx = rte_mempool_lookup("mempool_rx");
_eth_mbuf_pool_small = rte_mempool_lookup("mempool_small");
_eth_mbuf_pool_big = rte_mempool_lookup("mempool_big");
}
if (_eth_mbuf_pool == NULL)
rte_panic("Cannot create mbuf pool: %s\n", rte_strerror(rte_errno));
#ifdef XRAN_ATTACH_MBUF
if (_eth_mbuf_pool_inderect == NULL)
rte_panic("Cannot create mbuf pool: %s\n", rte_strerror(rte_errno));
#endif
if (_eth_mbuf_pool_rx == NULL)
rte_panic("Cannot create mbuf pool: %s\n", rte_strerror(rte_errno));
if (_eth_mbuf_pool_small == NULL)
rte_panic("Cannot create small mbuf pool: %s\n", rte_strerror(rte_errno));
if (_eth_mbuf_pool_big == NULL)
rte_panic("Cannot create big mbuf pool: %s\n", rte_strerror(rte_errno));
if (socket_direct_pool == NULL)
socket_direct_pool = _eth_mbuf_pool;
if (socket_indirect_pool == NULL)
socket_indirect_pool = _eth_mbuf_pool_inderect;
}
/* Init NIC port, then start the port */
void xran_init_port(int p_id, struct ether_addr *p_lls_cu_addr)
{
static uint16_t nb_rxd = BURST_SIZE;
static uint16_t nb_txd = BURST_SIZE;
struct ether_addr addr;
struct rte_eth_rxmode rxmode =
{ .split_hdr_size = 0,
.max_rx_pkt_len = MAX_RX_LEN,
.offloads=(DEV_RX_OFFLOAD_JUMBO_FRAME|DEV_RX_OFFLOAD_CRC_STRIP)
};
struct rte_eth_txmode txmode = {
.mq_mode = ETH_MQ_TX_NONE
};
struct rte_eth_conf port_conf = {
.rxmode = rxmode,
.txmode = txmode
};
struct rte_eth_rxconf rxq_conf;
struct rte_eth_txconf txq_conf;
int ret;
struct rte_eth_dev_info dev_info;
const char *drv_name = "";
int sock_id = rte_eth_dev_socket_id(p_id);
rte_eth_dev_info_get(p_id, &dev_info);
if (dev_info.driver_name)
drv_name = dev_info.driver_name;
printf("initializing port %d for TX, drv=%s\n", p_id, drv_name);
rte_eth_macaddr_get(p_id, &addr);
printf("Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8
" %02"PRIx8" %02"PRIx8" %02"PRIx8"\n",
(unsigned)p_id,
addr.addr_bytes[0], addr.addr_bytes[1], addr.addr_bytes[2],
addr.addr_bytes[3], addr.addr_bytes[4], addr.addr_bytes[5]);
/* Init port */
ret = rte_eth_dev_configure(p_id, 1, 1, &port_conf);
if (ret < 0)
rte_panic("Cannot configure port %u (%d)\n", p_id, ret);
ret = rte_eth_dev_adjust_nb_rx_tx_desc(p_id, &nb_rxd,&nb_txd);
if (ret < 0) {
printf("\n");
rte_exit(EXIT_FAILURE, "Cannot adjust number of "
"descriptors: err=%d, port=%d\n", ret, p_id);
}
printf("Port %u: nb_rxd %d nb_txd %d\n", p_id, nb_rxd, nb_txd);
/* Init RX queues */
rxq_conf = dev_info.default_rxconf;
ret = rte_eth_rx_queue_setup(p_id, 0, nb_rxd,
sock_id, &rxq_conf, _eth_mbuf_pool_rx);
if (ret < 0)
rte_panic("Cannot init RX for port %u (%d)\n",
p_id, ret);
/* Init TX queues */
txq_conf = dev_info.default_txconf;
ret = rte_eth_tx_queue_setup(p_id, 0, nb_txd, sock_id, &txq_conf);
if (ret < 0)
rte_panic("Cannot init TX for port %u (%d)\n",
p_id, ret);
/* Start port */
ret = rte_eth_dev_start(p_id);
if (ret < 0)
rte_panic("Cannot start port %u (%d)\n", p_id, ret);
// rte_eth_promiscuous_enable(p_id);
}
#if 0
void xran_memdump(void *addr, int len)
{
int i;
char tmp_buf[len * 2 + len / 16 + 1];
char *p = tmp_buf;
return;
#if 0
for (i = 0; i < len; ++i) {
sprintf(p, "%.2X ", ((uint8_t *)addr)[i]);
if (i % 16 == 15)
*p++ = '\n';
}
*p = 0;
nlog("%s", tmp_buf);
#endif
}
/* Prepend ethernet header, possibly vlan tag. */
void xran_add_eth_hdr(struct ether_addr *dst, uint16_t ethertype, struct rte_mbuf *mb)
{
/* add in the ethernet header */
struct ether_hdr *const h = (void *)rte_pktmbuf_prepend(mb, sizeof(*h));
PANIC_ON(h == NULL, "mbuf prepend of ether_hdr failed");
/* Fill in the ethernet header. */
rte_eth_macaddr_get(mb->port, &h->s_addr); /* set source addr */
h->d_addr = *dst; /* set dst addr */
h->ether_type = rte_cpu_to_be_16(ethertype); /* ethertype too */
#if defined(DPDKIO_DEBUG) && DPDKIO_DEBUG > 1
{
char dst[ETHER_ADDR_FMT_SIZE] = "(empty)";
char src[ETHER_ADDR_FMT_SIZE] = "(empty)";
nlog("*** packet for TX below (len %d) ***", rte_pktmbuf_pkt_len(mb));
ether_format_addr(src, sizeof(src), &h->s_addr);
ether_format_addr(dst, sizeof(dst), &h->d_addr);
nlog("src: %s dst: %s ethertype: %.4X", src, dst, ethertype);
}
#endif
#ifdef VLAN_SUPPORT
mb->vlan_tci = FLEXRAN_UP_VLAN_TAG;
dlog("Inserting vlan tag of %d", FLEXRAN_UP_VLAN_TAG);
rte_vlan_insert(&mb);
#endif
}
int xran_send_mbuf(struct ether_addr *dst, struct rte_mbuf *mb)
{
xran_add_eth_hdr(dst, ETHER_TYPE_ETHDI, mb);
if (rte_eth_tx_burst(mb->port, 0, &mb, 1) == 1)
return 1;
elog("packet sending failed on port %d", mb->port);
rte_pktmbuf_free(mb);
return 0; /* fail */
}
int xran_send_message_burst(int dst_id, int pkt_type, void *body, int len)
{
struct rte_mbuf *mbufs[BURST_SIZE];
int i;
uint8_t *src = body;
const struct xran_ethdi_ctx *const ctx = xran_ethdi_get_ctx();
/* We're limited by maximum mbuf size on the receive size.
* We can change this but this would be a bigger rework. */
RTE_ASSERT(len < MBUF_POOL_ELM_BIG);
/* Allocate the required number of mbufs. */
const uint8_t count = ceilf((float)len / MAX_DATA_SIZE);
if (rte_pktmbuf_alloc_bulk(_eth_mbuf_pool, mbufs, count) != 0)
rte_panic("Failed to allocate %d mbufs\n", count);
nlog("burst transfer with data size %lu", MAX_DATA_SIZE);
for (i = 0; len > 0; ++i) {
char *p;
struct burst_hdr *bhdr;
struct ethdi_hdr *edi_hdr;
/* Setup the ethdi_hdr. */
edi_hdr = (void *)rte_pktmbuf_append(mbufs[i], sizeof(*edi_hdr));
if (edi_hdr == NULL)
rte_panic("append of ethdi_hdr failed\n");
edi_hdr->pkt_type = PKT_BURST;
/* edi_hdr->source_id setup in tx_from_ring */
edi_hdr->dest_id = dst_id;
/* Setup the burst header */
bhdr = (void *)rte_pktmbuf_append(mbufs[i], sizeof(*bhdr));
if (bhdr == NULL) /* append failed. */
rte_panic("mbuf prepend of burst_hdr failed\n");
bhdr->original_type = pkt_type;
bhdr->pkt_idx = i; /* save the index of the burst chunk. */
bhdr->total_pkts = count;
/* now copy in the actual data */
const int curr_data_len = RTE_MIN(len, MAX_TX_LEN -
rte_pktmbuf_pkt_len(mbufs[i]) - sizeof(struct ether_hdr));
p = (void *)rte_pktmbuf_append(mbufs[i], curr_data_len);
if (p == NULL)
rte_panic("mbuf append of %d data bytes failed\n", curr_data_len);
/* This copy is unavoidable, as we're splitting one big buffer
* into multiple mbufs. */
rte_memcpy(p, src, curr_data_len);
dlog("curr_data_len[%d] = %d", i, curr_data_len);
dlog("packet %d size %d", i, rte_pktmbuf_pkt_len(mbufs[i]));
/* Update our source data pointer and remaining length. */
len -= curr_data_len;
src += curr_data_len;
}
/* Now enqueue the full prepared burst. */
i = rte_ring_enqueue_bulk(ctx->tx_ring[0], (void **)mbufs, count, NULL);
PANIC_ON(i != count, "failed to enqueue all mbufs: %d/%d", i, count);
dlog("%d packets enqueued on port %d.", count, ctx->io_cfg.port);
return 1;
}
#endif
/* Prepend ethernet header, possibly vlan tag. */
void xran_add_eth_hdr_vlan(struct ether_addr *dst, uint16_t ethertype, struct rte_mbuf *mb, uint16_t vlan_tci)
{
/* add in the ethernet header */
struct ether_hdr *h = (struct ether_hdr *)rte_pktmbuf_mtod(mb, struct ether_hdr*);
PANIC_ON(h == NULL, "mbuf prepend of ether_hdr failed");
/* Fill in the ethernet header. */
rte_eth_macaddr_get(mb->port, &h->s_addr); /* set source addr */
h->d_addr = *dst; /* set dst addr */
h->ether_type = rte_cpu_to_be_16(ethertype); /* ethertype too */
#if defined(DPDKIO_DEBUG) && DPDKIO_DEBUG > 1
{
char dst[ETHER_ADDR_FMT_SIZE] = "(empty)";
char src[ETHER_ADDR_FMT_SIZE] = "(empty)";
nlog("*** packet for TX below (len %d) ***", rte_pktmbuf_pkt_len(mb));
ether_format_addr(src, sizeof(src), &h->s_addr);
ether_format_addr(dst, sizeof(dst), &h->d_addr);
nlog("src: %s dst: %s ethertype: %.4X", src, dst, ethertype);
}
#endif
#ifdef VLAN_SUPPORT
mb->vlan_tci = vlan_tci;
dlog("Inserting vlan tag of %d", vlan_tci);
rte_vlan_insert(&mb);
#endif
}