/****************************************************************************** | |
* | |
* Copyright (c) 2019 Intel. | |
* | |
* Licensed under the Apache License, Version 2.0 (the "License"); | |
* you may not use this file except in compliance with the License. | |
* You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
* | |
*******************************************************************************/ | |
/** | |
* @brief This file has all definitions for the Ethernet Data Interface Layer | |
* @file ethernet.c | |
* @ingroup group_lte_source_auxlib | |
* @author Intel Corporation | |
**/ | |
#include <stdio.h> | |
#include <string.h> | |
#include <stdint.h> | |
#include <unistd.h> | |
#include <errno.h> | |
#include <sys/queue.h> | |
#include <err.h> | |
#include <assert.h> | |
#include <linux/limits.h> | |
#include <sys/types.h> | |
#include <stdlib.h> | |
#include <math.h> | |
#include <rte_config.h> | |
#include <rte_common.h> | |
#include <rte_log.h> | |
#include <rte_memory.h> | |
#include <rte_memcpy.h> | |
#include <rte_memzone.h> | |
#include <rte_eal.h> | |
#include <rte_per_lcore.h> | |
#include <rte_launch.h> | |
#include <rte_atomic.h> | |
#include <rte_cycles.h> | |
#include <rte_prefetch.h> | |
#include <rte_lcore.h> | |
#include <rte_per_lcore.h> | |
#include <rte_branch_prediction.h> | |
#include <rte_interrupts.h> | |
#include <rte_pci.h> | |
#include <rte_debug.h> | |
#include <rte_ether.h> | |
#include <rte_ethdev.h> | |
#include <rte_ring.h> | |
#include <rte_mempool.h> | |
#include <rte_mbuf.h> | |
#include <rte_errno.h> | |
#include "ethernet.h" | |
#include "ethdi.h" | |
/* Our mbuf pools. */ | |
struct rte_mempool *_eth_mbuf_pool = NULL; | |
struct rte_mempool *_eth_mbuf_pool_inderect = NULL; | |
struct rte_mempool *_eth_mbuf_pool_rx = NULL; | |
struct rte_mempool *_eth_mbuf_pool_small = NULL; | |
struct rte_mempool *_eth_mbuf_pool_big = NULL; | |
struct rte_mempool *socket_direct_pool = NULL; | |
struct rte_mempool *socket_indirect_pool = NULL; | |
/* | |
* Make sure the ring indexes are big enough to cover buf space x2 | |
* This ring-buffer maintains the property head - tail <= RINGSIZE. | |
* head == tail: ring buffer empty | |
* head - tail == RINGSIZE: ring buffer full | |
*/ | |
typedef uint16_t ring_idx; | |
static struct { | |
ring_idx head; | |
ring_idx read_head; | |
ring_idx tail; | |
char buf[1024]; /* needs power of 2! */ | |
} io_ring = { {0}, 0, 0}; | |
#define RINGSIZE sizeof(io_ring.buf) | |
#define RINGMASK (RINGSIZE - 1) | |
int __xran_delayed_msg(const char *fmt, ...) | |
{ | |
#if 0 | |
va_list ap; | |
int msg_len; | |
char localbuf[RINGSIZE]; | |
ring_idx old_head, new_head; | |
ring_idx copy_len; | |
/* first prep a copy of the message on the local stack */ | |
va_start(ap, fmt); | |
msg_len = vsnprintf(localbuf, RINGSIZE, fmt, ap); | |
va_end(ap); | |
/* atomically reserve space in the ring */ | |
for (;;) { | |
old_head = io_ring.head; /* snapshot head */ | |
/* free always within range of [0, RINGSIZE] - proof by induction */ | |
const ring_idx free = RINGSIZE - (old_head - io_ring.tail); | |
copy_len = RTE_MIN(msg_len, free); | |
if (copy_len <= 0) | |
return 0; /* vsnprintf error or ringbuff full. Drop log. */ | |
new_head = old_head + copy_len; | |
RTE_ASSERT((ring_idx)(new_head - io_ring.tail) <= RINGSIZE); | |
if (likely(__atomic_compare_exchange_n(&io_ring.head, &old_head, | |
new_head, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED))) | |
break; | |
} | |
/* Now copy data in at ease. */ | |
const int copy_start = (old_head & RINGMASK); | |
if (copy_start < (new_head & RINGMASK)) /* no wrap */ | |
memcpy(io_ring.buf + copy_start, localbuf, copy_len); | |
else { /* wrap-around */ | |
const int chunk_len = RINGSIZE - copy_start; | |
memcpy(io_ring.buf + copy_start, localbuf, chunk_len); | |
memcpy(io_ring.buf, localbuf + chunk_len, copy_len - chunk_len); | |
} | |
/* wait for previous writes to complete before updating read_head. */ | |
while (io_ring.read_head != old_head) | |
rte_pause(); | |
io_ring.read_head = new_head; | |
return copy_len; | |
#endif | |
return 0; | |
} | |
/* | |
* Display part of the message stored in the ring buffer. | |
* Might require multiple calls to print the full message. | |
* Will return 0 when nothing left to print. | |
*/ | |
#if 0 | |
int xran_show_delayed_message(void) | |
{ | |
ring_idx tail = io_ring.tail; | |
ring_idx wlen = io_ring.read_head - tail; /* always within [0, RINGSIZE] */ | |
if (wlen <= 0) | |
return 0; | |
tail &= RINGMASK; /* modulo the range down now that we have wlen */ | |
/* Make sure we're not going over buffer end. Next call will wrap. */ | |
if (tail + wlen > RINGSIZE) | |
wlen = RINGSIZE - tail; | |
RTE_ASSERT(tail + wlen <= RINGSIZE); | |
/* We use write() here to avoid recaculating string length in fwrite(). */ | |
const ssize_t written = write(STDOUT_FILENO, io_ring.buf + tail, wlen); | |
if (written <= 0) | |
return 0; /* To avoid moving tail the wrong way on error. */ | |
/* Move tail up. Only we touch it. And we only print from one core. */ | |
io_ring.tail += written; | |
return written; /* next invocation will print the rest if any */ | |
} | |
#endif | |
void xran_init_mbuf_pool(void) | |
{ | |
/* Init the buffer pool */ | |
if (rte_eal_process_type() == RTE_PROC_PRIMARY) { | |
_eth_mbuf_pool = rte_pktmbuf_pool_create("mempool", NUM_MBUFS, | |
MBUF_CACHE, 0, MBUF_POOL_ELEMENT, rte_socket_id()); | |
#ifdef XRAN_ATTACH_MBUF | |
_eth_mbuf_pool_inderect = rte_pktmbuf_pool_create("mempool_indirect", NUM_MBUFS, | |
MBUF_CACHE, 0, MBUF_POOL_ELEMENT, rte_socket_id());*/ | |
#endif | |
_eth_mbuf_pool_rx = rte_pktmbuf_pool_create("mempool_rx", NUM_MBUFS, | |
MBUF_CACHE, 0, MBUF_POOL_ELEMENT, rte_socket_id()); | |
_eth_mbuf_pool_small = rte_pktmbuf_pool_create("mempool_small", | |
NUM_MBUFS, MBUF_CACHE, 0, MBUF_POOL_ELM_SMALL, rte_socket_id()); | |
_eth_mbuf_pool_big = rte_pktmbuf_pool_create("mempool_big", | |
NUM_MBUFS_BIG, 0, 0, MBUF_POOL_ELM_BIG, rte_socket_id()); | |
} else { | |
_eth_mbuf_pool = rte_mempool_lookup("mempool"); | |
_eth_mbuf_pool_inderect = rte_mempool_lookup("mempool_indirect"); | |
_eth_mbuf_pool_rx = rte_mempool_lookup("mempool_rx"); | |
_eth_mbuf_pool_small = rte_mempool_lookup("mempool_small"); | |
_eth_mbuf_pool_big = rte_mempool_lookup("mempool_big"); | |
} | |
if (_eth_mbuf_pool == NULL) | |
rte_panic("Cannot create mbuf pool: %s\n", rte_strerror(rte_errno)); | |
#ifdef XRAN_ATTACH_MBUF | |
if (_eth_mbuf_pool_inderect == NULL) | |
rte_panic("Cannot create mbuf pool: %s\n", rte_strerror(rte_errno)); | |
#endif | |
if (_eth_mbuf_pool_rx == NULL) | |
rte_panic("Cannot create mbuf pool: %s\n", rte_strerror(rte_errno)); | |
if (_eth_mbuf_pool_small == NULL) | |
rte_panic("Cannot create small mbuf pool: %s\n", rte_strerror(rte_errno)); | |
if (_eth_mbuf_pool_big == NULL) | |
rte_panic("Cannot create big mbuf pool: %s\n", rte_strerror(rte_errno)); | |
if (socket_direct_pool == NULL) | |
socket_direct_pool = _eth_mbuf_pool; | |
if (socket_indirect_pool == NULL) | |
socket_indirect_pool = _eth_mbuf_pool_inderect; | |
} | |
/* Init NIC port, then start the port */ | |
void xran_init_port(int p_id, struct ether_addr *p_lls_cu_addr) | |
{ | |
static uint16_t nb_rxd = BURST_SIZE; | |
static uint16_t nb_txd = BURST_SIZE; | |
struct ether_addr addr; | |
struct rte_eth_rxmode rxmode = | |
{ .split_hdr_size = 0, | |
.max_rx_pkt_len = MAX_RX_LEN, | |
.offloads=(DEV_RX_OFFLOAD_JUMBO_FRAME|DEV_RX_OFFLOAD_CRC_STRIP) | |
}; | |
struct rte_eth_txmode txmode = { | |
.mq_mode = ETH_MQ_TX_NONE | |
}; | |
struct rte_eth_conf port_conf = { | |
.rxmode = rxmode, | |
.txmode = txmode | |
}; | |
struct rte_eth_rxconf rxq_conf; | |
struct rte_eth_txconf txq_conf; | |
int ret; | |
struct rte_eth_dev_info dev_info; | |
const char *drv_name = ""; | |
int sock_id = rte_eth_dev_socket_id(p_id); | |
rte_eth_dev_info_get(p_id, &dev_info); | |
if (dev_info.driver_name) | |
drv_name = dev_info.driver_name; | |
printf("initializing port %d for TX, drv=%s\n", p_id, drv_name); | |
rte_eth_macaddr_get(p_id, &addr); | |
printf("Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8 | |
" %02"PRIx8" %02"PRIx8" %02"PRIx8"\n", | |
(unsigned)p_id, | |
addr.addr_bytes[0], addr.addr_bytes[1], addr.addr_bytes[2], | |
addr.addr_bytes[3], addr.addr_bytes[4], addr.addr_bytes[5]); | |
/* Init port */ | |
ret = rte_eth_dev_configure(p_id, 1, 1, &port_conf); | |
if (ret < 0) | |
rte_panic("Cannot configure port %u (%d)\n", p_id, ret); | |
ret = rte_eth_dev_adjust_nb_rx_tx_desc(p_id, &nb_rxd,&nb_txd); | |
if (ret < 0) { | |
printf("\n"); | |
rte_exit(EXIT_FAILURE, "Cannot adjust number of " | |
"descriptors: err=%d, port=%d\n", ret, p_id); | |
} | |
printf("Port %u: nb_rxd %d nb_txd %d\n", p_id, nb_rxd, nb_txd); | |
/* Init RX queues */ | |
rxq_conf = dev_info.default_rxconf; | |
ret = rte_eth_rx_queue_setup(p_id, 0, nb_rxd, | |
sock_id, &rxq_conf, _eth_mbuf_pool_rx); | |
if (ret < 0) | |
rte_panic("Cannot init RX for port %u (%d)\n", | |
p_id, ret); | |
/* Init TX queues */ | |
txq_conf = dev_info.default_txconf; | |
ret = rte_eth_tx_queue_setup(p_id, 0, nb_txd, sock_id, &txq_conf); | |
if (ret < 0) | |
rte_panic("Cannot init TX for port %u (%d)\n", | |
p_id, ret); | |
/* Start port */ | |
ret = rte_eth_dev_start(p_id); | |
if (ret < 0) | |
rte_panic("Cannot start port %u (%d)\n", p_id, ret); | |
// rte_eth_promiscuous_enable(p_id); | |
} | |
#if 0 | |
void xran_memdump(void *addr, int len) | |
{ | |
int i; | |
char tmp_buf[len * 2 + len / 16 + 1]; | |
char *p = tmp_buf; | |
return; | |
#if 0 | |
for (i = 0; i < len; ++i) { | |
sprintf(p, "%.2X ", ((uint8_t *)addr)[i]); | |
if (i % 16 == 15) | |
*p++ = '\n'; | |
} | |
*p = 0; | |
nlog("%s", tmp_buf); | |
#endif | |
} | |
/* Prepend ethernet header, possibly vlan tag. */ | |
void xran_add_eth_hdr(struct ether_addr *dst, uint16_t ethertype, struct rte_mbuf *mb) | |
{ | |
/* add in the ethernet header */ | |
struct ether_hdr *const h = (void *)rte_pktmbuf_prepend(mb, sizeof(*h)); | |
PANIC_ON(h == NULL, "mbuf prepend of ether_hdr failed"); | |
/* Fill in the ethernet header. */ | |
rte_eth_macaddr_get(mb->port, &h->s_addr); /* set source addr */ | |
h->d_addr = *dst; /* set dst addr */ | |
h->ether_type = rte_cpu_to_be_16(ethertype); /* ethertype too */ | |
#if defined(DPDKIO_DEBUG) && DPDKIO_DEBUG > 1 | |
{ | |
char dst[ETHER_ADDR_FMT_SIZE] = "(empty)"; | |
char src[ETHER_ADDR_FMT_SIZE] = "(empty)"; | |
nlog("*** packet for TX below (len %d) ***", rte_pktmbuf_pkt_len(mb)); | |
ether_format_addr(src, sizeof(src), &h->s_addr); | |
ether_format_addr(dst, sizeof(dst), &h->d_addr); | |
nlog("src: %s dst: %s ethertype: %.4X", src, dst, ethertype); | |
} | |
#endif | |
#ifdef VLAN_SUPPORT | |
mb->vlan_tci = FLEXRAN_UP_VLAN_TAG; | |
dlog("Inserting vlan tag of %d", FLEXRAN_UP_VLAN_TAG); | |
rte_vlan_insert(&mb); | |
#endif | |
} | |
int xran_send_mbuf(struct ether_addr *dst, struct rte_mbuf *mb) | |
{ | |
xran_add_eth_hdr(dst, ETHER_TYPE_ETHDI, mb); | |
if (rte_eth_tx_burst(mb->port, 0, &mb, 1) == 1) | |
return 1; | |
elog("packet sending failed on port %d", mb->port); | |
rte_pktmbuf_free(mb); | |
return 0; /* fail */ | |
} | |
int xran_send_message_burst(int dst_id, int pkt_type, void *body, int len) | |
{ | |
struct rte_mbuf *mbufs[BURST_SIZE]; | |
int i; | |
uint8_t *src = body; | |
const struct xran_ethdi_ctx *const ctx = xran_ethdi_get_ctx(); | |
/* We're limited by maximum mbuf size on the receive size. | |
* We can change this but this would be a bigger rework. */ | |
RTE_ASSERT(len < MBUF_POOL_ELM_BIG); | |
/* Allocate the required number of mbufs. */ | |
const uint8_t count = ceilf((float)len / MAX_DATA_SIZE); | |
if (rte_pktmbuf_alloc_bulk(_eth_mbuf_pool, mbufs, count) != 0) | |
rte_panic("Failed to allocate %d mbufs\n", count); | |
nlog("burst transfer with data size %lu", MAX_DATA_SIZE); | |
for (i = 0; len > 0; ++i) { | |
char *p; | |
struct burst_hdr *bhdr; | |
struct ethdi_hdr *edi_hdr; | |
/* Setup the ethdi_hdr. */ | |
edi_hdr = (void *)rte_pktmbuf_append(mbufs[i], sizeof(*edi_hdr)); | |
if (edi_hdr == NULL) | |
rte_panic("append of ethdi_hdr failed\n"); | |
edi_hdr->pkt_type = PKT_BURST; | |
/* edi_hdr->source_id setup in tx_from_ring */ | |
edi_hdr->dest_id = dst_id; | |
/* Setup the burst header */ | |
bhdr = (void *)rte_pktmbuf_append(mbufs[i], sizeof(*bhdr)); | |
if (bhdr == NULL) /* append failed. */ | |
rte_panic("mbuf prepend of burst_hdr failed\n"); | |
bhdr->original_type = pkt_type; | |
bhdr->pkt_idx = i; /* save the index of the burst chunk. */ | |
bhdr->total_pkts = count; | |
/* now copy in the actual data */ | |
const int curr_data_len = RTE_MIN(len, MAX_TX_LEN - | |
rte_pktmbuf_pkt_len(mbufs[i]) - sizeof(struct ether_hdr)); | |
p = (void *)rte_pktmbuf_append(mbufs[i], curr_data_len); | |
if (p == NULL) | |
rte_panic("mbuf append of %d data bytes failed\n", curr_data_len); | |
/* This copy is unavoidable, as we're splitting one big buffer | |
* into multiple mbufs. */ | |
rte_memcpy(p, src, curr_data_len); | |
dlog("curr_data_len[%d] = %d", i, curr_data_len); | |
dlog("packet %d size %d", i, rte_pktmbuf_pkt_len(mbufs[i])); | |
/* Update our source data pointer and remaining length. */ | |
len -= curr_data_len; | |
src += curr_data_len; | |
} | |
/* Now enqueue the full prepared burst. */ | |
i = rte_ring_enqueue_bulk(ctx->tx_ring[0], (void **)mbufs, count, NULL); | |
PANIC_ON(i != count, "failed to enqueue all mbufs: %d/%d", i, count); | |
dlog("%d packets enqueued on port %d.", count, ctx->io_cfg.port); | |
return 1; | |
} | |
#endif | |
/* Prepend ethernet header, possibly vlan tag. */ | |
void xran_add_eth_hdr_vlan(struct ether_addr *dst, uint16_t ethertype, struct rte_mbuf *mb, uint16_t vlan_tci) | |
{ | |
/* add in the ethernet header */ | |
struct ether_hdr *h = (struct ether_hdr *)rte_pktmbuf_mtod(mb, struct ether_hdr*); | |
PANIC_ON(h == NULL, "mbuf prepend of ether_hdr failed"); | |
/* Fill in the ethernet header. */ | |
rte_eth_macaddr_get(mb->port, &h->s_addr); /* set source addr */ | |
h->d_addr = *dst; /* set dst addr */ | |
h->ether_type = rte_cpu_to_be_16(ethertype); /* ethertype too */ | |
#if defined(DPDKIO_DEBUG) && DPDKIO_DEBUG > 1 | |
{ | |
char dst[ETHER_ADDR_FMT_SIZE] = "(empty)"; | |
char src[ETHER_ADDR_FMT_SIZE] = "(empty)"; | |
nlog("*** packet for TX below (len %d) ***", rte_pktmbuf_pkt_len(mb)); | |
ether_format_addr(src, sizeof(src), &h->s_addr); | |
ether_format_addr(dst, sizeof(dst), &h->d_addr); | |
nlog("src: %s dst: %s ethertype: %.4X", src, dst, ethertype); | |
} | |
#endif | |
#ifdef VLAN_SUPPORT | |
mb->vlan_tci = vlan_tci; | |
dlog("Inserting vlan tag of %d", vlan_tci); | |
rte_vlan_insert(&mb); | |
#endif | |
} | |