Peter Szilagyi | fbc56f9 | 2019-07-23 19:29:46 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2003-2017 Lev Walkin <vlm@lionet.info>. |
| 3 | * All rights reserved. |
| 4 | * Redistribution and modifications are permitted subject to BSD license. |
| 5 | */ |
| 6 | #include <asn_internal.h> |
| 7 | #include <constr_SET_OF.h> |
| 8 | #include <asn_SET_OF.h> |
| 9 | |
| 10 | /* |
| 11 | * Number of bytes left for this structure. |
| 12 | * (ctx->left) indicates the number of bytes _transferred_ for the structure. |
| 13 | * (size) contains the number of bytes in the buffer passed. |
| 14 | */ |
| 15 | #define LEFT ((size<(size_t)ctx->left)?size:(size_t)ctx->left) |
| 16 | |
| 17 | /* |
| 18 | * If the subprocessor function returns with an indication that it wants |
| 19 | * more data, it may well be a fatal decoding problem, because the |
| 20 | * size is constrained by the <TLV>'s L, even if the buffer size allows |
| 21 | * reading more data. |
| 22 | * For example, consider the buffer containing the following TLVs: |
| 23 | * <T:5><L:1><V> <T:6>... |
| 24 | * The TLV length clearly indicates that one byte is expected in V, but |
| 25 | * if the V processor returns with "want more data" even if the buffer |
| 26 | * contains way more data than the V processor have seen. |
| 27 | */ |
| 28 | #define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size) |
| 29 | |
| 30 | /* |
| 31 | * This macro "eats" the part of the buffer which is definitely "consumed", |
| 32 | * i.e. was correctly converted into local representation or rightfully skipped. |
| 33 | */ |
| 34 | #undef ADVANCE |
| 35 | #define ADVANCE(num_bytes) do { \ |
| 36 | size_t num = num_bytes; \ |
| 37 | ptr = ((const char *)ptr) + num;\ |
| 38 | size -= num; \ |
| 39 | if(ctx->left >= 0) \ |
| 40 | ctx->left -= num; \ |
| 41 | consumed_myself += num; \ |
| 42 | } while(0) |
| 43 | |
| 44 | /* |
| 45 | * Switch to the next phase of parsing. |
| 46 | */ |
| 47 | #undef NEXT_PHASE |
| 48 | #undef PHASE_OUT |
| 49 | #define NEXT_PHASE(ctx) do { \ |
| 50 | ctx->phase++; \ |
| 51 | ctx->step = 0; \ |
| 52 | } while(0) |
| 53 | #define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0) |
| 54 | |
| 55 | /* |
| 56 | * Return a standardized complex structure. |
| 57 | */ |
| 58 | #undef RETURN |
| 59 | #define RETURN(_code) do { \ |
| 60 | rval.code = _code; \ |
| 61 | rval.consumed = consumed_myself;\ |
| 62 | return rval; \ |
| 63 | } while(0) |
| 64 | |
| 65 | /* |
| 66 | * The decoder of the SET OF type. |
| 67 | */ |
| 68 | asn_dec_rval_t |
| 69 | SET_OF_decode_ber(const asn_codec_ctx_t *opt_codec_ctx, |
| 70 | const asn_TYPE_descriptor_t *td, void **struct_ptr, |
| 71 | const void *ptr, size_t size, int tag_mode) { |
| 72 | /* |
| 73 | * Bring closer parts of structure description. |
| 74 | */ |
| 75 | const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics; |
| 76 | const asn_TYPE_member_t *elm = td->elements; /* Single one */ |
| 77 | |
| 78 | /* |
| 79 | * Parts of the structure being constructed. |
| 80 | */ |
| 81 | void *st = *struct_ptr; /* Target structure. */ |
| 82 | asn_struct_ctx_t *ctx; /* Decoder context */ |
| 83 | |
| 84 | ber_tlv_tag_t tlv_tag; /* T from TLV */ |
| 85 | asn_dec_rval_t rval; /* Return code from subparsers */ |
| 86 | |
| 87 | ssize_t consumed_myself = 0; /* Consumed bytes from ptr */ |
| 88 | |
| 89 | ASN_DEBUG("Decoding %s as SET OF", td->name); |
| 90 | |
| 91 | /* |
| 92 | * Create the target structure if it is not present already. |
| 93 | */ |
| 94 | if(st == 0) { |
| 95 | st = *struct_ptr = CALLOC(1, specs->struct_size); |
| 96 | if(st == 0) { |
| 97 | RETURN(RC_FAIL); |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | /* |
| 102 | * Restore parsing context. |
| 103 | */ |
| 104 | ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset); |
| 105 | |
| 106 | /* |
| 107 | * Start to parse where left previously |
| 108 | */ |
| 109 | switch(ctx->phase) { |
| 110 | case 0: |
| 111 | /* |
| 112 | * PHASE 0. |
| 113 | * Check that the set of tags associated with given structure |
| 114 | * perfectly fits our expectations. |
| 115 | */ |
| 116 | |
| 117 | rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size, |
| 118 | tag_mode, 1, &ctx->left, 0); |
| 119 | if(rval.code != RC_OK) { |
| 120 | ASN_DEBUG("%s tagging check failed: %d", |
| 121 | td->name, rval.code); |
| 122 | return rval; |
| 123 | } |
| 124 | |
| 125 | if(ctx->left >= 0) |
| 126 | ctx->left += rval.consumed; /* ?Substracted below! */ |
| 127 | ADVANCE(rval.consumed); |
| 128 | |
| 129 | ASN_DEBUG("Structure consumes %ld bytes, " |
| 130 | "buffer %ld", (long)ctx->left, (long)size); |
| 131 | |
| 132 | NEXT_PHASE(ctx); |
| 133 | /* Fall through */ |
| 134 | case 1: |
| 135 | /* |
| 136 | * PHASE 1. |
| 137 | * From the place where we've left it previously, |
| 138 | * try to decode the next item. |
| 139 | */ |
| 140 | for(;; ctx->step = 0) { |
| 141 | ssize_t tag_len; /* Length of TLV's T */ |
| 142 | |
| 143 | if(ctx->step & 1) |
| 144 | goto microphase2; |
| 145 | |
| 146 | /* |
| 147 | * MICROPHASE 1: Synchronize decoding. |
| 148 | */ |
| 149 | |
| 150 | if(ctx->left == 0) { |
| 151 | ASN_DEBUG("End of SET OF %s", td->name); |
| 152 | /* |
| 153 | * No more things to decode. |
| 154 | * Exit out of here. |
| 155 | */ |
| 156 | PHASE_OUT(ctx); |
| 157 | RETURN(RC_OK); |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * Fetch the T from TLV. |
| 162 | */ |
| 163 | tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag); |
| 164 | switch(tag_len) { |
| 165 | case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE); |
| 166 | /* Fall through */ |
| 167 | case -1: RETURN(RC_FAIL); |
| 168 | } |
| 169 | |
| 170 | if(ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0) { |
| 171 | if(LEFT < 2) { |
| 172 | if(SIZE_VIOLATION) |
| 173 | RETURN(RC_FAIL); |
| 174 | else |
| 175 | RETURN(RC_WMORE); |
| 176 | } else if(((const uint8_t *)ptr)[1] == 0) { |
| 177 | /* |
| 178 | * Found the terminator of the |
| 179 | * indefinite length structure. |
| 180 | */ |
| 181 | break; |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | /* Outmost tag may be unknown and cannot be fetched/compared */ |
| 186 | if(elm->tag != (ber_tlv_tag_t)-1) { |
| 187 | if(BER_TAGS_EQUAL(tlv_tag, elm->tag)) { |
| 188 | /* |
| 189 | * The new list member of expected type has arrived. |
| 190 | */ |
| 191 | } else { |
| 192 | ASN_DEBUG("Unexpected tag %s fixed SET OF %s", |
| 193 | ber_tlv_tag_string(tlv_tag), td->name); |
| 194 | ASN_DEBUG("%s SET OF has tag %s", |
| 195 | td->name, ber_tlv_tag_string(elm->tag)); |
| 196 | RETURN(RC_FAIL); |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * MICROPHASE 2: Invoke the member-specific decoder. |
| 202 | */ |
| 203 | ctx->step |= 1; /* Confirm entering next microphase */ |
| 204 | microphase2: |
| 205 | |
| 206 | /* |
| 207 | * Invoke the member fetch routine according to member's type |
| 208 | */ |
| 209 | rval = elm->type->op->ber_decoder(opt_codec_ctx, |
| 210 | elm->type, &ctx->ptr, ptr, LEFT, 0); |
| 211 | ASN_DEBUG("In %s SET OF %s code %d consumed %d", |
| 212 | td->name, elm->type->name, |
| 213 | rval.code, (int)rval.consumed); |
| 214 | switch(rval.code) { |
| 215 | case RC_OK: |
| 216 | { |
| 217 | asn_anonymous_set_ *list = _A_SET_FROM_VOID(st); |
| 218 | if(ASN_SET_ADD(list, ctx->ptr) != 0) |
| 219 | RETURN(RC_FAIL); |
| 220 | else |
| 221 | ctx->ptr = 0; |
| 222 | } |
| 223 | break; |
| 224 | case RC_WMORE: /* More data expected */ |
| 225 | if(!SIZE_VIOLATION) { |
| 226 | ADVANCE(rval.consumed); |
| 227 | RETURN(RC_WMORE); |
| 228 | } |
| 229 | /* Fall through */ |
| 230 | case RC_FAIL: /* Fatal error */ |
| 231 | ASN_STRUCT_FREE(*elm->type, ctx->ptr); |
| 232 | ctx->ptr = 0; |
| 233 | RETURN(RC_FAIL); |
| 234 | } /* switch(rval) */ |
| 235 | |
| 236 | ADVANCE(rval.consumed); |
| 237 | } /* for(all list members) */ |
| 238 | |
| 239 | NEXT_PHASE(ctx); |
| 240 | case 2: |
| 241 | /* |
| 242 | * Read in all "end of content" TLVs. |
| 243 | */ |
| 244 | while(ctx->left < 0) { |
| 245 | if(LEFT < 2) { |
| 246 | if(LEFT > 0 && ((const char *)ptr)[0] != 0) { |
| 247 | /* Unexpected tag */ |
| 248 | RETURN(RC_FAIL); |
| 249 | } else { |
| 250 | RETURN(RC_WMORE); |
| 251 | } |
| 252 | } |
| 253 | if(((const char *)ptr)[0] == 0 |
| 254 | && ((const char *)ptr)[1] == 0) { |
| 255 | ADVANCE(2); |
| 256 | ctx->left++; |
| 257 | } else { |
| 258 | RETURN(RC_FAIL); |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | PHASE_OUT(ctx); |
| 263 | } |
| 264 | |
| 265 | RETURN(RC_OK); |
| 266 | } |
| 267 | |
| 268 | /* |
| 269 | * Internally visible buffer holding a single encoded element. |
| 270 | */ |
| 271 | struct _el_buffer { |
| 272 | uint8_t *buf; |
| 273 | size_t length; |
| 274 | size_t allocated_size; |
| 275 | unsigned bits_unused; |
| 276 | }; |
| 277 | /* Append bytes to the above structure */ |
| 278 | static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr) { |
| 279 | struct _el_buffer *el_buf = (struct _el_buffer *)el_buf_ptr; |
| 280 | |
| 281 | if(el_buf->length + size > el_buf->allocated_size) { |
| 282 | size_t new_size = el_buf->allocated_size ? el_buf->allocated_size : 8; |
| 283 | void *p; |
| 284 | |
| 285 | do { |
| 286 | new_size <<= 2; |
| 287 | } while(el_buf->length + size > new_size); |
| 288 | |
| 289 | p = REALLOC(el_buf->buf, new_size); |
| 290 | if(p) { |
| 291 | el_buf->buf = p; |
| 292 | el_buf->allocated_size = new_size; |
| 293 | } else { |
| 294 | return -1; |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | memcpy(el_buf->buf + el_buf->length, buffer, size); |
| 299 | |
| 300 | el_buf->length += size; |
| 301 | return 0; |
| 302 | } |
| 303 | |
| 304 | static void assert_unused_bits(const struct _el_buffer* p) { |
| 305 | if(p->length) { |
| 306 | assert((p->buf[p->length-1] & ~(0xff << p->bits_unused)) == 0); |
| 307 | } else { |
| 308 | assert(p->bits_unused == 0); |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | static int _el_buf_cmp(const void *ap, const void *bp) { |
| 313 | const struct _el_buffer *a = (const struct _el_buffer *)ap; |
| 314 | const struct _el_buffer *b = (const struct _el_buffer *)bp; |
| 315 | size_t common_len; |
| 316 | int ret = 0; |
| 317 | |
| 318 | if(a->length < b->length) |
| 319 | common_len = a->length; |
| 320 | else |
| 321 | common_len = b->length; |
| 322 | |
| 323 | if (a->buf && b->buf) { |
| 324 | ret = memcmp(a->buf, b->buf, common_len); |
| 325 | } |
| 326 | if(ret == 0) { |
| 327 | if(a->length < b->length) |
| 328 | ret = -1; |
| 329 | else if(a->length > b->length) |
| 330 | ret = 1; |
| 331 | /* Ignore unused bits. */ |
| 332 | assert_unused_bits(a); |
| 333 | assert_unused_bits(b); |
| 334 | } |
| 335 | |
| 336 | return ret; |
| 337 | } |
| 338 | |
| 339 | static void |
| 340 | SET_OF__encode_sorted_free(struct _el_buffer *el_buf, size_t count) { |
| 341 | size_t i; |
| 342 | |
| 343 | for(i = 0; i < count; i++) { |
| 344 | FREEMEM(el_buf[i].buf); |
| 345 | } |
| 346 | |
| 347 | FREEMEM(el_buf); |
| 348 | } |
| 349 | |
| 350 | enum SET_OF__encode_method { |
| 351 | SOES_DER, /* Distinguished Encoding Rules */ |
| 352 | SOES_CUPER /* Canonical Unaligned Packed Encoding Rules */ |
| 353 | }; |
| 354 | |
| 355 | static struct _el_buffer * |
| 356 | SET_OF__encode_sorted(const asn_TYPE_member_t *elm, |
| 357 | const asn_anonymous_set_ *list, |
| 358 | enum SET_OF__encode_method method) { |
| 359 | struct _el_buffer *encoded_els; |
| 360 | int edx; |
| 361 | |
| 362 | encoded_els = |
| 363 | (struct _el_buffer *)CALLOC(list->count, sizeof(encoded_els[0])); |
| 364 | if(encoded_els == NULL) { |
| 365 | return NULL; |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * Encode all members. |
| 370 | */ |
| 371 | for(edx = 0; edx < list->count; edx++) { |
| 372 | const void *memb_ptr = list->array[edx]; |
| 373 | struct _el_buffer *encoding_el = &encoded_els[edx]; |
| 374 | asn_enc_rval_t erval = {0,0,0}; |
| 375 | |
| 376 | if(!memb_ptr) break; |
| 377 | |
| 378 | /* |
| 379 | * Encode the member into the prepared space. |
| 380 | */ |
| 381 | switch(method) { |
| 382 | case SOES_DER: |
| 383 | erval = elm->type->op->der_encoder(elm->type, memb_ptr, 0, elm->tag, |
| 384 | _el_addbytes, encoding_el); |
| 385 | break; |
| 386 | case SOES_CUPER: |
| 387 | erval = uper_encode(elm->type, |
| 388 | elm->encoding_constraints.per_constraints, |
| 389 | memb_ptr, _el_addbytes, encoding_el); |
| 390 | if(erval.encoded != -1) { |
| 391 | size_t extra_bits = erval.encoded % 8; |
| 392 | assert(encoding_el->length == (size_t)(erval.encoded + 7) / 8); |
| 393 | encoding_el->bits_unused = (8 - extra_bits) & 0x7; |
| 394 | } |
| 395 | break; |
| 396 | default: |
| 397 | assert(!"Unreachable"); |
| 398 | break; |
| 399 | } |
| 400 | if(erval.encoded < 0) break; |
| 401 | } |
| 402 | |
| 403 | if(edx == list->count) { |
| 404 | /* |
| 405 | * Sort the encoded elements according to their encoding. |
| 406 | */ |
| 407 | qsort(encoded_els, list->count, sizeof(encoded_els[0]), _el_buf_cmp); |
| 408 | |
| 409 | return encoded_els; |
| 410 | } else { |
| 411 | SET_OF__encode_sorted_free(encoded_els, edx); |
| 412 | return NULL; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | |
| 417 | /* |
| 418 | * The DER encoder of the SET OF type. |
| 419 | */ |
| 420 | asn_enc_rval_t |
| 421 | SET_OF_encode_der(const asn_TYPE_descriptor_t *td, const void *sptr, |
| 422 | int tag_mode, ber_tlv_tag_t tag, asn_app_consume_bytes_f *cb, |
| 423 | void *app_key) { |
| 424 | const asn_TYPE_member_t *elm = td->elements; |
| 425 | const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr); |
| 426 | size_t computed_size = 0; |
| 427 | ssize_t encoding_size = 0; |
| 428 | struct _el_buffer *encoded_els; |
| 429 | int edx; |
| 430 | |
| 431 | ASN_DEBUG("Estimating size for SET OF %s", td->name); |
| 432 | |
| 433 | /* |
| 434 | * Gather the length of the underlying members sequence. |
| 435 | */ |
| 436 | for(edx = 0; edx < list->count; edx++) { |
| 437 | void *memb_ptr = list->array[edx]; |
| 438 | asn_enc_rval_t erval = {0,0,0}; |
| 439 | |
| 440 | if(!memb_ptr) ASN__ENCODE_FAILED; |
| 441 | |
| 442 | erval = |
| 443 | elm->type->op->der_encoder(elm->type, memb_ptr, 0, elm->tag, 0, 0); |
| 444 | if(erval.encoded == -1) return erval; |
| 445 | computed_size += erval.encoded; |
| 446 | } |
| 447 | |
| 448 | |
| 449 | /* |
| 450 | * Encode the TLV for the sequence itself. |
| 451 | */ |
| 452 | encoding_size = |
| 453 | der_write_tags(td, computed_size, tag_mode, 1, tag, cb, app_key); |
| 454 | if(encoding_size < 0) { |
| 455 | ASN__ENCODE_FAILED; |
| 456 | } |
| 457 | computed_size += encoding_size; |
| 458 | |
| 459 | if(!cb || list->count == 0) { |
| 460 | asn_enc_rval_t erval = {0,0,0}; |
| 461 | erval.encoded = computed_size; |
| 462 | ASN__ENCODED_OK(erval); |
| 463 | } |
| 464 | |
| 465 | ASN_DEBUG("Encoding members of %s SET OF", td->name); |
| 466 | |
| 467 | /* |
| 468 | * DER mandates dynamic sorting of the SET OF elements |
| 469 | * according to their encodings. Build an array of the |
| 470 | * encoded elements. |
| 471 | */ |
| 472 | encoded_els = SET_OF__encode_sorted(elm, list, SOES_DER); |
| 473 | |
| 474 | /* |
| 475 | * Report encoded elements to the application. |
| 476 | * Dispose of temporary sorted members table. |
| 477 | */ |
| 478 | for(edx = 0; edx < list->count; edx++) { |
| 479 | struct _el_buffer *encoded_el = &encoded_els[edx]; |
| 480 | /* Report encoded chunks to the application */ |
| 481 | if(cb(encoded_el->buf, encoded_el->length, app_key) < 0) { |
| 482 | break; |
| 483 | } else { |
| 484 | encoding_size += encoded_el->length; |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | SET_OF__encode_sorted_free(encoded_els, list->count); |
| 489 | |
| 490 | if(edx == list->count) { |
| 491 | asn_enc_rval_t erval = {0,0,0}; |
| 492 | assert(computed_size == (size_t)encoding_size); |
| 493 | erval.encoded = computed_size; |
| 494 | ASN__ENCODED_OK(erval); |
| 495 | } else { |
| 496 | ASN__ENCODE_FAILED; |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | #undef XER_ADVANCE |
| 501 | #define XER_ADVANCE(num_bytes) do { \ |
| 502 | size_t num = num_bytes; \ |
| 503 | buf_ptr = ((const char *)buf_ptr) + num;\ |
| 504 | size -= num; \ |
| 505 | consumed_myself += num; \ |
| 506 | } while(0) |
| 507 | |
| 508 | /* |
| 509 | * Decode the XER (XML) data. |
| 510 | */ |
| 511 | asn_dec_rval_t |
| 512 | SET_OF_decode_xer(const asn_codec_ctx_t *opt_codec_ctx, |
| 513 | const asn_TYPE_descriptor_t *td, void **struct_ptr, |
| 514 | const char *opt_mname, const void *buf_ptr, size_t size) { |
| 515 | /* |
| 516 | * Bring closer parts of structure description. |
| 517 | */ |
| 518 | const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics; |
| 519 | const asn_TYPE_member_t *element = td->elements; |
| 520 | const char *elm_tag; |
| 521 | const char *xml_tag = opt_mname ? opt_mname : td->xml_tag; |
| 522 | |
| 523 | /* |
| 524 | * ... and parts of the structure being constructed. |
| 525 | */ |
| 526 | void *st = *struct_ptr; /* Target structure. */ |
| 527 | asn_struct_ctx_t *ctx; /* Decoder context */ |
| 528 | |
| 529 | asn_dec_rval_t rval = {RC_OK, 0};/* Return value from a decoder */ |
| 530 | ssize_t consumed_myself = 0; /* Consumed bytes from ptr */ |
| 531 | |
| 532 | /* |
| 533 | * Create the target structure if it is not present already. |
| 534 | */ |
| 535 | if(st == 0) { |
| 536 | st = *struct_ptr = CALLOC(1, specs->struct_size); |
| 537 | if(st == 0) RETURN(RC_FAIL); |
| 538 | } |
| 539 | |
| 540 | /* Which tag is expected for the downstream */ |
| 541 | if(specs->as_XMLValueList) { |
| 542 | elm_tag = (specs->as_XMLValueList == 1) ? 0 : ""; |
| 543 | } else { |
| 544 | elm_tag = (*element->name) |
| 545 | ? element->name : element->type->xml_tag; |
| 546 | } |
| 547 | |
| 548 | /* |
| 549 | * Restore parsing context. |
| 550 | */ |
| 551 | ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset); |
| 552 | |
| 553 | /* |
| 554 | * Phases of XER/XML processing: |
| 555 | * Phase 0: Check that the opening tag matches our expectations. |
| 556 | * Phase 1: Processing body and reacting on closing tag. |
| 557 | * Phase 2: Processing inner type. |
| 558 | */ |
| 559 | for(; ctx->phase <= 2;) { |
| 560 | pxer_chunk_type_e ch_type; /* XER chunk type */ |
| 561 | ssize_t ch_size; /* Chunk size */ |
| 562 | xer_check_tag_e tcv; /* Tag check value */ |
| 563 | |
| 564 | /* |
| 565 | * Go inside the inner member of a set. |
| 566 | */ |
| 567 | if(ctx->phase == 2) { |
| 568 | asn_dec_rval_t tmprval = {RC_OK, 0}; |
| 569 | |
| 570 | /* Invoke the inner type decoder, m.b. multiple times */ |
| 571 | ASN_DEBUG("XER/SET OF element [%s]", elm_tag); |
| 572 | tmprval = element->type->op->xer_decoder(opt_codec_ctx, |
| 573 | element->type, &ctx->ptr, elm_tag, |
| 574 | buf_ptr, size); |
| 575 | if(tmprval.code == RC_OK) { |
| 576 | asn_anonymous_set_ *list = _A_SET_FROM_VOID(st); |
| 577 | if(ASN_SET_ADD(list, ctx->ptr) != 0) |
| 578 | RETURN(RC_FAIL); |
| 579 | ctx->ptr = 0; |
| 580 | XER_ADVANCE(tmprval.consumed); |
| 581 | } else { |
| 582 | XER_ADVANCE(tmprval.consumed); |
| 583 | RETURN(tmprval.code); |
| 584 | } |
| 585 | ctx->phase = 1; /* Back to body processing */ |
| 586 | ASN_DEBUG("XER/SET OF phase => %d", ctx->phase); |
| 587 | /* Fall through */ |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * Get the next part of the XML stream. |
| 592 | */ |
| 593 | ch_size = xer_next_token(&ctx->context, |
| 594 | buf_ptr, size, &ch_type); |
| 595 | if(ch_size == -1) { |
| 596 | RETURN(RC_FAIL); |
| 597 | } else { |
| 598 | switch(ch_type) { |
| 599 | case PXER_WMORE: |
| 600 | RETURN(RC_WMORE); |
| 601 | case PXER_COMMENT: /* Got XML comment */ |
| 602 | case PXER_TEXT: /* Ignore free-standing text */ |
| 603 | XER_ADVANCE(ch_size); /* Skip silently */ |
| 604 | continue; |
| 605 | case PXER_TAG: |
| 606 | break; /* Check the rest down there */ |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | tcv = xer_check_tag(buf_ptr, ch_size, xml_tag); |
| 611 | ASN_DEBUG("XER/SET OF: tcv = %d, ph=%d t=%s", |
| 612 | tcv, ctx->phase, xml_tag); |
| 613 | switch(tcv) { |
| 614 | case XCT_CLOSING: |
| 615 | if(ctx->phase == 0) break; |
| 616 | ctx->phase = 0; |
| 617 | /* Fall through */ |
| 618 | case XCT_BOTH: |
| 619 | if(ctx->phase == 0) { |
| 620 | /* No more things to decode */ |
| 621 | XER_ADVANCE(ch_size); |
| 622 | ctx->phase = 3; /* Phase out */ |
| 623 | RETURN(RC_OK); |
| 624 | } |
| 625 | /* Fall through */ |
| 626 | case XCT_OPENING: |
| 627 | if(ctx->phase == 0) { |
| 628 | XER_ADVANCE(ch_size); |
| 629 | ctx->phase = 1; /* Processing body phase */ |
| 630 | continue; |
| 631 | } |
| 632 | /* Fall through */ |
| 633 | case XCT_UNKNOWN_OP: |
| 634 | case XCT_UNKNOWN_BO: |
| 635 | |
| 636 | ASN_DEBUG("XER/SET OF: tcv=%d, ph=%d", tcv, ctx->phase); |
| 637 | if(ctx->phase == 1) { |
| 638 | /* |
| 639 | * Process a single possible member. |
| 640 | */ |
| 641 | ctx->phase = 2; |
| 642 | continue; |
| 643 | } |
| 644 | /* Fall through */ |
| 645 | default: |
| 646 | break; |
| 647 | } |
| 648 | |
| 649 | ASN_DEBUG("Unexpected XML tag in SET OF"); |
| 650 | break; |
| 651 | } |
| 652 | |
| 653 | ctx->phase = 3; /* "Phase out" on hard failure */ |
| 654 | RETURN(RC_FAIL); |
| 655 | } |
| 656 | |
| 657 | |
| 658 | |
| 659 | typedef struct xer_tmp_enc_s { |
| 660 | void *buffer; |
| 661 | size_t offset; |
| 662 | size_t size; |
| 663 | } xer_tmp_enc_t; |
| 664 | static int |
| 665 | SET_OF_encode_xer_callback(const void *buffer, size_t size, void *key) { |
| 666 | xer_tmp_enc_t *t = (xer_tmp_enc_t *)key; |
| 667 | if(t->offset + size >= t->size) { |
| 668 | size_t newsize = (t->size << 2) + size; |
| 669 | void *p = REALLOC(t->buffer, newsize); |
| 670 | if(!p) return -1; |
| 671 | t->buffer = p; |
| 672 | t->size = newsize; |
| 673 | } |
| 674 | memcpy((char *)t->buffer + t->offset, buffer, size); |
| 675 | t->offset += size; |
| 676 | return 0; |
| 677 | } |
| 678 | static int |
| 679 | SET_OF_xer_order(const void *aptr, const void *bptr) { |
| 680 | const xer_tmp_enc_t *a = (const xer_tmp_enc_t *)aptr; |
| 681 | const xer_tmp_enc_t *b = (const xer_tmp_enc_t *)bptr; |
| 682 | size_t minlen = a->offset; |
| 683 | int ret; |
| 684 | if(b->offset < minlen) minlen = b->offset; |
| 685 | /* Well-formed UTF-8 has this nice lexicographical property... */ |
| 686 | ret = memcmp(a->buffer, b->buffer, minlen); |
| 687 | if(ret != 0) return ret; |
| 688 | if(a->offset == b->offset) |
| 689 | return 0; |
| 690 | if(a->offset == minlen) |
| 691 | return -1; |
| 692 | return 1; |
| 693 | } |
| 694 | |
| 695 | |
| 696 | asn_enc_rval_t |
| 697 | SET_OF_encode_xer(const asn_TYPE_descriptor_t *td, const void *sptr, int ilevel, |
| 698 | enum xer_encoder_flags_e flags, asn_app_consume_bytes_f *cb, |
| 699 | void *app_key) { |
| 700 | asn_enc_rval_t er = {0,0,0}; |
| 701 | const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics; |
| 702 | const asn_TYPE_member_t *elm = td->elements; |
| 703 | const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr); |
| 704 | const char *mname = specs->as_XMLValueList |
| 705 | ? 0 : ((*elm->name) ? elm->name : elm->type->xml_tag); |
| 706 | size_t mlen = mname ? strlen(mname) : 0; |
| 707 | int xcan = (flags & XER_F_CANONICAL); |
| 708 | xer_tmp_enc_t *encs = 0; |
| 709 | size_t encs_count = 0; |
| 710 | void *original_app_key = app_key; |
| 711 | asn_app_consume_bytes_f *original_cb = cb; |
| 712 | int i; |
| 713 | |
| 714 | if(!sptr) ASN__ENCODE_FAILED; |
| 715 | |
| 716 | if(xcan) { |
| 717 | encs = (xer_tmp_enc_t *)MALLOC(list->count * sizeof(encs[0])); |
| 718 | if(!encs) ASN__ENCODE_FAILED; |
| 719 | cb = SET_OF_encode_xer_callback; |
| 720 | } |
| 721 | |
| 722 | er.encoded = 0; |
| 723 | |
| 724 | for(i = 0; i < list->count; i++) { |
| 725 | asn_enc_rval_t tmper = {0,0,0}; |
| 726 | |
| 727 | void *memb_ptr = list->array[i]; |
| 728 | if(!memb_ptr) continue; |
| 729 | |
| 730 | if(encs) { |
| 731 | memset(&encs[encs_count], 0, sizeof(encs[0])); |
| 732 | app_key = &encs[encs_count]; |
| 733 | encs_count++; |
| 734 | } |
| 735 | |
| 736 | if(mname) { |
| 737 | if(!xcan) ASN__TEXT_INDENT(1, ilevel); |
| 738 | ASN__CALLBACK3("<", 1, mname, mlen, ">", 1); |
| 739 | } |
| 740 | |
| 741 | if(!xcan && specs->as_XMLValueList == 1) |
| 742 | ASN__TEXT_INDENT(1, ilevel + 1); |
| 743 | tmper = elm->type->op->xer_encoder(elm->type, memb_ptr, |
| 744 | ilevel + (specs->as_XMLValueList != 2), |
| 745 | flags, cb, app_key); |
| 746 | if(tmper.encoded == -1) return tmper; |
| 747 | er.encoded += tmper.encoded; |
| 748 | if(tmper.encoded == 0 && specs->as_XMLValueList) { |
| 749 | const char *name = elm->type->xml_tag; |
| 750 | size_t len = strlen(name); |
| 751 | ASN__CALLBACK3("<", 1, name, len, "/>", 2); |
| 752 | } |
| 753 | |
| 754 | if(mname) { |
| 755 | ASN__CALLBACK3("</", 2, mname, mlen, ">", 1); |
| 756 | } |
| 757 | |
| 758 | } |
| 759 | |
| 760 | if(!xcan) ASN__TEXT_INDENT(1, ilevel - 1); |
| 761 | |
| 762 | if(encs) { |
| 763 | xer_tmp_enc_t *enc = encs; |
| 764 | xer_tmp_enc_t *end = encs + encs_count; |
| 765 | ssize_t control_size = 0; |
| 766 | |
| 767 | er.encoded = 0; |
| 768 | cb = original_cb; |
| 769 | app_key = original_app_key; |
| 770 | qsort(encs, encs_count, sizeof(encs[0]), SET_OF_xer_order); |
| 771 | |
| 772 | for(; enc < end; enc++) { |
| 773 | ASN__CALLBACK(enc->buffer, enc->offset); |
| 774 | FREEMEM(enc->buffer); |
| 775 | enc->buffer = 0; |
| 776 | control_size += enc->offset; |
| 777 | } |
| 778 | assert(control_size == er.encoded); |
| 779 | } |
| 780 | |
| 781 | goto cleanup; |
| 782 | cb_failed: |
| 783 | ASN__ENCODE_FAILED; |
| 784 | cleanup: |
| 785 | if(encs) { |
| 786 | size_t n; |
| 787 | for(n = 0; n < encs_count; n++) { |
| 788 | FREEMEM(encs[n].buffer); |
| 789 | } |
| 790 | FREEMEM(encs); |
| 791 | } |
| 792 | ASN__ENCODED_OK(er); |
| 793 | } |
| 794 | |
| 795 | int |
| 796 | SET_OF_print(const asn_TYPE_descriptor_t *td, const void *sptr, int ilevel, |
| 797 | asn_app_consume_bytes_f *cb, void *app_key) { |
| 798 | asn_TYPE_member_t *elm = td->elements; |
| 799 | const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr); |
| 800 | int ret; |
| 801 | int i; |
| 802 | |
| 803 | if(!sptr) return (cb("<absent>", 8, app_key) < 0) ? -1 : 0; |
| 804 | |
| 805 | /* Dump preamble */ |
| 806 | if(cb(td->name, strlen(td->name), app_key) < 0 |
| 807 | || cb(" ::= {", 6, app_key) < 0) |
| 808 | return -1; |
| 809 | |
| 810 | for(i = 0; i < list->count; i++) { |
| 811 | const void *memb_ptr = list->array[i]; |
| 812 | if(!memb_ptr) continue; |
| 813 | |
| 814 | _i_INDENT(1); |
| 815 | |
| 816 | ret = elm->type->op->print_struct(elm->type, memb_ptr, |
| 817 | ilevel + 1, cb, app_key); |
| 818 | if(ret) return ret; |
| 819 | } |
| 820 | |
| 821 | ilevel--; |
| 822 | _i_INDENT(1); |
| 823 | |
| 824 | return (cb("}", 1, app_key) < 0) ? -1 : 0; |
| 825 | } |
| 826 | |
| 827 | void |
| 828 | SET_OF_free(const asn_TYPE_descriptor_t *td, void *ptr, |
| 829 | enum asn_struct_free_method method) { |
| 830 | if(td && ptr) { |
| 831 | const asn_SET_OF_specifics_t *specs; |
| 832 | asn_TYPE_member_t *elm = td->elements; |
| 833 | asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr); |
| 834 | asn_struct_ctx_t *ctx; /* Decoder context */ |
| 835 | int i; |
| 836 | |
| 837 | /* |
| 838 | * Could not use set_of_empty() because of (*free) |
| 839 | * incompatibility. |
| 840 | */ |
| 841 | for(i = 0; i < list->count; i++) { |
| 842 | void *memb_ptr = list->array[i]; |
| 843 | if(memb_ptr) |
| 844 | ASN_STRUCT_FREE(*elm->type, memb_ptr); |
| 845 | } |
| 846 | list->count = 0; /* No meaningful elements left */ |
| 847 | |
| 848 | asn_set_empty(list); /* Remove (list->array) */ |
| 849 | |
| 850 | specs = (const asn_SET_OF_specifics_t *)td->specifics; |
| 851 | ctx = (asn_struct_ctx_t *)((char *)ptr + specs->ctx_offset); |
| 852 | if(ctx->ptr) { |
| 853 | ASN_STRUCT_FREE(*elm->type, ctx->ptr); |
| 854 | ctx->ptr = 0; |
| 855 | } |
| 856 | |
| 857 | switch(method) { |
| 858 | case ASFM_FREE_EVERYTHING: |
| 859 | FREEMEM(ptr); |
| 860 | break; |
| 861 | case ASFM_FREE_UNDERLYING: |
| 862 | break; |
| 863 | case ASFM_FREE_UNDERLYING_AND_RESET: |
| 864 | memset(ptr, 0, specs->struct_size); |
| 865 | break; |
| 866 | } |
| 867 | } |
| 868 | } |
| 869 | |
| 870 | int |
| 871 | SET_OF_constraint(const asn_TYPE_descriptor_t *td, const void *sptr, |
| 872 | asn_app_constraint_failed_f *ctfailcb, void *app_key) { |
| 873 | const asn_TYPE_member_t *elm = td->elements; |
| 874 | asn_constr_check_f *constr; |
| 875 | const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr); |
| 876 | int i; |
| 877 | |
| 878 | if(!sptr) { |
| 879 | ASN__CTFAIL(app_key, td, sptr, |
| 880 | "%s: value not given (%s:%d)", |
| 881 | td->name, __FILE__, __LINE__); |
| 882 | return -1; |
| 883 | } |
| 884 | |
| 885 | constr = elm->encoding_constraints.general_constraints; |
| 886 | if(!constr) constr = elm->type->encoding_constraints.general_constraints; |
| 887 | |
| 888 | /* |
| 889 | * Iterate over the members of an array. |
| 890 | * Validate each in turn, until one fails. |
| 891 | */ |
| 892 | for(i = 0; i < list->count; i++) { |
| 893 | const void *memb_ptr = list->array[i]; |
| 894 | int ret; |
| 895 | |
| 896 | if(!memb_ptr) continue; |
| 897 | |
| 898 | ret = constr(elm->type, memb_ptr, ctfailcb, app_key); |
| 899 | if(ret) return ret; |
| 900 | } |
| 901 | |
| 902 | return 0; |
| 903 | } |
| 904 | |
| 905 | #ifndef ASN_DISABLE_PER_SUPPORT |
| 906 | |
| 907 | asn_dec_rval_t |
| 908 | SET_OF_decode_uper(const asn_codec_ctx_t *opt_codec_ctx, |
| 909 | const asn_TYPE_descriptor_t *td, |
| 910 | const asn_per_constraints_t *constraints, void **sptr, |
| 911 | asn_per_data_t *pd) { |
| 912 | asn_dec_rval_t rv = {RC_OK, 0}; |
| 913 | const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics; |
| 914 | const asn_TYPE_member_t *elm = td->elements; /* Single one */ |
| 915 | void *st = *sptr; |
| 916 | asn_anonymous_set_ *list; |
| 917 | const asn_per_constraint_t *ct; |
| 918 | int repeat = 0; |
| 919 | ssize_t nelems; |
| 920 | |
| 921 | if(ASN__STACK_OVERFLOW_CHECK(opt_codec_ctx)) |
| 922 | ASN__DECODE_FAILED; |
| 923 | |
| 924 | /* |
| 925 | * Create the target structure if it is not present already. |
| 926 | */ |
| 927 | if(!st) { |
| 928 | st = *sptr = CALLOC(1, specs->struct_size); |
| 929 | if(!st) ASN__DECODE_FAILED; |
| 930 | } |
| 931 | list = _A_SET_FROM_VOID(st); |
| 932 | |
| 933 | /* Figure out which constraints to use */ |
| 934 | if(constraints) ct = &constraints->size; |
| 935 | else if(td->encoding_constraints.per_constraints) |
| 936 | ct = &td->encoding_constraints.per_constraints->size; |
| 937 | else ct = 0; |
| 938 | |
| 939 | if(ct && ct->flags & APC_EXTENSIBLE) { |
| 940 | int value = per_get_few_bits(pd, 1); |
| 941 | if(value < 0) ASN__DECODE_STARVED; |
| 942 | if(value) ct = 0; /* Not restricted! */ |
| 943 | } |
| 944 | |
| 945 | if(ct && ct->effective_bits >= 0) { |
| 946 | /* X.691, #19.5: No length determinant */ |
| 947 | nelems = per_get_few_bits(pd, ct->effective_bits); |
| 948 | ASN_DEBUG("Preparing to fetch %ld+%ld elements from %s", |
| 949 | (long)nelems, ct->lower_bound, td->name); |
| 950 | if(nelems < 0) ASN__DECODE_STARVED; |
| 951 | nelems += ct->lower_bound; |
| 952 | } else { |
| 953 | nelems = -1; |
| 954 | } |
| 955 | |
| 956 | do { |
| 957 | int i; |
| 958 | if(nelems < 0) { |
| 959 | nelems = uper_get_length(pd, -1, 0, &repeat); |
| 960 | ASN_DEBUG("Got to decode %" ASN_PRI_SSIZE " elements (eff %d)", |
| 961 | nelems, (int)(ct ? ct->effective_bits : -1)); |
| 962 | if(nelems < 0) ASN__DECODE_STARVED; |
| 963 | } |
| 964 | |
| 965 | for(i = 0; i < nelems; i++) { |
| 966 | void *ptr = 0; |
| 967 | ASN_DEBUG("SET OF %s decoding", elm->type->name); |
| 968 | rv = elm->type->op->uper_decoder(opt_codec_ctx, elm->type, |
| 969 | elm->encoding_constraints.per_constraints, &ptr, pd); |
| 970 | ASN_DEBUG("%s SET OF %s decoded %d, %p", |
| 971 | td->name, elm->type->name, rv.code, ptr); |
| 972 | if(rv.code == RC_OK) { |
| 973 | if(ASN_SET_ADD(list, ptr) == 0) { |
| 974 | if(rv.consumed == 0 && nelems > 200) { |
| 975 | /* Protect from SET OF NULL compression bombs. */ |
| 976 | ASN__DECODE_FAILED; |
| 977 | } |
| 978 | continue; |
| 979 | } |
| 980 | ASN_DEBUG("Failed to add element into %s", |
| 981 | td->name); |
| 982 | /* Fall through */ |
| 983 | rv.code = RC_FAIL; |
| 984 | } else { |
| 985 | ASN_DEBUG("Failed decoding %s of %s (SET OF)", |
| 986 | elm->type->name, td->name); |
| 987 | } |
| 988 | if(ptr) ASN_STRUCT_FREE(*elm->type, ptr); |
| 989 | return rv; |
| 990 | } |
| 991 | |
| 992 | nelems = -1; /* Allow uper_get_length() */ |
| 993 | } while(repeat); |
| 994 | |
| 995 | ASN_DEBUG("Decoded %s as SET OF", td->name); |
| 996 | |
| 997 | rv.code = RC_OK; |
| 998 | rv.consumed = 0; |
| 999 | return rv; |
| 1000 | } |
| 1001 | |
| 1002 | asn_enc_rval_t |
| 1003 | SET_OF_encode_uper(const asn_TYPE_descriptor_t *td, |
| 1004 | const asn_per_constraints_t *constraints, const void *sptr, |
| 1005 | asn_per_outp_t *po) { |
| 1006 | const asn_anonymous_set_ *list; |
| 1007 | const asn_per_constraint_t *ct; |
| 1008 | const asn_TYPE_member_t *elm = td->elements; |
| 1009 | struct _el_buffer *encoded_els; |
| 1010 | asn_enc_rval_t er = {0,0,0}; |
| 1011 | size_t encoded_edx; |
| 1012 | |
| 1013 | if(!sptr) ASN__ENCODE_FAILED; |
| 1014 | |
| 1015 | list = _A_CSET_FROM_VOID(sptr); |
| 1016 | |
| 1017 | er.encoded = 0; |
| 1018 | |
| 1019 | ASN_DEBUG("Encoding %s as SEQUENCE OF (%d)", td->name, list->count); |
| 1020 | |
| 1021 | if(constraints) ct = &constraints->size; |
| 1022 | else if(td->encoding_constraints.per_constraints) |
| 1023 | ct = &td->encoding_constraints.per_constraints->size; |
| 1024 | else ct = 0; |
| 1025 | |
| 1026 | /* If extensible constraint, check if size is in root */ |
| 1027 | if(ct) { |
| 1028 | int not_in_root = |
| 1029 | (list->count < ct->lower_bound || list->count > ct->upper_bound); |
| 1030 | ASN_DEBUG("lb %ld ub %ld %s", ct->lower_bound, ct->upper_bound, |
| 1031 | ct->flags & APC_EXTENSIBLE ? "ext" : "fix"); |
| 1032 | if(ct->flags & APC_EXTENSIBLE) { |
| 1033 | /* Declare whether size is in extension root */ |
| 1034 | if(per_put_few_bits(po, not_in_root, 1)) ASN__ENCODE_FAILED; |
| 1035 | if(not_in_root) ct = 0; |
| 1036 | } else if(not_in_root && ct->effective_bits >= 0) { |
| 1037 | ASN__ENCODE_FAILED; |
| 1038 | } |
| 1039 | |
| 1040 | } |
| 1041 | |
| 1042 | if(ct && ct->effective_bits >= 0) { |
| 1043 | /* X.691, #19.5: No length determinant */ |
| 1044 | if(per_put_few_bits(po, list->count - ct->lower_bound, |
| 1045 | ct->effective_bits)) |
| 1046 | ASN__ENCODE_FAILED; |
| 1047 | } else if(list->count == 0) { |
| 1048 | /* When the list is empty add only the length determinant |
| 1049 | * X.691, #20.6 and #11.9.4.1 |
| 1050 | */ |
| 1051 | if (uper_put_length(po, 0, 0)) { |
| 1052 | ASN__ENCODE_FAILED; |
| 1053 | } |
| 1054 | ASN__ENCODED_OK(er); |
| 1055 | } |
| 1056 | |
| 1057 | |
| 1058 | /* |
| 1059 | * Canonical UPER #22.1 mandates dynamic sorting of the SET OF elements |
| 1060 | * according to their encodings. Build an array of the encoded elements. |
| 1061 | */ |
| 1062 | encoded_els = SET_OF__encode_sorted(elm, list, SOES_CUPER); |
| 1063 | |
| 1064 | for(encoded_edx = 0; (ssize_t)encoded_edx < list->count;) { |
| 1065 | ssize_t may_encode; |
| 1066 | size_t edx; |
| 1067 | int need_eom = 0; |
| 1068 | |
| 1069 | if(ct && ct->effective_bits >= 0) { |
| 1070 | may_encode = list->count; |
| 1071 | } else { |
| 1072 | may_encode = |
| 1073 | uper_put_length(po, list->count - encoded_edx, &need_eom); |
| 1074 | if(may_encode < 0) ASN__ENCODE_FAILED; |
| 1075 | } |
| 1076 | |
| 1077 | for(edx = encoded_edx; edx < encoded_edx + may_encode; edx++) { |
| 1078 | const struct _el_buffer *el = &encoded_els[edx]; |
| 1079 | if(asn_put_many_bits(po, el->buf, |
| 1080 | (8 * el->length) - el->bits_unused) < 0) { |
| 1081 | break; |
| 1082 | } |
| 1083 | } |
| 1084 | |
| 1085 | if(need_eom && uper_put_length(po, 0, 0)) |
| 1086 | ASN__ENCODE_FAILED; /* End of Message length */ |
| 1087 | |
| 1088 | encoded_edx += may_encode; |
| 1089 | } |
| 1090 | |
| 1091 | SET_OF__encode_sorted_free(encoded_els, list->count); |
| 1092 | |
| 1093 | if((ssize_t)encoded_edx == list->count) { |
| 1094 | ASN__ENCODED_OK(er); |
| 1095 | } else { |
| 1096 | ASN__ENCODE_FAILED; |
| 1097 | } |
| 1098 | } |
| 1099 | |
| 1100 | asn_dec_rval_t |
| 1101 | SET_OF_decode_aper(const asn_codec_ctx_t *opt_codec_ctx, |
| 1102 | const asn_TYPE_descriptor_t *td, |
| 1103 | const asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { |
| 1104 | asn_dec_rval_t rv = {RC_OK, 0}; |
| 1105 | const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics; |
| 1106 | const asn_TYPE_member_t *elm = td->elements; /* Single one */ |
| 1107 | void *st = *sptr; |
| 1108 | asn_anonymous_set_ *list; |
| 1109 | const asn_per_constraint_t *ct; |
| 1110 | int repeat = 0; |
| 1111 | ssize_t nelems; |
| 1112 | |
| 1113 | if(ASN__STACK_OVERFLOW_CHECK(opt_codec_ctx)) |
| 1114 | ASN__DECODE_FAILED; |
| 1115 | |
| 1116 | /* |
| 1117 | * Create the target structure if it is not present already. |
| 1118 | */ |
| 1119 | if(!st) { |
| 1120 | st = *sptr = CALLOC(1, specs->struct_size); |
| 1121 | if(!st) ASN__DECODE_FAILED; |
| 1122 | } |
| 1123 | list = _A_SET_FROM_VOID(st); |
| 1124 | |
| 1125 | /* Figure out which constraints to use */ |
| 1126 | if(constraints) ct = &constraints->size; |
| 1127 | else if(td->encoding_constraints.per_constraints) |
| 1128 | ct = &td->encoding_constraints.per_constraints->size; |
| 1129 | else ct = 0; |
| 1130 | |
| 1131 | if(ct && ct->flags & APC_EXTENSIBLE) { |
| 1132 | int value = per_get_few_bits(pd, 1); |
| 1133 | if(value < 0) ASN__DECODE_STARVED; |
| 1134 | if(value) ct = 0; /* Not restricted! */ |
| 1135 | } |
| 1136 | |
| 1137 | if(ct && ct->effective_bits >= 0) { |
| 1138 | /* X.691, #19.5: No length determinant */ |
| 1139 | nelems = aper_get_nsnnwn(pd, ct->upper_bound - ct->lower_bound + 1); |
| 1140 | ASN_DEBUG("Preparing to fetch %ld+%ld elements from %s", |
| 1141 | (long)nelems, ct->lower_bound, td->name); |
| 1142 | if(nelems < 0) ASN__DECODE_STARVED; |
| 1143 | nelems += ct->lower_bound; |
| 1144 | } else { |
| 1145 | nelems = -1; |
| 1146 | } |
| 1147 | |
| 1148 | do { |
| 1149 | int i; |
| 1150 | if(nelems < 0) { |
| 1151 | nelems = aper_get_length(pd, ct ? ct->upper_bound - ct->lower_bound + 1 : -1, |
| 1152 | ct ? ct->effective_bits : -1, &repeat); |
| 1153 | ASN_DEBUG("Got to decode %d elements (eff %d)", |
| 1154 | (int)nelems, (int)(ct ? ct->effective_bits : -1)); |
| 1155 | if(nelems < 0) ASN__DECODE_STARVED; |
| 1156 | } |
| 1157 | |
| 1158 | for(i = 0; i < nelems; i++) { |
| 1159 | void *ptr = 0; |
| 1160 | ASN_DEBUG("SET OF %s decoding", elm->type->name); |
| 1161 | rv = elm->type->op->aper_decoder(opt_codec_ctx, elm->type, |
| 1162 | elm->encoding_constraints.per_constraints, &ptr, pd); |
| 1163 | ASN_DEBUG("%s SET OF %s decoded %d, %p", |
| 1164 | td->name, elm->type->name, rv.code, ptr); |
| 1165 | if(rv.code == RC_OK) { |
| 1166 | if(ASN_SET_ADD(list, ptr) == 0) |
| 1167 | continue; |
| 1168 | ASN_DEBUG("Failed to add element into %s", |
| 1169 | td->name); |
| 1170 | /* Fall through */ |
| 1171 | rv.code = RC_FAIL; |
| 1172 | } else { |
| 1173 | ASN_DEBUG("Failed decoding %s of %s (SET OF)", |
| 1174 | elm->type->name, td->name); |
| 1175 | } |
| 1176 | if(ptr) ASN_STRUCT_FREE(*elm->type, ptr); |
| 1177 | return rv; |
| 1178 | } |
| 1179 | |
| 1180 | nelems = -1; /* Allow uper_get_length() */ |
| 1181 | } while(repeat); |
| 1182 | |
| 1183 | ASN_DEBUG("Decoded %s as SET OF", td->name); |
| 1184 | |
| 1185 | rv.code = RC_OK; |
| 1186 | rv.consumed = 0; |
| 1187 | return rv; |
| 1188 | } |
| 1189 | |
| 1190 | #endif /* ASN_DISABLE_PER_SUPPORT */ |
| 1191 | |
| 1192 | struct comparable_ptr { |
| 1193 | const asn_TYPE_descriptor_t *td; |
| 1194 | const void *sptr; |
| 1195 | }; |
| 1196 | |
| 1197 | static int |
| 1198 | SET_OF__compare_cb(const void *aptr, const void *bptr) { |
| 1199 | const struct comparable_ptr *a = aptr; |
| 1200 | const struct comparable_ptr *b = bptr; |
| 1201 | assert(a->td == b->td); |
| 1202 | return a->td->op->compare_struct(a->td, a->sptr, b->sptr); |
| 1203 | } |
| 1204 | |
| 1205 | int |
| 1206 | SET_OF_compare(const asn_TYPE_descriptor_t *td, const void *aptr, |
| 1207 | const void *bptr) { |
| 1208 | const asn_anonymous_set_ *a = _A_CSET_FROM_VOID(aptr); |
| 1209 | const asn_anonymous_set_ *b = _A_CSET_FROM_VOID(bptr); |
| 1210 | |
| 1211 | if(a && b) { |
| 1212 | struct comparable_ptr *asorted; |
| 1213 | struct comparable_ptr *bsorted; |
| 1214 | ssize_t common_length; |
| 1215 | ssize_t idx; |
| 1216 | |
| 1217 | if(a->count == 0) { |
| 1218 | if(b->count) return -1; |
| 1219 | return 0; |
| 1220 | } else if(b->count == 0) { |
| 1221 | return 1; |
| 1222 | } |
| 1223 | |
| 1224 | asorted = MALLOC(a->count * sizeof(asorted[0])); |
| 1225 | bsorted = MALLOC(b->count * sizeof(bsorted[0])); |
| 1226 | if(!asorted || !bsorted) { |
| 1227 | FREEMEM(asorted); |
| 1228 | FREEMEM(bsorted); |
| 1229 | return -1; |
| 1230 | } |
| 1231 | |
| 1232 | for(idx = 0; idx < a->count; idx++) { |
| 1233 | asorted[idx].td = td->elements->type; |
| 1234 | asorted[idx].sptr = a->array[idx]; |
| 1235 | } |
| 1236 | |
| 1237 | for(idx = 0; idx < b->count; idx++) { |
| 1238 | bsorted[idx].td = td->elements->type; |
| 1239 | bsorted[idx].sptr = b->array[idx]; |
| 1240 | } |
| 1241 | |
| 1242 | qsort(asorted, a->count, sizeof(asorted[0]), SET_OF__compare_cb); |
| 1243 | qsort(bsorted, b->count, sizeof(bsorted[0]), SET_OF__compare_cb); |
| 1244 | |
| 1245 | common_length = (a->count < b->count ? a->count : b->count); |
| 1246 | for(idx = 0; idx < common_length; idx++) { |
| 1247 | int ret = td->elements->type->op->compare_struct( |
| 1248 | td->elements->type, asorted[idx].sptr, bsorted[idx].sptr); |
| 1249 | if(ret) { |
| 1250 | FREEMEM(asorted); |
| 1251 | FREEMEM(bsorted); |
| 1252 | return ret; |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | FREEMEM(asorted); |
| 1257 | FREEMEM(bsorted); |
| 1258 | |
| 1259 | if(idx < b->count) /* more elements in b */ |
| 1260 | return -1; /* a is shorter, so put it first */ |
| 1261 | if(idx < a->count) return 1; |
| 1262 | } else if(!a) { |
| 1263 | return -1; |
| 1264 | } else if(!b) { |
| 1265 | return 1; |
| 1266 | } |
| 1267 | |
| 1268 | return 0; |
| 1269 | } |
| 1270 | |
| 1271 | |
| 1272 | asn_TYPE_operation_t asn_OP_SET_OF = { |
| 1273 | SET_OF_free, |
| 1274 | SET_OF_print, |
| 1275 | SET_OF_compare, |
| 1276 | SET_OF_decode_ber, |
| 1277 | SET_OF_encode_der, |
| 1278 | SET_OF_decode_xer, |
| 1279 | SET_OF_encode_xer, |
| 1280 | #ifdef ASN_DISABLE_OER_SUPPORT |
| 1281 | 0, |
| 1282 | 0, |
| 1283 | #else |
| 1284 | SET_OF_decode_oer, |
| 1285 | SET_OF_encode_oer, |
| 1286 | #endif |
| 1287 | #ifdef ASN_DISABLE_PER_SUPPORT |
| 1288 | 0, |
| 1289 | 0, |
| 1290 | 0, |
| 1291 | 0, |
| 1292 | #else |
| 1293 | SET_OF_decode_uper, |
| 1294 | SET_OF_encode_uper, |
| 1295 | SET_OF_decode_aper, |
| 1296 | 0, /* SET_OF_encode_aper */ |
| 1297 | #endif /* ASN_DISABLE_PER_SUPPORT */ |
| 1298 | SET_OF_random_fill, |
| 1299 | 0 /* Use generic outmost tag fetcher */ |
| 1300 | }; |
| 1301 | |
| 1302 | |
| 1303 | asn_random_fill_result_t |
| 1304 | SET_OF_random_fill(const asn_TYPE_descriptor_t *td, void **sptr, |
| 1305 | const asn_encoding_constraints_t *constraints, |
| 1306 | size_t max_length) { |
| 1307 | const asn_SET_OF_specifics_t *specs = |
| 1308 | (const asn_SET_OF_specifics_t *)td->specifics; |
| 1309 | asn_random_fill_result_t res_ok = {ARFILL_OK, 0}; |
| 1310 | asn_random_fill_result_t result_failed = {ARFILL_FAILED, 0}; |
| 1311 | asn_random_fill_result_t result_skipped = {ARFILL_SKIPPED, 0}; |
| 1312 | const asn_TYPE_member_t *elm = td->elements; |
| 1313 | void *st = *sptr; |
| 1314 | long max_elements = 5; |
| 1315 | long slb = 0; /* Lower size bound */ |
| 1316 | long sub = 0; /* Upper size bound */ |
| 1317 | size_t rnd_len; |
| 1318 | |
| 1319 | if(max_length == 0) return result_skipped; |
| 1320 | |
| 1321 | if(st == NULL) { |
| 1322 | st = (*sptr = CALLOC(1, specs->struct_size)); |
| 1323 | if(st == NULL) { |
| 1324 | return result_failed; |
| 1325 | } |
| 1326 | } |
| 1327 | |
| 1328 | switch(asn_random_between(0, 6)) { |
| 1329 | case 0: max_elements = 0; break; |
| 1330 | case 1: max_elements = 1; break; |
| 1331 | case 2: max_elements = 5; break; |
| 1332 | case 3: max_elements = max_length; break; |
| 1333 | case 4: max_elements = max_length / 2; break; |
| 1334 | case 5: max_elements = max_length / 4; break; |
| 1335 | default: break; |
| 1336 | } |
| 1337 | sub = slb + max_elements; |
| 1338 | |
| 1339 | if(!constraints || !constraints->per_constraints) |
| 1340 | constraints = &td->encoding_constraints; |
| 1341 | if(constraints->per_constraints) { |
| 1342 | const asn_per_constraint_t *pc = &constraints->per_constraints->size; |
| 1343 | if(pc->flags & APC_SEMI_CONSTRAINED) { |
| 1344 | slb = pc->lower_bound; |
| 1345 | sub = pc->lower_bound + max_elements; |
| 1346 | } else if(pc->flags & APC_CONSTRAINED) { |
| 1347 | slb = pc->lower_bound; |
| 1348 | sub = pc->upper_bound; |
| 1349 | if(sub - slb > max_elements) sub = slb + max_elements; |
| 1350 | } |
| 1351 | } |
| 1352 | |
| 1353 | /* Bias towards edges of allowed space */ |
| 1354 | switch(asn_random_between(-1, 4)) { |
| 1355 | default: |
| 1356 | case -1: |
| 1357 | /* Prepare lengths somewhat outside of constrained range. */ |
| 1358 | if(constraints->per_constraints |
| 1359 | && (constraints->per_constraints->size.flags & APC_EXTENSIBLE)) { |
| 1360 | switch(asn_random_between(0, 5)) { |
| 1361 | default: |
| 1362 | case 0: |
| 1363 | rnd_len = 0; |
| 1364 | break; |
| 1365 | case 1: |
| 1366 | if(slb > 0) { |
| 1367 | rnd_len = slb - 1; |
| 1368 | } else { |
| 1369 | rnd_len = 0; |
| 1370 | } |
| 1371 | break; |
| 1372 | case 2: |
| 1373 | rnd_len = asn_random_between(0, slb); |
| 1374 | break; |
| 1375 | case 3: |
| 1376 | if(sub < (ssize_t)max_length) { |
| 1377 | rnd_len = sub + 1; |
| 1378 | } else { |
| 1379 | rnd_len = max_length; |
| 1380 | } |
| 1381 | break; |
| 1382 | case 4: |
| 1383 | if(sub < (ssize_t)max_length) { |
| 1384 | rnd_len = asn_random_between(sub + 1, max_length); |
| 1385 | } else { |
| 1386 | rnd_len = max_length; |
| 1387 | } |
| 1388 | break; |
| 1389 | case 5: |
| 1390 | rnd_len = max_length; |
| 1391 | break; |
| 1392 | } |
| 1393 | break; |
| 1394 | } |
| 1395 | /* Fall through */ |
| 1396 | case 0: |
| 1397 | rnd_len = asn_random_between(slb, sub); |
| 1398 | break; |
| 1399 | case 1: |
| 1400 | if(slb < sub) { |
| 1401 | rnd_len = asn_random_between(slb + 1, sub); |
| 1402 | break; |
| 1403 | } |
| 1404 | /* Fall through */ |
| 1405 | case 2: |
| 1406 | rnd_len = asn_random_between(slb, slb); |
| 1407 | break; |
| 1408 | case 3: |
| 1409 | if(slb < sub) { |
| 1410 | rnd_len = asn_random_between(slb, sub - 1); |
| 1411 | break; |
| 1412 | } |
| 1413 | /* Fall through */ |
| 1414 | case 4: |
| 1415 | rnd_len = asn_random_between(sub, sub); |
| 1416 | break; |
| 1417 | } |
| 1418 | |
| 1419 | for(; rnd_len > 0; rnd_len--) { |
| 1420 | asn_anonymous_set_ *list = _A_SET_FROM_VOID(st); |
| 1421 | void *ptr = 0; |
| 1422 | asn_random_fill_result_t tmpres = elm->type->op->random_fill( |
| 1423 | elm->type, &ptr, &elm->encoding_constraints, |
| 1424 | (max_length > res_ok.length ? max_length - res_ok.length : 0) |
| 1425 | / rnd_len); |
| 1426 | switch(tmpres.code) { |
| 1427 | case ARFILL_OK: |
| 1428 | ASN_SET_ADD(list, ptr); |
| 1429 | res_ok.length += tmpres.length; |
| 1430 | break; |
| 1431 | case ARFILL_SKIPPED: |
| 1432 | break; |
| 1433 | case ARFILL_FAILED: |
| 1434 | assert(ptr == 0); |
| 1435 | return tmpres; |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | return res_ok; |
| 1440 | } |
| 1441 | |