blob: a4b724ead993f0fea7816fccfebb01013e9e6b6e [file] [log] [blame]
/*****************************************************************************
# *
# Copyright 2019 AT&T Intellectual Property *
# *
# Licensed under the Apache License, Version 2.0 (the "License"); *
# you may not use this file except in compliance with the License. *
# You may obtain a copy of the License at *
# *
# http://www.apache.org/licenses/LICENSE-2.0 *
# *
# Unless required by applicable law or agreed to in writing, software *
# distributed under the License is distributed on an "AS IS" BASIS, *
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
# See the License for the specific language governing permissions and *
# limitations under the License. *
# *
******************************************************************************/
/*-
* Copyright (c) 2003, 2004 Lev Walkin <vlm@lionet.info>. All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_internal.h>
#include <BIT_STRING.h>
#include <asn_internal.h>
/*
* BIT STRING basic type description.
*/
static const ber_tlv_tag_t asn_DEF_BIT_STRING_tags[] = {
(ASN_TAG_CLASS_UNIVERSAL | (3 << 2))
};
asn_OCTET_STRING_specifics_t asn_SPC_BIT_STRING_specs = {
sizeof(BIT_STRING_t),
offsetof(BIT_STRING_t, _asn_ctx),
ASN_OSUBV_BIT
};
asn_TYPE_operation_t asn_OP_BIT_STRING = {
OCTET_STRING_free, /* Implemented in terms of OCTET STRING */
BIT_STRING_print,
BIT_STRING_compare,
OCTET_STRING_decode_ber, /* Implemented in terms of OCTET STRING */
OCTET_STRING_encode_der, /* Implemented in terms of OCTET STRING */
OCTET_STRING_decode_xer_binary,
BIT_STRING_encode_xer,
#ifdef ASN_DISABLE_OER_SUPPORT
0,
0,
#else
BIT_STRING_decode_oer,
BIT_STRING_encode_oer,
#endif /* ASN_DISABLE_OER_SUPPORT */
#ifdef ASN_DISABLE_PER_SUPPORT
0,
0,
0,
0,
#else
BIT_STRING_decode_uper, /* Unaligned PER decoder */
BIT_STRING_encode_uper, /* Unaligned PER encoder */
OCTET_STRING_decode_aper, /* Aligned PER decoder */
OCTET_STRING_encode_aper, /* Aligned PER encoder */
#endif /* ASN_DISABLE_PER_SUPPORT */
BIT_STRING_random_fill,
0 /* Use generic outmost tag fetcher */
};
asn_TYPE_descriptor_t asn_DEF_BIT_STRING = {
"BIT STRING",
"BIT_STRING",
&asn_OP_BIT_STRING,
asn_DEF_BIT_STRING_tags,
sizeof(asn_DEF_BIT_STRING_tags)
/ sizeof(asn_DEF_BIT_STRING_tags[0]),
asn_DEF_BIT_STRING_tags, /* Same as above */
sizeof(asn_DEF_BIT_STRING_tags)
/ sizeof(asn_DEF_BIT_STRING_tags[0]),
{ 0, 0, BIT_STRING_constraint },
0, 0, /* No members */
&asn_SPC_BIT_STRING_specs
};
/*
* BIT STRING generic constraint.
*/
int
BIT_STRING_constraint(const asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
if(st && st->buf) {
if((st->size == 0 && st->bits_unused)
|| st->bits_unused < 0 || st->bits_unused > 7) {
ASN__CTFAIL(app_key, td, sptr,
"%s: invalid padding byte (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
} else {
ASN__CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
return 0;
}
static const char *_bit_pattern[16] = {
"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111",
"1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"
};
asn_enc_rval_t
BIT_STRING_encode_xer(const asn_TYPE_descriptor_t *td, const void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_enc_rval_t er = {0, 0, 0};
char scratch[128];
char *p = scratch;
char *scend = scratch + (sizeof(scratch) - 10);
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
int xcan = (flags & XER_F_CANONICAL);
uint8_t *buf;
uint8_t *end;
if(!st || !st->buf)
ASN__ENCODE_FAILED;
er.encoded = 0;
buf = st->buf;
end = buf + st->size - 1; /* Last byte is special */
/*
* Binary dump
*/
for(; buf < end; buf++) {
int v = *buf;
int nline = xcan?0:(((buf - st->buf) % 8) == 0);
if(p >= scend || nline) {
ASN__CALLBACK(scratch, p - scratch);
p = scratch;
if(nline) ASN__TEXT_INDENT(1, ilevel);
}
memcpy(p + 0, _bit_pattern[v >> 4], 4);
memcpy(p + 4, _bit_pattern[v & 0x0f], 4);
p += 8;
}
if(!xcan && ((buf - st->buf) % 8) == 0)
ASN__TEXT_INDENT(1, ilevel);
ASN__CALLBACK(scratch, p - scratch);
p = scratch;
if(buf == end) {
int v = *buf;
int ubits = st->bits_unused;
int i;
for(i = 7; i >= ubits; i--)
*p++ = (v & (1 << i)) ? 0x31 : 0x30;
ASN__CALLBACK(scratch, p - scratch);
}
if(!xcan) ASN__TEXT_INDENT(1, ilevel - 1);
ASN__ENCODED_OK(er);
cb_failed:
ASN__ENCODE_FAILED;
}
/*
* BIT STRING specific contents printer.
*/
int
BIT_STRING_print(const asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
const char * const h2c = "0123456789ABCDEF";
char scratch[64];
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
uint8_t *buf;
uint8_t *end;
char *p = scratch;
(void)td; /* Unused argument */
if(!st || !st->buf)
return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
ilevel++;
buf = st->buf;
end = buf + st->size;
/*
* Hexadecimal dump.
*/
for(; buf < end; buf++) {
if((buf - st->buf) % 16 == 0 && (st->size > 16)
&& buf != st->buf) {
_i_INDENT(1);
/* Dump the string */
if(cb(scratch, p - scratch, app_key) < 0) return -1;
p = scratch;
}
*p++ = h2c[*buf >> 4];
*p++ = h2c[*buf & 0x0F];
*p++ = 0x20;
}
if(p > scratch) {
p--; /* Eat the tailing space */
if((st->size > 16)) {
_i_INDENT(1);
}
/* Dump the incomplete 16-bytes row */
if(cb(scratch, p - scratch, app_key) < 0)
return -1;
}
if(st->bits_unused) {
int ret = snprintf(scratch, sizeof(scratch), " (%d bit%s unused)",
st->bits_unused, st->bits_unused == 1 ? "" : "s");
assert(ret > 0 && ret < (ssize_t)sizeof(scratch));
if(ret > 0 && ret < (ssize_t)sizeof(scratch)
&& cb(scratch, ret, app_key) < 0)
return -1;
}
return 0;
}
/*
* Non-destructively remove the trailing 0-bits from the given bit string.
*/
static const BIT_STRING_t *
BIT_STRING__compactify(const BIT_STRING_t *st, BIT_STRING_t *tmp) {
const uint8_t *b;
union {
const uint8_t *c_buf;
uint8_t *nc_buf;
} unconst;
if(st->size == 0) {
assert(st->bits_unused == 0);
return st;
} else {
for(b = &st->buf[st->size - 1]; b > st->buf && *b == 0; b--) {
;
}
/* b points to the last byte which may contain data */
if(*b) {
int unused = 7;
uint8_t v = *b;
v &= -(int8_t)v;
if(v & 0x0F) unused -= 4;
if(v & 0x33) unused -= 2;
if(v & 0x55) unused -= 1;
tmp->size = b-st->buf + 1;
tmp->bits_unused = unused;
} else {
tmp->size = b-st->buf;
tmp->bits_unused = 0;
}
assert(b >= st->buf);
}
unconst.c_buf = st->buf;
tmp->buf = unconst.nc_buf;
return tmp;
}
/*
* Lexicographically compare the common prefix of both strings,
* and if it is the same return -1 for the smallest string.
*/
int
BIT_STRING_compare(const asn_TYPE_descriptor_t *td, const void *aptr,
const void *bptr) {
/*
* Remove information about trailing bits, since
* X.680 (08/2015) #22.7 "ensure that different semantics are not"
* "associated with [values that differ only in] the trailing 0 bits."
*/
BIT_STRING_t compact_a, compact_b;
const BIT_STRING_t *a = BIT_STRING__compactify(aptr, &compact_a);
const BIT_STRING_t *b = BIT_STRING__compactify(bptr, &compact_b);
const asn_OCTET_STRING_specifics_t *specs = td->specifics;
assert(specs && specs->subvariant == ASN_OSUBV_BIT);
if(a && b) {
size_t common_prefix_size = a->size <= b->size ? a->size : b->size;
int ret = memcmp(a->buf, b->buf, common_prefix_size);
if(ret == 0) {
/* Figure out which string with equal prefixes is longer. */
if(a->size < b->size) {
return -1;
} else if(a->size > b->size) {
return 1;
} else {
/* Figure out how many unused bits */
if(a->bits_unused > b->bits_unused) {
return -1;
} else if(a->bits_unused < b->bits_unused) {
return 1;
} else {
return 0;
}
}
} else {
return ret;
}
} else if(!a && !b) {
return 0;
} else if(!a) {
return -1;
} else {
return 1;
}
}
#ifndef ASN_DISABLE_PER_SUPPORT
#undef RETURN
#define RETURN(_code) \
do { \
asn_dec_rval_t tmprval; \
tmprval.code = _code; \
tmprval.consumed = consumed_myself; \
return tmprval; \
} while(0)
static asn_per_constraint_t asn_DEF_BIT_STRING_constraint_size = {
APC_SEMI_CONSTRAINED, -1, -1, 0, 0};
asn_dec_rval_t
BIT_STRING_decode_uper(const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *td,
const asn_per_constraints_t *constraints, void **sptr,
asn_per_data_t *pd) {
const asn_OCTET_STRING_specifics_t *specs = td->specifics
? (const asn_OCTET_STRING_specifics_t *)td->specifics
: &asn_SPC_BIT_STRING_specs;
const asn_per_constraints_t *pc =
constraints ? constraints : td->encoding_constraints.per_constraints;
const asn_per_constraint_t *csiz;
asn_dec_rval_t rval = { RC_OK, 0 };
BIT_STRING_t *st = (BIT_STRING_t *)*sptr;
ssize_t consumed_myself = 0;
int repeat;
(void)opt_codec_ctx;
if(pc) {
csiz = &pc->size;
} else {
csiz = &asn_DEF_BIT_STRING_constraint_size;
}
if(specs->subvariant != ASN_OSUBV_BIT) {
ASN_DEBUG("Subvariant %d is not BIT OSUBV_BIT", specs->subvariant);
RETURN(RC_FAIL);
}
/*
* Allocate the string.
*/
if(!st) {
st = (BIT_STRING_t *)(*sptr = CALLOC(1, specs->struct_size));
if(!st) RETURN(RC_FAIL);
}
ASN_DEBUG("PER Decoding %s size %ld .. %ld bits %d",
csiz->flags & APC_EXTENSIBLE ? "extensible" : "non-extensible",
csiz->lower_bound, csiz->upper_bound, csiz->effective_bits);
if(csiz->flags & APC_EXTENSIBLE) {
int inext = per_get_few_bits(pd, 1);
if(inext < 0) RETURN(RC_WMORE);
if(inext) {
csiz = &asn_DEF_BIT_STRING_constraint_size;
}
}
if(csiz->effective_bits >= 0) {
FREEMEM(st->buf);
st->size = (csiz->upper_bound + 7) >> 3;
st->buf = (uint8_t *)MALLOC(st->size + 1);
if(!st->buf) { st->size = 0; RETURN(RC_FAIL); }
}
/* X.691, #16.5: zero-length encoding */
/* X.691, #16.6: short fixed length encoding (up to 2 octets) */
/* X.691, #16.7: long fixed length encoding (up to 64K octets) */
if(csiz->effective_bits == 0) {
int ret;
ASN_DEBUG("Encoding BIT STRING size %ld", csiz->upper_bound);
ret = per_get_many_bits(pd, st->buf, 0, csiz->upper_bound);
if(ret < 0) RETURN(RC_WMORE);
consumed_myself += csiz->upper_bound;
st->buf[st->size] = 0;
st->bits_unused = (8 - (csiz->upper_bound & 0x7)) & 0x7;
RETURN(RC_OK);
}
st->size = 0;
do {
ssize_t raw_len;
ssize_t len_bytes;
ssize_t len_bits;
void *p;
int ret;
/* Get the PER length */
raw_len = uper_get_length(pd, csiz->effective_bits, csiz->lower_bound,
&repeat);
if(raw_len < 0) RETURN(RC_WMORE);
if(raw_len == 0 && st->buf) break;
ASN_DEBUG("Got PER length eb %ld, len %ld, %s (%s)",
(long)csiz->effective_bits, (long)raw_len,
repeat ? "repeat" : "once", td->name);
len_bits = raw_len;
len_bytes = (len_bits + 7) >> 3;
if(len_bits & 0x7) st->bits_unused = 8 - (len_bits & 0x7);
/* len_bits be multiple of 16K if repeat is set */
p = REALLOC(st->buf, st->size + len_bytes + 1);
if(!p) RETURN(RC_FAIL);
st->buf = (uint8_t *)p;
ret = per_get_many_bits(pd, &st->buf[st->size], 0, len_bits);
if(ret < 0) RETURN(RC_WMORE);
st->size += len_bytes;
} while(repeat);
st->buf[st->size] = 0; /* nul-terminate */
return rval;
}
asn_enc_rval_t
BIT_STRING_encode_uper(const asn_TYPE_descriptor_t *td,
const asn_per_constraints_t *constraints,
const void *sptr, asn_per_outp_t *po) {
const asn_OCTET_STRING_specifics_t *specs =
td->specifics ? (const asn_OCTET_STRING_specifics_t *)td->specifics
: &asn_SPC_BIT_STRING_specs;
const asn_per_constraints_t *pc =
constraints ? constraints : td->encoding_constraints.per_constraints;
const asn_per_constraint_t *csiz;
const BIT_STRING_t *st = (const BIT_STRING_t *)sptr;
BIT_STRING_t compact_bstr; /* Do not modify this directly! */
asn_enc_rval_t er = { 0, 0, 0 };
int inext = 0; /* Lies not within extension root */
size_t size_in_bits;
const uint8_t *buf;
int ret;
int ct_extensible;
if(!st || (!st->buf && st->size))
ASN__ENCODE_FAILED;
if(specs->subvariant == ASN_OSUBV_BIT) {
if((st->size == 0 && st->bits_unused) || (st->bits_unused & ~7))
ASN__ENCODE_FAILED;
} else {
ASN__ENCODE_FAILED;
}
if(pc) {
csiz = &pc->size;
} else {
csiz = &asn_DEF_BIT_STRING_constraint_size;
}
ct_extensible = csiz->flags & APC_EXTENSIBLE;
/* Figure out the size without the trailing bits */
st = BIT_STRING__compactify(st, &compact_bstr);
size_in_bits = 8 * st->size - st->bits_unused;
ASN_DEBUG(
"Encoding %s into %" ASN_PRI_SIZE " bits"
" (%ld..%ld, effective %d)%s",
td->name, size_in_bits, csiz->lower_bound, csiz->upper_bound,
csiz->effective_bits, ct_extensible ? " EXT" : "");
/* Figure out whether size lies within PER visible constraint */
if(csiz->effective_bits >= 0) {
if((ssize_t)size_in_bits > csiz->upper_bound) {
if(ct_extensible) {
csiz = &asn_DEF_BIT_STRING_constraint_size;
inext = 1;
} else {
ASN__ENCODE_FAILED;
}
}
} else {
inext = 0;
}
if(ct_extensible) {
/* Declare whether length is [not] within extension root */
if(per_put_few_bits(po, inext, 1))
ASN__ENCODE_FAILED;
}
if(csiz->effective_bits >= 0 && !inext) {
int add_trailer = (ssize_t)size_in_bits < csiz->lower_bound;
ASN_DEBUG(
"Encoding %" ASN_PRI_SIZE " bytes (%ld), length (in %d bits) trailer %d; actual "
"value %" ASN_PRI_SSIZE "",
st->size, size_in_bits - csiz->lower_bound, csiz->effective_bits,
add_trailer,
add_trailer ? 0 : (ssize_t)size_in_bits - csiz->lower_bound);
ret = per_put_few_bits(
po, add_trailer ? 0 : (ssize_t)size_in_bits - csiz->lower_bound,
csiz->effective_bits);
if(ret) ASN__ENCODE_FAILED;
ret = per_put_many_bits(po, st->buf, size_in_bits);
if(ret) ASN__ENCODE_FAILED;
if(add_trailer) {
static const uint8_t zeros[16];
size_t trailing_zero_bits = csiz->lower_bound - size_in_bits;
while(trailing_zero_bits > 0) {
if(trailing_zero_bits > 8 * sizeof(zeros)) {
ret = per_put_many_bits(po, zeros, 8 * sizeof(zeros));
trailing_zero_bits -= 8 * sizeof(zeros);
} else {
ret = per_put_many_bits(po, zeros, trailing_zero_bits);
trailing_zero_bits = 0;
}
if(ret) ASN__ENCODE_FAILED;
}
}
ASN__ENCODED_OK(er);
}
ASN_DEBUG("Encoding %" ASN_PRI_SIZE " bytes", st->size);
buf = st->buf;
do {
int need_eom = 0;
ssize_t maySave = uper_put_length(po, size_in_bits, &need_eom);
if(maySave < 0) ASN__ENCODE_FAILED;
ASN_DEBUG("Encoding %" ASN_PRI_SSIZE " of %" ASN_PRI_SIZE "", maySave, size_in_bits);
ret = per_put_many_bits(po, buf, maySave);
if(ret) ASN__ENCODE_FAILED;
buf += maySave >> 3;
size_in_bits -= maySave;
assert(!(maySave & 0x07) || !size_in_bits);
if(need_eom && uper_put_length(po, 0, 0))
ASN__ENCODE_FAILED; /* End of Message length */
} while(size_in_bits);
ASN__ENCODED_OK(er);
}
#endif /* ASN_DISABLE_PER_SUPPORT */
asn_random_fill_result_t
BIT_STRING_random_fill(const asn_TYPE_descriptor_t *td, void **sptr,
const asn_encoding_constraints_t *constraints,
size_t max_length) {
const asn_OCTET_STRING_specifics_t *specs =
td->specifics ? (const asn_OCTET_STRING_specifics_t *)td->specifics
: &asn_SPC_BIT_STRING_specs;
asn_random_fill_result_t result_ok = {ARFILL_OK, 1};
asn_random_fill_result_t result_failed = {ARFILL_FAILED, 0};
asn_random_fill_result_t result_skipped = {ARFILL_SKIPPED, 0};
static unsigned lengths[] = {0, 1, 2, 3, 4, 8,
126, 127, 128, 16383, 16384, 16385,
65534, 65535, 65536, 65537};
uint8_t *buf;
uint8_t *bend;
uint8_t *b;
size_t rnd_bits, rnd_len;
BIT_STRING_t *st;
if(max_length == 0) return result_skipped;
switch(specs->subvariant) {
case ASN_OSUBV_ANY:
return result_failed;
case ASN_OSUBV_BIT:
break;
default:
break;
}
/* Figure out how far we should go */
rnd_bits = lengths[asn_random_between(
0, sizeof(lengths) / sizeof(lengths[0]) - 1)];
if(!constraints || !constraints->per_constraints)
constraints = &td->encoding_constraints;
if(constraints->per_constraints) {
const asn_per_constraint_t *pc = &constraints->per_constraints->size;
if(pc->flags & APC_CONSTRAINED) {
long suggested_upper_bound = pc->upper_bound < (ssize_t)max_length
? pc->upper_bound
: (ssize_t)max_length;
if(max_length < (size_t)pc->lower_bound) {
return result_skipped;
}
if(pc->flags & APC_EXTENSIBLE) {
switch(asn_random_between(0, 5)) {
case 0:
if(pc->lower_bound > 0) {
rnd_bits = pc->lower_bound - 1;
break;
}
/* Fall through */
case 1:
rnd_bits = pc->upper_bound + 1;
break;
case 2:
/* Keep rnd_bits from the table */
if(rnd_bits < max_length) {
break;
}
/* Fall through */
default:
rnd_bits = asn_random_between(pc->lower_bound,
suggested_upper_bound);
}
} else {
rnd_bits =
asn_random_between(pc->lower_bound, suggested_upper_bound);
}
} else {
rnd_bits = asn_random_between(0, max_length - 1);
}
} else if(rnd_bits >= max_length) {
rnd_bits = asn_random_between(0, max_length - 1);
}
rnd_len = (rnd_bits + 7) / 8;
buf = CALLOC(1, rnd_len + 1);
if(!buf) return result_failed;
bend = &buf[rnd_len];
for(b = buf; b < bend; b++) {
*(uint8_t *)b = asn_random_between(0, 255);
}
*b = 0; /* Zero-terminate just in case. */
if(*sptr) {
st = *sptr;
FREEMEM(st->buf);
} else {
st = (BIT_STRING_t *)(*sptr = CALLOC(1, specs->struct_size));
if(!st) {
FREEMEM(buf);
return result_failed;
}
}
st->buf = buf;
st->size = rnd_len;
st->bits_unused = (8 - (rnd_bits & 0x7)) & 0x7;
if(st->bits_unused) {
assert(st->size > 0);
st->buf[st->size-1] &= 0xff << st->bits_unused;
}
result_ok.length = st->size;
return result_ok;
}