blob: 206af00c736509297c4f07f0417d5a7fcbcac439 [file] [log] [blame]
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001/*
2 * NTP client/server, based on OpenNTPD 3.9p1
3 *
4 * Author: Adam Tkac <vonsch@gmail.com>
5 *
Denys Vlasenko0ef64bd2010-08-16 20:14:46 +02006 * Licensed under GPLv2, see file LICENSE in this source tree.
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01007 *
8 * Parts of OpenNTPD clock syncronization code is replaced by
Denys Vlasenkobfc2a322010-01-01 18:12:06 +01009 * code which is based on ntp-4.2.6, whuch carries the following
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010010 * copyright notice:
11 *
12 ***********************************************************************
13 * *
14 * Copyright (c) University of Delaware 1992-2009 *
15 * *
16 * Permission to use, copy, modify, and distribute this software and *
17 * its documentation for any purpose with or without fee is hereby *
18 * granted, provided that the above copyright notice appears in all *
19 * copies and that both the copyright notice and this permission *
20 * notice appear in supporting documentation, and that the name *
21 * University of Delaware not be used in advertising or publicity *
22 * pertaining to distribution of the software without specific, *
23 * written prior permission. The University of Delaware makes no *
24 * representations about the suitability this software for any *
25 * purpose. It is provided "as is" without express or implied *
26 * warranty. *
27 * *
28 ***********************************************************************
29 */
Pere Orga5bc8c002011-04-11 03:29:49 +020030
31//usage:#define ntpd_trivial_usage
32//usage: "[-dnqNw"IF_FEATURE_NTPD_SERVER("l")"] [-S PROG] [-p PEER]..."
33//usage:#define ntpd_full_usage "\n\n"
34//usage: "NTP client/server\n"
Pere Orga5bc8c002011-04-11 03:29:49 +020035//usage: "\n -d Verbose"
36//usage: "\n -n Do not daemonize"
37//usage: "\n -q Quit after clock is set"
38//usage: "\n -N Run at high priority"
39//usage: "\n -w Do not set time (only query peers), implies -n"
40//usage: IF_FEATURE_NTPD_SERVER(
41//usage: "\n -l Run as server on port 123"
42//usage: )
43//usage: "\n -S PROG Run PROG after stepping time, stratum change, and every 11 mins"
44//usage: "\n -p PEER Obtain time from PEER (may be repeated)"
45
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010046#include "libbb.h"
47#include <math.h>
48#include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
49#include <sys/timex.h>
50#ifndef IPTOS_LOWDELAY
51# define IPTOS_LOWDELAY 0x10
52#endif
53#ifndef IP_PKTINFO
54# error "Sorry, your kernel has to support IP_PKTINFO"
55#endif
56
57
Denys Vlasenkobfc2a322010-01-01 18:12:06 +010058/* Verbosity control (max level of -dddd options accepted).
59 * max 5 is very talkative (and bloated). 2 is non-bloated,
60 * production level setting.
61 */
Denys Vlasenko61313112010-01-01 19:56:16 +010062#define MAX_VERBOSE 2
Denys Vlasenkobfc2a322010-01-01 18:12:06 +010063
64
Denys Vlasenko65d722b2010-01-11 02:14:04 +010065/* High-level description of the algorithm:
66 *
67 * We start running with very small poll_exp, BURSTPOLL,
Leonid Lisovskiy894ef602010-10-20 22:36:51 +020068 * in order to quickly accumulate INITIAL_SAMPLES datapoints
Denys Vlasenko65d722b2010-01-11 02:14:04 +010069 * for each peer. Then, time is stepped if the offset is larger
70 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
71 * poll_exp to MINPOLL and enter frequency measurement step:
72 * we collect new datapoints but ignore them for WATCH_THRESHOLD
73 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
74 * offset and estimate frequency drift.
75 *
Denys Vlasenko5b9a9102010-01-17 01:05:58 +010076 * (frequency measurement step seems to not be strictly needed,
77 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
78 * define set to 0)
79 *
Denys Vlasenko65d722b2010-01-11 02:14:04 +010080 * After this, we enter "steady state": we collect a datapoint,
81 * we select the best peer, if this datapoint is not a new one
82 * (IOW: if this datapoint isn't for selected peer), sleep
83 * and collect another one; otherwise, use its offset to update
84 * frequency drift, if offset is somewhat large, reduce poll_exp,
85 * otherwise increase poll_exp.
86 *
87 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
88 * happen, we assume that something "bad" happened (computer
89 * was hibernated, someone set totally wrong date, etc),
90 * then the time is stepped, all datapoints are discarded,
91 * and we go back to steady state.
92 */
93
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010094#define RETRY_INTERVAL 5 /* on error, retry in N secs */
Denys Vlasenko0b002812010-01-03 08:59:59 +010095#define RESPONSE_INTERVAL 15 /* wait for reply up to N secs */
Leonid Lisovskiy894ef602010-10-20 22:36:51 +020096#define INITIAL_SAMPLES 4 /* how many samples do we want for init */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010097
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010098/* Clock discipline parameters and constants */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +010099
100/* Step threshold (sec). std ntpd uses 0.128.
101 * Using exact power of 2 (1/8) results in smaller code */
102#define STEP_THRESHOLD 0.125
103#define WATCH_THRESHOLD 128 /* stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100104/* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100105//UNUSED: #define PANIC_THRESHOLD 1000 /* panic threshold (sec) */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100106
107#define FREQ_TOLERANCE 0.000015 /* frequency tolerance (15 PPM) */
Denys Vlasenkofb132e42010-10-29 11:46:52 +0200108#define BURSTPOLL 0 /* initial poll */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100109#define MINPOLL 5 /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100110#define BIGPOLL 10 /* drop to lower poll at any trouble (10: 17 min) */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100111#define MAXPOLL 12 /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
112/* Actively lower poll when we see such big offsets.
113 * With STEP_THRESHOLD = 0.125, it means we try to sync more aggressively
114 * if offset increases over 0.03 sec */
115#define POLLDOWN_OFFSET (STEP_THRESHOLD / 4)
116#define MINDISP 0.01 /* minimum dispersion (sec) */
117#define MAXDISP 16 /* maximum dispersion (sec) */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100118#define MAXSTRAT 16 /* maximum stratum (infinity metric) */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100119#define MAXDIST 1 /* distance threshold (sec) */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100120#define MIN_SELECTED 1 /* minimum intersection survivors */
121#define MIN_CLUSTERED 3 /* minimum cluster survivors */
122
123#define MAXDRIFT 0.000500 /* frequency drift we can correct (500 PPM) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100124
125/* Poll-adjust threshold.
126 * When we see that offset is small enough compared to discipline jitter,
Denys Vlasenkobfc2a322010-01-01 18:12:06 +0100127 * we grow a counter: += MINPOLL. When it goes over POLLADJ_LIMIT,
Denys Vlasenko61313112010-01-01 19:56:16 +0100128 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
129 * and when it goes below -POLLADJ_LIMIT, we poll_exp--
Denys Vlasenko65d722b2010-01-11 02:14:04 +0100130 * (bumped from 30 to 36 since otherwise I often see poll_exp going *2* steps down)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100131 */
Denys Vlasenko65d722b2010-01-11 02:14:04 +0100132#define POLLADJ_LIMIT 36
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100133/* If offset < POLLADJ_GATE * discipline_jitter, then we can increase
134 * poll interval (we think we can't improve timekeeping
135 * by staying at smaller poll).
136 */
Denys Vlasenko61313112010-01-01 19:56:16 +0100137#define POLLADJ_GATE 4
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100138/* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
Denys Vlasenko61313112010-01-01 19:56:16 +0100139#define ALLAN 512
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100140/* PLL loop gain */
Denys Vlasenko61313112010-01-01 19:56:16 +0100141#define PLL 65536
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100142/* FLL loop gain [why it depends on MAXPOLL??] */
Denys Vlasenko61313112010-01-01 19:56:16 +0100143#define FLL (MAXPOLL + 1)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100144/* Parameter averaging constant */
Denys Vlasenko61313112010-01-01 19:56:16 +0100145#define AVG 4
146
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100147
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100148enum {
149 NTP_VERSION = 4,
150 NTP_MAXSTRATUM = 15,
151
152 NTP_DIGESTSIZE = 16,
153 NTP_MSGSIZE_NOAUTH = 48,
154 NTP_MSGSIZE = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
155
156 /* Status Masks */
157 MODE_MASK = (7 << 0),
158 VERSION_MASK = (7 << 3),
159 VERSION_SHIFT = 3,
160 LI_MASK = (3 << 6),
161
162 /* Leap Second Codes (high order two bits of m_status) */
163 LI_NOWARNING = (0 << 6), /* no warning */
164 LI_PLUSSEC = (1 << 6), /* add a second (61 seconds) */
165 LI_MINUSSEC = (2 << 6), /* minus a second (59 seconds) */
166 LI_ALARM = (3 << 6), /* alarm condition */
167
168 /* Mode values */
169 MODE_RES0 = 0, /* reserved */
170 MODE_SYM_ACT = 1, /* symmetric active */
171 MODE_SYM_PAS = 2, /* symmetric passive */
172 MODE_CLIENT = 3, /* client */
173 MODE_SERVER = 4, /* server */
174 MODE_BROADCAST = 5, /* broadcast */
175 MODE_RES1 = 6, /* reserved for NTP control message */
176 MODE_RES2 = 7, /* reserved for private use */
177};
178
179//TODO: better base selection
180#define OFFSET_1900_1970 2208988800UL /* 1970 - 1900 in seconds */
181
182#define NUM_DATAPOINTS 8
183
184typedef struct {
185 uint32_t int_partl;
186 uint32_t fractionl;
187} l_fixedpt_t;
188
189typedef struct {
190 uint16_t int_parts;
191 uint16_t fractions;
192} s_fixedpt_t;
193
194typedef struct {
195 uint8_t m_status; /* status of local clock and leap info */
196 uint8_t m_stratum;
197 uint8_t m_ppoll; /* poll value */
198 int8_t m_precision_exp;
199 s_fixedpt_t m_rootdelay;
200 s_fixedpt_t m_rootdisp;
201 uint32_t m_refid;
202 l_fixedpt_t m_reftime;
203 l_fixedpt_t m_orgtime;
204 l_fixedpt_t m_rectime;
205 l_fixedpt_t m_xmttime;
206 uint32_t m_keyid;
207 uint8_t m_digest[NTP_DIGESTSIZE];
208} msg_t;
209
210typedef struct {
211 double d_recv_time;
212 double d_offset;
213 double d_dispersion;
214} datapoint_t;
215
216typedef struct {
217 len_and_sockaddr *p_lsa;
218 char *p_dotted;
219 /* when to send new query (if p_fd == -1)
220 * or when receive times out (if p_fd >= 0): */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100221 int p_fd;
222 int datapoint_idx;
223 uint32_t lastpkt_refid;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100224 uint8_t lastpkt_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100225 uint8_t lastpkt_stratum;
Denys Vlasenko0b002812010-01-03 08:59:59 +0100226 uint8_t reachable_bits;
227 double next_action_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100228 double p_xmttime;
229 double lastpkt_recv_time;
230 double lastpkt_delay;
231 double lastpkt_rootdelay;
232 double lastpkt_rootdisp;
233 /* produced by filter algorithm: */
234 double filter_offset;
235 double filter_dispersion;
236 double filter_jitter;
237 datapoint_t filter_datapoint[NUM_DATAPOINTS];
238 /* last sent packet: */
239 msg_t p_xmt_msg;
240} peer_t;
241
242
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100243#define USING_KERNEL_PLL_LOOP 1
244#define USING_INITIAL_FREQ_ESTIMATION 0
245
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100246enum {
247 OPT_n = (1 << 0),
248 OPT_q = (1 << 1),
249 OPT_N = (1 << 2),
250 OPT_x = (1 << 3),
251 /* Insert new options above this line. */
252 /* Non-compat options: */
Denys Vlasenko4168fdd2010-01-04 00:19:13 +0100253 OPT_w = (1 << 4),
254 OPT_p = (1 << 5),
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100255 OPT_S = (1 << 6),
256 OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
Denys Vlasenko8e23faf2011-04-07 01:45:20 +0200257 /* We hijack some bits for other purposes */
258 OPT_qq = (1 << 8),
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100259};
260
261struct globals {
Denys Vlasenko0b002812010-01-03 08:59:59 +0100262 double cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100263 /* total round trip delay to currently selected reference clock */
264 double rootdelay;
265 /* reference timestamp: time when the system clock was last set or corrected */
266 double reftime;
267 /* total dispersion to currently selected reference clock */
268 double rootdisp;
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100269
270 double last_script_run;
271 char *script_name;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100272 llist_t *ntp_peers;
273#if ENABLE_FEATURE_NTPD_SERVER
274 int listen_fd;
275#endif
276 unsigned verbose;
277 unsigned peer_cnt;
278 /* refid: 32-bit code identifying the particular server or reference clock
279 * in stratum 0 packets this is a four-character ASCII string,
280 * called the kiss code, used for debugging and monitoring
281 * in stratum 1 packets this is a four-character ASCII string
282 * assigned to the reference clock by IANA. Example: "GPS "
283 * in stratum 2+ packets, it's IPv4 address or 4 first bytes of MD5 hash of IPv6
284 */
285 uint32_t refid;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100286 uint8_t ntp_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100287 /* precision is defined as the larger of the resolution and time to
288 * read the clock, in log2 units. For instance, the precision of a
289 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
290 * system clock hardware representation is to the nanosecond.
291 *
292 * Delays, jitters of various kinds are clamper down to precision.
293 *
294 * If precision_sec is too large, discipline_jitter gets clamped to it
295 * and if offset is much smaller than discipline_jitter, poll interval
296 * grows even though we really can benefit from staying at smaller one,
297 * collecting non-lagged datapoits and correcting the offset.
298 * (Lagged datapoits exist when poll_exp is large but we still have
299 * systematic offset error - the time distance between datapoints
300 * is significat and older datapoints have smaller offsets.
301 * This makes our offset estimation a bit smaller than reality)
302 * Due to this effect, setting G_precision_sec close to
303 * STEP_THRESHOLD isn't such a good idea - offsets may grow
304 * too big and we will step. I observed it with -6.
305 *
306 * OTOH, setting precision too small would result in futile attempts
307 * to syncronize to the unachievable precision.
308 *
309 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
310 */
311#define G_precision_exp -8
312#define G_precision_sec (1.0 / (1 << (- G_precision_exp)))
313 uint8_t stratum;
314 /* Bool. After set to 1, never goes back to 0: */
Denys Vlasenko0b002812010-01-03 08:59:59 +0100315 smallint initial_poll_complete;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100316
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100317#define STATE_NSET 0 /* initial state, "nothing is set" */
318//#define STATE_FSET 1 /* frequency set from file */
319#define STATE_SPIK 2 /* spike detected */
320//#define STATE_FREQ 3 /* initial frequency */
321#define STATE_SYNC 4 /* clock synchronized (normal operation) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100322 uint8_t discipline_state; // doc calls it c.state
323 uint8_t poll_exp; // s.poll
324 int polladj_count; // c.count
Denys Vlasenko61313112010-01-01 19:56:16 +0100325 long kernel_freq_drift;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100326 peer_t *last_update_peer;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100327 double last_update_offset; // c.last
Denys Vlasenko61313112010-01-01 19:56:16 +0100328 double last_update_recv_time; // s.t
329 double discipline_jitter; // c.jitter
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100330 //double cluster_offset; // s.offset
331 //double cluster_jitter; // s.jitter
Denys Vlasenko61313112010-01-01 19:56:16 +0100332#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100333 double discipline_freq_drift; // c.freq
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100334 /* Maybe conditionally calculate wander? it's used only for logging */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100335 double discipline_wander; // c.wander
Denys Vlasenko61313112010-01-01 19:56:16 +0100336#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100337};
338#define G (*ptr_to_globals)
339
340static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY;
341
342
Denys Vlasenkobfc2a322010-01-01 18:12:06 +0100343#define VERB1 if (MAX_VERBOSE && G.verbose)
344#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
345#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
346#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
347#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
348
349
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100350static double LOG2D(int a)
351{
352 if (a < 0)
353 return 1.0 / (1UL << -a);
354 return 1UL << a;
355}
356static ALWAYS_INLINE double SQUARE(double x)
357{
358 return x * x;
359}
360static ALWAYS_INLINE double MAXD(double a, double b)
361{
362 if (a > b)
363 return a;
364 return b;
365}
366static ALWAYS_INLINE double MIND(double a, double b)
367{
368 if (a < b)
369 return a;
370 return b;
371}
Denys Vlasenkod498ff02010-01-03 21:06:27 +0100372static NOINLINE double my_SQRT(double X)
373{
374 union {
375 float f;
376 int32_t i;
377 } v;
378 double invsqrt;
379 double Xhalf = X * 0.5;
380
381 /* Fast and good approximation to 1/sqrt(X), black magic */
382 v.f = X;
383 /*v.i = 0x5f3759df - (v.i >> 1);*/
384 v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
385 invsqrt = v.f; /* better than 0.2% accuracy */
386
387 /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
388 * f(x) = 1/(x*x) - X (f==0 when x = 1/sqrt(X))
389 * f'(x) = -2/(x*x*x)
390 * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
391 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
392 */
393 invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
394 /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
395 /* With 4 iterations, more than half results will be exact,
396 * at 6th iterations result stabilizes with about 72% results exact.
397 * We are well satisfied with 0.05% accuracy.
398 */
399
400 return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
401}
402static ALWAYS_INLINE double SQRT(double X)
403{
404 /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
405 if (sizeof(float) != 4)
406 return sqrt(X);
407
Denys Vlasenko2d3253d2010-01-03 21:52:46 +0100408 /* This avoids needing libm, saves about 0.5k on x86-32 */
Denys Vlasenkod498ff02010-01-03 21:06:27 +0100409 return my_SQRT(X);
410}
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100411
412static double
413gettime1900d(void)
414{
415 struct timeval tv;
416 gettimeofday(&tv, NULL); /* never fails */
Denys Vlasenko0b002812010-01-03 08:59:59 +0100417 G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
418 return G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100419}
420
421static void
422d_to_tv(double d, struct timeval *tv)
423{
424 tv->tv_sec = (long)d;
425 tv->tv_usec = (d - tv->tv_sec) * 1000000;
426}
427
428static double
429lfp_to_d(l_fixedpt_t lfp)
430{
431 double ret;
432 lfp.int_partl = ntohl(lfp.int_partl);
433 lfp.fractionl = ntohl(lfp.fractionl);
434 ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
435 return ret;
436}
437static double
438sfp_to_d(s_fixedpt_t sfp)
439{
440 double ret;
441 sfp.int_parts = ntohs(sfp.int_parts);
442 sfp.fractions = ntohs(sfp.fractions);
443 ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
444 return ret;
445}
446#if ENABLE_FEATURE_NTPD_SERVER
447static l_fixedpt_t
448d_to_lfp(double d)
449{
450 l_fixedpt_t lfp;
451 lfp.int_partl = (uint32_t)d;
452 lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
453 lfp.int_partl = htonl(lfp.int_partl);
454 lfp.fractionl = htonl(lfp.fractionl);
455 return lfp;
456}
457static s_fixedpt_t
458d_to_sfp(double d)
459{
460 s_fixedpt_t sfp;
461 sfp.int_parts = (uint16_t)d;
462 sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
463 sfp.int_parts = htons(sfp.int_parts);
464 sfp.fractions = htons(sfp.fractions);
465 return sfp;
466}
467#endif
468
469static double
Denys Vlasenko0b002812010-01-03 08:59:59 +0100470dispersion(const datapoint_t *dp)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100471{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100472 return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100473}
474
475static double
Denys Vlasenko0b002812010-01-03 08:59:59 +0100476root_distance(peer_t *p)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100477{
478 /* The root synchronization distance is the maximum error due to
479 * all causes of the local clock relative to the primary server.
480 * It is defined as half the total delay plus total dispersion
481 * plus peer jitter.
482 */
483 return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
484 + p->lastpkt_rootdisp
485 + p->filter_dispersion
Denys Vlasenko0b002812010-01-03 08:59:59 +0100486 + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100487 + p->filter_jitter;
488}
489
490static void
491set_next(peer_t *p, unsigned t)
492{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100493 p->next_action_time = G.cur_time + t;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100494}
495
496/*
497 * Peer clock filter and its helpers
498 */
499static void
Denys Vlasenko0b002812010-01-03 08:59:59 +0100500filter_datapoints(peer_t *p)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100501{
502 int i, idx;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100503 int got_newest;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100504 double minoff, maxoff, wavg, sum, w;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100505 double x = x; /* for compiler */
506 double oldest_off = oldest_off;
507 double oldest_age = oldest_age;
508 double newest_off = newest_off;
509 double newest_age = newest_age;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100510
511 minoff = maxoff = p->filter_datapoint[0].d_offset;
512 for (i = 1; i < NUM_DATAPOINTS; i++) {
513 if (minoff > p->filter_datapoint[i].d_offset)
514 minoff = p->filter_datapoint[i].d_offset;
515 if (maxoff < p->filter_datapoint[i].d_offset)
516 maxoff = p->filter_datapoint[i].d_offset;
517 }
518
519 idx = p->datapoint_idx; /* most recent datapoint */
520 /* Average offset:
521 * Drop two outliers and take weighted average of the rest:
522 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
523 * we use older6/32, not older6/64 since sum of weights should be 1:
524 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
525 */
526 wavg = 0;
527 w = 0.5;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100528 /* n-1
529 * --- dispersion(i)
530 * filter_dispersion = \ -------------
531 * / (i+1)
532 * --- 2
533 * i=0
534 */
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100535 got_newest = 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100536 sum = 0;
537 for (i = 0; i < NUM_DATAPOINTS; i++) {
538 VERB4 {
539 bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
540 i,
541 p->filter_datapoint[idx].d_offset,
Denys Vlasenko0b002812010-01-03 08:59:59 +0100542 p->filter_datapoint[idx].d_dispersion, dispersion(&p->filter_datapoint[idx]),
543 G.cur_time - p->filter_datapoint[idx].d_recv_time,
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100544 (minoff == p->filter_datapoint[idx].d_offset || maxoff == p->filter_datapoint[idx].d_offset)
545 ? " (outlier by offset)" : ""
546 );
547 }
548
Denys Vlasenko0b002812010-01-03 08:59:59 +0100549 sum += dispersion(&p->filter_datapoint[idx]) / (2 << i);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100550
551 if (minoff == p->filter_datapoint[idx].d_offset) {
Denys Vlasenkoe4844b82010-01-01 21:59:49 +0100552 minoff -= 1; /* so that we don't match it ever again */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100553 } else
554 if (maxoff == p->filter_datapoint[idx].d_offset) {
555 maxoff += 1;
556 } else {
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100557 oldest_off = p->filter_datapoint[idx].d_offset;
Denys Vlasenko0b002812010-01-03 08:59:59 +0100558 oldest_age = G.cur_time - p->filter_datapoint[idx].d_recv_time;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100559 if (!got_newest) {
560 got_newest = 1;
561 newest_off = oldest_off;
562 newest_age = oldest_age;
563 }
564 x = oldest_off * w;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100565 wavg += x;
566 w /= 2;
567 }
568
569 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
570 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100571 p->filter_dispersion = sum;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100572 wavg += x; /* add another older6/64 to form older6/32 */
573 /* Fix systematic underestimation with large poll intervals.
574 * Imagine that we still have a bit of uncorrected drift,
575 * and poll interval is big (say, 100 sec). Offsets form a progression:
576 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
577 * The algorithm above drops 0.0 and 0.7 as outliers,
578 * and then we have this estimation, ~25% off from 0.7:
579 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
580 */
Denys Vlasenko0b002812010-01-03 08:59:59 +0100581 x = oldest_age - newest_age;
582 if (x != 0) {
583 x = newest_age / x; /* in above example, 100 / (600 - 100) */
584 if (x < 1) { /* paranoia check */
585 x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
586 wavg += x;
587 }
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100588 }
589 p->filter_offset = wavg;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100590
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100591 /* +----- -----+ ^ 1/2
592 * | n-1 |
593 * | --- |
594 * | 1 \ 2 |
595 * filter_jitter = | --- * / (avg-offset_j) |
596 * | n --- |
597 * | j=0 |
598 * +----- -----+
599 * where n is the number of valid datapoints in the filter (n > 1);
600 * if filter_jitter < precision then filter_jitter = precision
601 */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100602 sum = 0;
603 for (i = 0; i < NUM_DATAPOINTS; i++) {
604 sum += SQUARE(wavg - p->filter_datapoint[i].d_offset);
605 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100606 sum = SQRT(sum / NUM_DATAPOINTS);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100607 p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
608
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100609 VERB3 bb_error_msg("filter offset:%f(corr:%e) disp:%f jitter:%f",
610 p->filter_offset, x,
611 p->filter_dispersion,
612 p->filter_jitter);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100613}
614
615static void
Denys Vlasenko0b002812010-01-03 08:59:59 +0100616reset_peer_stats(peer_t *p, double offset)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100617{
618 int i;
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100619 bool small_ofs = fabs(offset) < 16 * STEP_THRESHOLD;
620
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100621 for (i = 0; i < NUM_DATAPOINTS; i++) {
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100622 if (small_ofs) {
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200623 p->filter_datapoint[i].d_recv_time += offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100624 if (p->filter_datapoint[i].d_offset != 0) {
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200625 p->filter_datapoint[i].d_offset += offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100626 }
627 } else {
Denys Vlasenko0b002812010-01-03 08:59:59 +0100628 p->filter_datapoint[i].d_recv_time = G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100629 p->filter_datapoint[i].d_offset = 0;
630 p->filter_datapoint[i].d_dispersion = MAXDISP;
631 }
632 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100633 if (small_ofs) {
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200634 p->lastpkt_recv_time += offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100635 } else {
Denys Vlasenko0b002812010-01-03 08:59:59 +0100636 p->reachable_bits = 0;
637 p->lastpkt_recv_time = G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100638 }
Denys Vlasenko0b002812010-01-03 08:59:59 +0100639 filter_datapoints(p); /* recalc p->filter_xxx */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100640 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
641}
642
643static void
644add_peers(char *s)
645{
646 peer_t *p;
647
648 p = xzalloc(sizeof(*p));
649 p->p_lsa = xhost2sockaddr(s, 123);
650 p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa);
651 p->p_fd = -1;
652 p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
Denys Vlasenko0b002812010-01-03 08:59:59 +0100653 p->next_action_time = G.cur_time; /* = set_next(p, 0); */
654 reset_peer_stats(p, 16 * STEP_THRESHOLD);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100655
656 llist_add_to(&G.ntp_peers, p);
657 G.peer_cnt++;
658}
659
660static int
661do_sendto(int fd,
662 const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
663 msg_t *msg, ssize_t len)
664{
665 ssize_t ret;
666
667 errno = 0;
668 if (!from) {
669 ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
670 } else {
671 ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
672 }
673 if (ret != len) {
674 bb_perror_msg("send failed");
675 return -1;
676 }
677 return 0;
678}
679
Denys Vlasenko0b002812010-01-03 08:59:59 +0100680static void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100681send_query_to_peer(peer_t *p)
682{
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100683 /* Why do we need to bind()?
684 * See what happens when we don't bind:
685 *
686 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
687 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
688 * gettimeofday({1259071266, 327885}, NULL) = 0
689 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
690 * ^^^ we sent it from some source port picked by kernel.
691 * time(NULL) = 1259071266
692 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
693 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
694 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
695 * ^^^ this recv will receive packets to any local port!
696 *
697 * Uncomment this and use strace to see it in action:
698 */
699#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100700
701 if (p->p_fd == -1) {
702 int fd, family;
703 len_and_sockaddr *local_lsa;
704
705 family = p->p_lsa->u.sa.sa_family;
706 p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
707 /* local_lsa has "null" address and port 0 now.
708 * bind() ensures we have a *particular port* selected by kernel
709 * and remembered in p->p_fd, thus later recv(p->p_fd)
710 * receives only packets sent to this port.
711 */
712 PROBE_LOCAL_ADDR
713 xbind(fd, &local_lsa->u.sa, local_lsa->len);
714 PROBE_LOCAL_ADDR
715#if ENABLE_FEATURE_IPV6
716 if (family == AF_INET)
717#endif
718 setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
719 free(local_lsa);
720 }
721
722 /*
723 * Send out a random 64-bit number as our transmit time. The NTP
724 * server will copy said number into the originate field on the
725 * response that it sends us. This is totally legal per the SNTP spec.
726 *
727 * The impact of this is two fold: we no longer send out the current
728 * system time for the world to see (which may aid an attacker), and
729 * it gives us a (not very secure) way of knowing that we're not
730 * getting spoofed by an attacker that can't capture our traffic
731 * but can spoof packets from the NTP server we're communicating with.
732 *
733 * Save the real transmit timestamp locally.
734 */
735 p->p_xmt_msg.m_xmttime.int_partl = random();
736 p->p_xmt_msg.m_xmttime.fractionl = random();
737 p->p_xmttime = gettime1900d();
738
739 if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
740 &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
741 ) {
742 close(p->p_fd);
743 p->p_fd = -1;
744 set_next(p, RETRY_INTERVAL);
Denys Vlasenko0b002812010-01-03 08:59:59 +0100745 return;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100746 }
747
Denys Vlasenko0b002812010-01-03 08:59:59 +0100748 p->reachable_bits <<= 1;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100749 VERB1 bb_error_msg("sent query to %s", p->p_dotted);
Denys Vlasenko0b002812010-01-03 08:59:59 +0100750 set_next(p, RESPONSE_INTERVAL);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100751}
752
753
Denys Vlasenko24928ff2010-01-25 19:30:16 +0100754/* Note that there is no provision to prevent several run_scripts
755 * to be done in quick succession. In fact, it happens rather often
756 * if initial syncronization results in a step.
757 * You will see "step" and then "stratum" script runs, sometimes
758 * as close as only 0.002 seconds apart.
759 * Script should be ready to deal with this.
760 */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100761static void run_script(const char *action, double offset)
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100762{
763 char *argv[3];
Denys Vlasenko12628b72010-01-11 01:31:59 +0100764 char *env1, *env2, *env3, *env4;
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100765
766 if (!G.script_name)
767 return;
768
769 argv[0] = (char*) G.script_name;
770 argv[1] = (char*) action;
771 argv[2] = NULL;
772
773 VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
774
Denys Vlasenkoae473352010-01-07 11:51:13 +0100775 env1 = xasprintf("%s=%u", "stratum", G.stratum);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100776 putenv(env1);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100777 env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100778 putenv(env2);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100779 env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
780 putenv(env3);
Denys Vlasenko12628b72010-01-11 01:31:59 +0100781 env4 = xasprintf("%s=%f", "offset", offset);
782 putenv(env4);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100783 /* Other items of potential interest: selected peer,
Denys Vlasenkoae473352010-01-07 11:51:13 +0100784 * rootdelay, reftime, rootdisp, refid, ntp_status,
Denys Vlasenko12628b72010-01-11 01:31:59 +0100785 * last_update_offset, last_update_recv_time, discipline_jitter,
786 * how many peers have reachable_bits = 0?
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100787 */
788
Denys Vlasenko6959f6b2010-01-07 08:31:46 +0100789 /* Don't want to wait: it may run hwclock --systohc, and that
790 * may take some time (seconds): */
Denys Vlasenko8531d762010-03-18 22:44:00 +0100791 /*spawn_and_wait(argv);*/
Denys Vlasenko6959f6b2010-01-07 08:31:46 +0100792 spawn(argv);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100793
794 unsetenv("stratum");
795 unsetenv("freq_drift_ppm");
Denys Vlasenkoae473352010-01-07 11:51:13 +0100796 unsetenv("poll_interval");
Denys Vlasenko12628b72010-01-11 01:31:59 +0100797 unsetenv("offset");
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100798 free(env1);
799 free(env2);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100800 free(env3);
Denys Vlasenko12628b72010-01-11 01:31:59 +0100801 free(env4);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100802
803 G.last_script_run = G.cur_time;
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100804}
805
Denys Vlasenko0b002812010-01-03 08:59:59 +0100806static NOINLINE void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100807step_time(double offset)
808{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100809 llist_t *item;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100810 double dtime;
811 struct timeval tv;
812 char buf[80];
813 time_t tval;
814
815 gettimeofday(&tv, NULL); /* never fails */
816 dtime = offset + tv.tv_sec;
817 dtime += 1.0e-6 * tv.tv_usec;
818 d_to_tv(dtime, &tv);
819
820 if (settimeofday(&tv, NULL) == -1)
821 bb_perror_msg_and_die("settimeofday");
822
823 tval = tv.tv_sec;
824 strftime(buf, sizeof(buf), "%a %b %e %H:%M:%S %Z %Y", localtime(&tval));
825
826 bb_error_msg("setting clock to %s (offset %fs)", buf, offset);
Denys Vlasenko0b002812010-01-03 08:59:59 +0100827
828 /* Correct various fields which contain time-relative values: */
829
830 /* p->lastpkt_recv_time, p->next_action_time and such: */
831 for (item = G.ntp_peers; item != NULL; item = item->link) {
832 peer_t *pp = (peer_t *) item->data;
833 reset_peer_stats(pp, offset);
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200834 //bb_error_msg("offset:%f pp->next_action_time:%f -> %f",
835 // offset, pp->next_action_time, pp->next_action_time + offset);
836 pp->next_action_time += offset;
Denys Vlasenko0b002812010-01-03 08:59:59 +0100837 }
838 /* Globals: */
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200839 G.cur_time += offset;
840 G.last_update_recv_time += offset;
841 G.last_script_run += offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100842}
843
844
845/*
846 * Selection and clustering, and their helpers
847 */
848typedef struct {
849 peer_t *p;
850 int type;
851 double edge;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100852 double opt_rd; /* optimization */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100853} point_t;
854static int
855compare_point_edge(const void *aa, const void *bb)
856{
857 const point_t *a = aa;
858 const point_t *b = bb;
859 if (a->edge < b->edge) {
860 return -1;
861 }
862 return (a->edge > b->edge);
863}
864typedef struct {
865 peer_t *p;
866 double metric;
867} survivor_t;
868static int
869compare_survivor_metric(const void *aa, const void *bb)
870{
871 const survivor_t *a = aa;
872 const survivor_t *b = bb;
Denys Vlasenko510f56a2010-01-03 12:00:26 +0100873 if (a->metric < b->metric) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100874 return -1;
Denys Vlasenko510f56a2010-01-03 12:00:26 +0100875 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100876 return (a->metric > b->metric);
877}
878static int
879fit(peer_t *p, double rd)
880{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100881 if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
882 /* One or zero bits in reachable_bits */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100883 VERB3 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
884 return 0;
885 }
Denys Vlasenkofb132e42010-10-29 11:46:52 +0200886#if 0 /* we filter out such packets earlier */
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100887 if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100888 || p->lastpkt_stratum >= MAXSTRAT
889 ) {
890 VERB3 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
891 return 0;
892 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100893#endif
Denys Vlasenko0b002812010-01-03 08:59:59 +0100894 /* rd is root_distance(p) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100895 if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
896 VERB3 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
897 return 0;
898 }
899//TODO
900// /* Do we have a loop? */
901// if (p->refid == p->dstaddr || p->refid == s.refid)
902// return 0;
Denys Vlasenkob7c9fb22011-02-03 00:05:48 +0100903 return 1;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100904}
905static peer_t*
Denys Vlasenko0b002812010-01-03 08:59:59 +0100906select_and_cluster(void)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100907{
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100908 peer_t *p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100909 llist_t *item;
910 int i, j;
911 int size = 3 * G.peer_cnt;
912 /* for selection algorithm */
913 point_t point[size];
914 unsigned num_points, num_candidates;
915 double low, high;
916 unsigned num_falsetickers;
917 /* for cluster algorithm */
918 survivor_t survivor[size];
919 unsigned num_survivors;
920
921 /* Selection */
922
923 num_points = 0;
924 item = G.ntp_peers;
Denys Vlasenko0b002812010-01-03 08:59:59 +0100925 if (G.initial_poll_complete) while (item != NULL) {
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100926 double rd, offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100927
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100928 p = (peer_t *) item->data;
929 rd = root_distance(p);
930 offset = p->filter_offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100931 if (!fit(p, rd)) {
932 item = item->link;
933 continue;
934 }
935
936 VERB4 bb_error_msg("interval: [%f %f %f] %s",
937 offset - rd,
938 offset,
939 offset + rd,
940 p->p_dotted
941 );
942 point[num_points].p = p;
943 point[num_points].type = -1;
944 point[num_points].edge = offset - rd;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100945 point[num_points].opt_rd = rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100946 num_points++;
947 point[num_points].p = p;
948 point[num_points].type = 0;
949 point[num_points].edge = offset;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100950 point[num_points].opt_rd = rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100951 num_points++;
952 point[num_points].p = p;
953 point[num_points].type = 1;
954 point[num_points].edge = offset + rd;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100955 point[num_points].opt_rd = rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100956 num_points++;
957 item = item->link;
958 }
959 num_candidates = num_points / 3;
960 if (num_candidates == 0) {
961 VERB3 bb_error_msg("no valid datapoints, no peer selected");
Denys Vlasenko0b002812010-01-03 08:59:59 +0100962 return NULL;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100963 }
964//TODO: sorting does not seem to be done in reference code
965 qsort(point, num_points, sizeof(point[0]), compare_point_edge);
966
967 /* Start with the assumption that there are no falsetickers.
968 * Attempt to find a nonempty intersection interval containing
969 * the midpoints of all truechimers.
970 * If a nonempty interval cannot be found, increase the number
971 * of assumed falsetickers by one and try again.
972 * If a nonempty interval is found and the number of falsetickers
973 * is less than the number of truechimers, a majority has been found
974 * and the midpoint of each truechimer represents
975 * the candidates available to the cluster algorithm.
976 */
977 num_falsetickers = 0;
978 while (1) {
979 int c;
980 unsigned num_midpoints = 0;
981
982 low = 1 << 9;
983 high = - (1 << 9);
984 c = 0;
985 for (i = 0; i < num_points; i++) {
986 /* We want to do:
987 * if (point[i].type == -1) c++;
988 * if (point[i].type == 1) c--;
989 * and it's simpler to do it this way:
990 */
991 c -= point[i].type;
992 if (c >= num_candidates - num_falsetickers) {
993 /* If it was c++ and it got big enough... */
994 low = point[i].edge;
995 break;
996 }
997 if (point[i].type == 0)
998 num_midpoints++;
999 }
1000 c = 0;
1001 for (i = num_points-1; i >= 0; i--) {
1002 c += point[i].type;
1003 if (c >= num_candidates - num_falsetickers) {
1004 high = point[i].edge;
1005 break;
1006 }
1007 if (point[i].type == 0)
1008 num_midpoints++;
1009 }
1010 /* If the number of midpoints is greater than the number
1011 * of allowed falsetickers, the intersection contains at
1012 * least one truechimer with no midpoint - bad.
1013 * Also, interval should be nonempty.
1014 */
1015 if (num_midpoints <= num_falsetickers && low < high)
1016 break;
1017 num_falsetickers++;
1018 if (num_falsetickers * 2 >= num_candidates) {
1019 VERB3 bb_error_msg("too many falsetickers:%d (candidates:%d), no peer selected",
1020 num_falsetickers, num_candidates);
1021 return NULL;
1022 }
1023 }
1024 VERB3 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1025 low, high, num_candidates, num_falsetickers);
1026
1027 /* Clustering */
1028
1029 /* Construct a list of survivors (p, metric)
1030 * from the chime list, where metric is dominated
1031 * first by stratum and then by root distance.
1032 * All other things being equal, this is the order of preference.
1033 */
1034 num_survivors = 0;
1035 for (i = 0; i < num_points; i++) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001036 if (point[i].edge < low || point[i].edge > high)
1037 continue;
1038 p = point[i].p;
1039 survivor[num_survivors].p = p;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001040 /* x.opt_rd == root_distance(p); */
1041 survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001042 VERB4 bb_error_msg("survivor[%d] metric:%f peer:%s",
1043 num_survivors, survivor[num_survivors].metric, p->p_dotted);
1044 num_survivors++;
1045 }
1046 /* There must be at least MIN_SELECTED survivors to satisfy the
1047 * correctness assertions. Ordinarily, the Byzantine criteria
1048 * require four survivors, but for the demonstration here, one
1049 * is acceptable.
1050 */
1051 if (num_survivors < MIN_SELECTED) {
1052 VERB3 bb_error_msg("num_survivors %d < %d, no peer selected",
1053 num_survivors, MIN_SELECTED);
1054 return NULL;
1055 }
1056
1057//looks like this is ONLY used by the fact that later we pick survivor[0].
1058//we can avoid sorting then, just find the minimum once!
1059 qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1060
1061 /* For each association p in turn, calculate the selection
1062 * jitter p->sjitter as the square root of the sum of squares
1063 * (p->offset - q->offset) over all q associations. The idea is
1064 * to repeatedly discard the survivor with maximum selection
1065 * jitter until a termination condition is met.
1066 */
1067 while (1) {
1068 unsigned max_idx = max_idx;
1069 double max_selection_jitter = max_selection_jitter;
1070 double min_jitter = min_jitter;
1071
1072 if (num_survivors <= MIN_CLUSTERED) {
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001073 VERB3 bb_error_msg("num_survivors %d <= %d, not discarding more",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001074 num_survivors, MIN_CLUSTERED);
1075 break;
1076 }
1077
1078 /* To make sure a few survivors are left
1079 * for the clustering algorithm to chew on,
1080 * we stop if the number of survivors
1081 * is less than or equal to MIN_CLUSTERED (3).
1082 */
1083 for (i = 0; i < num_survivors; i++) {
1084 double selection_jitter_sq;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001085
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001086 p = survivor[i].p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001087 if (i == 0 || p->filter_jitter < min_jitter)
1088 min_jitter = p->filter_jitter;
1089
1090 selection_jitter_sq = 0;
1091 for (j = 0; j < num_survivors; j++) {
1092 peer_t *q = survivor[j].p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001093 selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1094 }
1095 if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1096 max_selection_jitter = selection_jitter_sq;
1097 max_idx = i;
1098 }
1099 VERB5 bb_error_msg("survivor %d selection_jitter^2:%f",
1100 i, selection_jitter_sq);
1101 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001102 max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001103 VERB4 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1104 max_idx, max_selection_jitter, min_jitter);
1105
1106 /* If the maximum selection jitter is less than the
1107 * minimum peer jitter, then tossing out more survivors
1108 * will not lower the minimum peer jitter, so we might
1109 * as well stop.
1110 */
1111 if (max_selection_jitter < min_jitter) {
1112 VERB3 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1113 max_selection_jitter, min_jitter, num_survivors);
1114 break;
1115 }
1116
1117 /* Delete survivor[max_idx] from the list
1118 * and go around again.
1119 */
1120 VERB5 bb_error_msg("dropping survivor %d", max_idx);
1121 num_survivors--;
1122 while (max_idx < num_survivors) {
1123 survivor[max_idx] = survivor[max_idx + 1];
1124 max_idx++;
1125 }
1126 }
1127
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001128 if (0) {
1129 /* Combine the offsets of the clustering algorithm survivors
1130 * using a weighted average with weight determined by the root
1131 * distance. Compute the selection jitter as the weighted RMS
1132 * difference between the first survivor and the remaining
1133 * survivors. In some cases the inherent clock jitter can be
1134 * reduced by not using this algorithm, especially when frequent
1135 * clockhopping is involved. bbox: thus we don't do it.
1136 */
1137 double x, y, z, w;
1138 y = z = w = 0;
1139 for (i = 0; i < num_survivors; i++) {
1140 p = survivor[i].p;
1141 x = root_distance(p);
1142 y += 1 / x;
1143 z += p->filter_offset / x;
1144 w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1145 }
1146 //G.cluster_offset = z / y;
1147 //G.cluster_jitter = SQRT(w / y);
1148 }
1149
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001150 /* Pick the best clock. If the old system peer is on the list
1151 * and at the same stratum as the first survivor on the list,
1152 * then don't do a clock hop. Otherwise, select the first
1153 * survivor on the list as the new system peer.
1154 */
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001155 p = survivor[0].p;
1156 if (G.last_update_peer
1157 && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1158 ) {
1159 /* Starting from 1 is ok here */
1160 for (i = 1; i < num_survivors; i++) {
1161 if (G.last_update_peer == survivor[i].p) {
1162 VERB4 bb_error_msg("keeping old synced peer");
1163 p = G.last_update_peer;
1164 goto keep_old;
1165 }
1166 }
1167 }
1168 G.last_update_peer = p;
1169 keep_old:
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001170 VERB3 bb_error_msg("selected peer %s filter_offset:%f age:%f",
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001171 p->p_dotted,
1172 p->filter_offset,
1173 G.cur_time - p->lastpkt_recv_time
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001174 );
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001175 return p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001176}
1177
1178
1179/*
1180 * Local clock discipline and its helpers
1181 */
1182static void
1183set_new_values(int disc_state, double offset, double recv_time)
1184{
1185 /* Enter new state and set state variables. Note we use the time
1186 * of the last clock filter sample, which must be earlier than
1187 * the current time.
1188 */
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001189 VERB3 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001190 disc_state, offset, recv_time);
1191 G.discipline_state = disc_state;
1192 G.last_update_offset = offset;
1193 G.last_update_recv_time = recv_time;
1194}
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001195/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
Denys Vlasenko0b002812010-01-03 08:59:59 +01001196static NOINLINE int
1197update_local_clock(peer_t *p)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001198{
1199 int rc;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001200 struct timex tmx;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001201 /* Note: can use G.cluster_offset instead: */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001202 double offset = p->filter_offset;
1203 double recv_time = p->lastpkt_recv_time;
1204 double abs_offset;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001205#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001206 double freq_drift;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001207#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001208 double since_last_update;
1209 double etemp, dtemp;
1210
1211 abs_offset = fabs(offset);
1212
Denys Vlasenko12628b72010-01-11 01:31:59 +01001213#if 0
Denys Vlasenko24928ff2010-01-25 19:30:16 +01001214 /* If needed, -S script can do it by looking at $offset
1215 * env var and killing parent */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001216 /* If the offset is too large, give up and go home */
1217 if (abs_offset > PANIC_THRESHOLD) {
1218 bb_error_msg_and_die("offset %f far too big, exiting", offset);
1219 }
Denys Vlasenko12628b72010-01-11 01:31:59 +01001220#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001221
1222 /* If this is an old update, for instance as the result
1223 * of a system peer change, avoid it. We never use
1224 * an old sample or the same sample twice.
1225 */
1226 if (recv_time <= G.last_update_recv_time) {
1227 VERB3 bb_error_msg("same or older datapoint: %f >= %f, not using it",
1228 G.last_update_recv_time, recv_time);
1229 return 0; /* "leave poll interval as is" */
1230 }
1231
1232 /* Clock state machine transition function. This is where the
1233 * action is and defines how the system reacts to large time
1234 * and frequency errors.
1235 */
1236 since_last_update = recv_time - G.reftime;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001237#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001238 freq_drift = 0;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001239#endif
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001240#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001241 if (G.discipline_state == STATE_FREQ) {
1242 /* Ignore updates until the stepout threshold */
1243 if (since_last_update < WATCH_THRESHOLD) {
1244 VERB3 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1245 WATCH_THRESHOLD - since_last_update);
1246 return 0; /* "leave poll interval as is" */
1247 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001248# if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001249 freq_drift = (offset - G.last_update_offset) / since_last_update;
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001250# endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001251 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001252#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001253
1254 /* There are two main regimes: when the
1255 * offset exceeds the step threshold and when it does not.
1256 */
1257 if (abs_offset > STEP_THRESHOLD) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001258 switch (G.discipline_state) {
1259 case STATE_SYNC:
1260 /* The first outlyer: ignore it, switch to SPIK state */
1261 VERB3 bb_error_msg("offset:%f - spike detected", offset);
1262 G.discipline_state = STATE_SPIK;
1263 return -1; /* "decrease poll interval" */
1264
1265 case STATE_SPIK:
1266 /* Ignore succeeding outlyers until either an inlyer
1267 * is found or the stepout threshold is exceeded.
1268 */
1269 if (since_last_update < WATCH_THRESHOLD) {
1270 VERB3 bb_error_msg("spike detected, datapoint ignored, %f sec remains",
1271 WATCH_THRESHOLD - since_last_update);
1272 return -1; /* "decrease poll interval" */
1273 }
1274 /* fall through: we need to step */
1275 } /* switch */
1276
1277 /* Step the time and clamp down the poll interval.
1278 *
1279 * In NSET state an initial frequency correction is
1280 * not available, usually because the frequency file has
1281 * not yet been written. Since the time is outside the
1282 * capture range, the clock is stepped. The frequency
1283 * will be set directly following the stepout interval.
1284 *
1285 * In FSET state the initial frequency has been set
1286 * from the frequency file. Since the time is outside
1287 * the capture range, the clock is stepped immediately,
1288 * rather than after the stepout interval. Guys get
1289 * nervous if it takes 17 minutes to set the clock for
1290 * the first time.
1291 *
1292 * In SPIK state the stepout threshold has expired and
1293 * the phase is still above the step threshold. Note
1294 * that a single spike greater than the step threshold
1295 * is always suppressed, even at the longer poll
1296 * intervals.
1297 */
1298 VERB3 bb_error_msg("stepping time by %f; poll_exp=MINPOLL", offset);
1299 step_time(offset);
1300 if (option_mask32 & OPT_q) {
1301 /* We were only asked to set time once. Done. */
1302 exit(0);
1303 }
1304
1305 G.polladj_count = 0;
1306 G.poll_exp = MINPOLL;
1307 G.stratum = MAXSTRAT;
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001308
Denys Vlasenko12628b72010-01-11 01:31:59 +01001309 run_script("step", offset);
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001310
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001311#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001312 if (G.discipline_state == STATE_NSET) {
1313 set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1314 return 1; /* "ok to increase poll interval" */
1315 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001316#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001317 set_new_values(STATE_SYNC, /*offset:*/ 0, recv_time);
1318
1319 } else { /* abs_offset <= STEP_THRESHOLD */
1320
Denys Vlasenko0b002812010-01-03 08:59:59 +01001321 if (G.poll_exp < MINPOLL && G.initial_poll_complete) {
1322 VERB3 bb_error_msg("small offset:%f, disabling burst mode", offset);
1323 G.polladj_count = 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001324 G.poll_exp = MINPOLL;
1325 }
1326
1327 /* Compute the clock jitter as the RMS of exponentially
1328 * weighted offset differences. Used by the poll adjust code.
1329 */
1330 etemp = SQUARE(G.discipline_jitter);
1331 dtemp = SQUARE(MAXD(fabs(offset - G.last_update_offset), G_precision_sec));
1332 G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1333 VERB3 bb_error_msg("discipline jitter=%f", G.discipline_jitter);
1334
1335 switch (G.discipline_state) {
1336 case STATE_NSET:
1337 if (option_mask32 & OPT_q) {
1338 /* We were only asked to set time once.
1339 * The clock is precise enough, no need to step.
1340 */
1341 exit(0);
1342 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001343#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001344 /* This is the first update received and the frequency
1345 * has not been initialized. The first thing to do
1346 * is directly measure the oscillator frequency.
1347 */
1348 set_new_values(STATE_FREQ, offset, recv_time);
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001349#else
1350 set_new_values(STATE_SYNC, offset, recv_time);
1351#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001352 VERB3 bb_error_msg("transitioning to FREQ, datapoint ignored");
Denys Vlasenko0b002812010-01-03 08:59:59 +01001353 return 0; /* "leave poll interval as is" */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001354
1355#if 0 /* this is dead code for now */
1356 case STATE_FSET:
1357 /* This is the first update and the frequency
1358 * has been initialized. Adjust the phase, but
1359 * don't adjust the frequency until the next update.
1360 */
1361 set_new_values(STATE_SYNC, offset, recv_time);
1362 /* freq_drift remains 0 */
1363 break;
1364#endif
1365
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001366#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001367 case STATE_FREQ:
1368 /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1369 * Correct the phase and frequency and switch to SYNC state.
1370 * freq_drift was already estimated (see code above)
1371 */
1372 set_new_values(STATE_SYNC, offset, recv_time);
1373 break;
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001374#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001375
1376 default:
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001377#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001378 /* Compute freq_drift due to PLL and FLL contributions.
1379 *
1380 * The FLL and PLL frequency gain constants
1381 * depend on the poll interval and Allan
1382 * intercept. The FLL is not used below one-half
1383 * the Allan intercept. Above that the loop gain
1384 * increases in steps to 1 / AVG.
1385 */
1386 if ((1 << G.poll_exp) > ALLAN / 2) {
1387 etemp = FLL - G.poll_exp;
1388 if (etemp < AVG)
1389 etemp = AVG;
1390 freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1391 }
1392 /* For the PLL the integration interval
1393 * (numerator) is the minimum of the update
1394 * interval and poll interval. This allows
1395 * oversampling, but not undersampling.
1396 */
1397 etemp = MIND(since_last_update, (1 << G.poll_exp));
1398 dtemp = (4 * PLL) << G.poll_exp;
1399 freq_drift += offset * etemp / SQUARE(dtemp);
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001400#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001401 set_new_values(STATE_SYNC, offset, recv_time);
1402 break;
1403 }
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001404 if (G.stratum != p->lastpkt_stratum + 1) {
1405 G.stratum = p->lastpkt_stratum + 1;
Denys Vlasenko12628b72010-01-11 01:31:59 +01001406 run_script("stratum", offset);
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001407 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001408 }
1409
Denys Vlasenko0b002812010-01-03 08:59:59 +01001410 G.reftime = G.cur_time;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001411 G.ntp_status = p->lastpkt_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001412 G.refid = p->lastpkt_refid;
1413 G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001414 dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
Denys Vlasenko0b002812010-01-03 08:59:59 +01001415 dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001416 G.rootdisp = p->lastpkt_rootdisp + dtemp;
1417 VERB3 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1418
1419 /* We are in STATE_SYNC now, but did not do adjtimex yet.
1420 * (Any other state does not reach this, they all return earlier)
1421 * By this time, freq_drift and G.last_update_offset are set
1422 * to values suitable for adjtimex.
Denys Vlasenko61313112010-01-01 19:56:16 +01001423 */
1424#if !USING_KERNEL_PLL_LOOP
1425 /* Calculate the new frequency drift and frequency stability (wander).
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001426 * Compute the clock wander as the RMS of exponentially weighted
1427 * frequency differences. This is not used directly, but can,
1428 * along with the jitter, be a highly useful monitoring and
1429 * debugging tool.
1430 */
1431 dtemp = G.discipline_freq_drift + freq_drift;
Denys Vlasenko61313112010-01-01 19:56:16 +01001432 G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001433 etemp = SQUARE(G.discipline_wander);
1434 dtemp = SQUARE(dtemp);
1435 G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1436
Denys Vlasenko61313112010-01-01 19:56:16 +01001437 VERB3 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1438 G.discipline_freq_drift,
1439 (long)(G.discipline_freq_drift * 65536e6),
1440 freq_drift,
1441 G.discipline_wander);
1442#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001443 VERB3 {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001444 memset(&tmx, 0, sizeof(tmx));
1445 if (adjtimex(&tmx) < 0)
1446 bb_perror_msg_and_die("adjtimex");
1447 VERB3 bb_error_msg("p adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1448 tmx.freq, tmx.offset, tmx.constant, tmx.status);
1449 }
1450
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001451 memset(&tmx, 0, sizeof(tmx));
1452#if 0
Denys Vlasenko61313112010-01-01 19:56:16 +01001453//doesn't work, offset remains 0 (!) in kernel:
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001454//ntpd: set adjtimex freq:1786097 tmx.offset:77487
1455//ntpd: prev adjtimex freq:1786097 tmx.offset:0
1456//ntpd: cur adjtimex freq:1786097 tmx.offset:0
1457 tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1458 /* 65536 is one ppm */
1459 tmx.freq = G.discipline_freq_drift * 65536e6;
1460 tmx.offset = G.last_update_offset * 1000000; /* usec */
1461#endif
1462 tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
Denys Vlasenko57f46c12010-01-17 03:01:15 +01001463 tmx.offset = (G.last_update_offset * 1000000); /* usec */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001464 /* + (G.last_update_offset < 0 ? -0.5 : 0.5) - too small to bother */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001465 tmx.status = STA_PLL;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001466 if (G.ntp_status & LI_PLUSSEC)
1467 tmx.status |= STA_INS;
1468 if (G.ntp_status & LI_MINUSSEC)
1469 tmx.status |= STA_DEL;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001470 tmx.constant = G.poll_exp - 4;
1471 //tmx.esterror = (u_int32)(clock_jitter * 1e6);
1472 //tmx.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001473 rc = adjtimex(&tmx);
1474 if (rc < 0)
1475 bb_perror_msg_and_die("adjtimex");
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001476 /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1477 * Not sure why. Perhaps it is normal.
1478 */
1479 VERB3 bb_error_msg("adjtimex:%d freq:%ld offset:%ld constant:%ld status:0x%x",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001480 rc, tmx.freq, tmx.offset, tmx.constant, tmx.status);
Denys Vlasenko61313112010-01-01 19:56:16 +01001481#if 0
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001482 VERB3 {
Denys Vlasenko61313112010-01-01 19:56:16 +01001483 /* always gives the same output as above msg */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001484 memset(&tmx, 0, sizeof(tmx));
1485 if (adjtimex(&tmx) < 0)
1486 bb_perror_msg_and_die("adjtimex");
1487 VERB3 bb_error_msg("c adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1488 tmx.freq, tmx.offset, tmx.constant, tmx.status);
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001489 }
Denys Vlasenko61313112010-01-01 19:56:16 +01001490#endif
Denys Vlasenko12628b72010-01-11 01:31:59 +01001491 G.kernel_freq_drift = tmx.freq / 65536;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001492 VERB2 bb_error_msg("update peer:%s, offset:%f, clock drift:%ld ppm",
1493 p->p_dotted, G.last_update_offset, G.kernel_freq_drift);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001494
1495 return 1; /* "ok to increase poll interval" */
1496}
1497
1498
1499/*
1500 * We've got a new reply packet from a peer, process it
1501 * (helpers first)
1502 */
1503static unsigned
1504retry_interval(void)
1505{
1506 /* Local problem, want to retry soon */
1507 unsigned interval, r;
1508 interval = RETRY_INTERVAL;
1509 r = random();
1510 interval += r % (unsigned)(RETRY_INTERVAL / 4);
1511 VERB3 bb_error_msg("chose retry interval:%u", interval);
1512 return interval;
1513}
1514static unsigned
Denys Vlasenko0b002812010-01-03 08:59:59 +01001515poll_interval(int exponent)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001516{
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001517 unsigned interval, r;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001518 exponent = G.poll_exp + exponent;
1519 if (exponent < 0)
1520 exponent = 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001521 interval = 1 << exponent;
1522 r = random();
1523 interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */
1524 VERB3 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent);
1525 return interval;
1526}
Denys Vlasenko0b002812010-01-03 08:59:59 +01001527static NOINLINE void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001528recv_and_process_peer_pkt(peer_t *p)
1529{
1530 int rc;
1531 ssize_t size;
1532 msg_t msg;
1533 double T1, T2, T3, T4;
1534 unsigned interval;
1535 datapoint_t *datapoint;
1536 peer_t *q;
1537
1538 /* We can recvfrom here and check from.IP, but some multihomed
1539 * ntp servers reply from their *other IP*.
1540 * TODO: maybe we should check at least what we can: from.port == 123?
1541 */
1542 size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1543 if (size == -1) {
1544 bb_perror_msg("recv(%s) error", p->p_dotted);
1545 if (errno == EHOSTUNREACH || errno == EHOSTDOWN
1546 || errno == ENETUNREACH || errno == ENETDOWN
1547 || errno == ECONNREFUSED || errno == EADDRNOTAVAIL
1548 || errno == EAGAIN
1549 ) {
1550//TODO: always do this?
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001551 interval = retry_interval();
1552 goto set_next_and_close_sock;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001553 }
1554 xfunc_die();
1555 }
1556
1557 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1558 bb_error_msg("malformed packet received from %s", p->p_dotted);
1559 goto bail;
1560 }
1561
1562 if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1563 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1564 ) {
1565 goto bail;
1566 }
1567
1568 if ((msg.m_status & LI_ALARM) == LI_ALARM
1569 || msg.m_stratum == 0
1570 || msg.m_stratum > NTP_MAXSTRATUM
1571 ) {
1572// TODO: stratum 0 responses may have commands in 32-bit m_refid field:
1573// "DENY", "RSTR" - peer does not like us at all
1574// "RATE" - peer is overloaded, reduce polling freq
1575 interval = poll_interval(0);
1576 bb_error_msg("reply from %s: not synced, next query in %us", p->p_dotted, interval);
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001577 goto set_next_and_close_sock;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001578 }
1579
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001580// /* Verify valid root distance */
1581// if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1582// return; /* invalid header values */
1583
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001584 p->lastpkt_status = msg.m_status;
1585 p->lastpkt_stratum = msg.m_stratum;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001586 p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1587 p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1588 p->lastpkt_refid = msg.m_refid;
1589
1590 /*
1591 * From RFC 2030 (with a correction to the delay math):
1592 *
1593 * Timestamp Name ID When Generated
1594 * ------------------------------------------------------------
1595 * Originate Timestamp T1 time request sent by client
1596 * Receive Timestamp T2 time request received by server
1597 * Transmit Timestamp T3 time reply sent by server
1598 * Destination Timestamp T4 time reply received by client
1599 *
1600 * The roundtrip delay and local clock offset are defined as
1601 *
1602 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1603 */
1604 T1 = p->p_xmttime;
1605 T2 = lfp_to_d(msg.m_rectime);
1606 T3 = lfp_to_d(msg.m_xmttime);
Denys Vlasenko0b002812010-01-03 08:59:59 +01001607 T4 = G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001608
1609 p->lastpkt_recv_time = T4;
1610
1611 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
Denys Vlasenko0b002812010-01-03 08:59:59 +01001612 p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001613 datapoint = &p->filter_datapoint[p->datapoint_idx];
1614 datapoint->d_recv_time = T4;
1615 datapoint->d_offset = ((T2 - T1) + (T3 - T4)) / 2;
1616 /* The delay calculation is a special case. In cases where the
1617 * server and client clocks are running at different rates and
1618 * with very fast networks, the delay can appear negative. In
1619 * order to avoid violating the Principle of Least Astonishment,
1620 * the delay is clamped not less than the system precision.
1621 */
1622 p->lastpkt_delay = (T4 - T1) - (T3 - T2);
Denys Vlasenkoa9aaeda2010-01-01 22:23:27 +01001623 if (p->lastpkt_delay < G_precision_sec)
1624 p->lastpkt_delay = G_precision_sec;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001625 datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001626 if (!p->reachable_bits) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001627 /* 1st datapoint ever - replicate offset in every element */
1628 int i;
1629 for (i = 1; i < NUM_DATAPOINTS; i++) {
1630 p->filter_datapoint[i].d_offset = datapoint->d_offset;
1631 }
1632 }
1633
Denys Vlasenko0b002812010-01-03 08:59:59 +01001634 p->reachable_bits |= 1;
Denys Vlasenko074e8dc2010-01-04 23:58:13 +01001635 if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001636 bb_error_msg("reply from %s: reach 0x%02x offset %f delay %f status 0x%02x strat %d refid 0x%08x rootdelay %f",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001637 p->p_dotted,
Denys Vlasenko0b002812010-01-03 08:59:59 +01001638 p->reachable_bits,
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001639 datapoint->d_offset,
1640 p->lastpkt_delay,
1641 p->lastpkt_status,
1642 p->lastpkt_stratum,
1643 p->lastpkt_refid,
1644 p->lastpkt_rootdelay
1645 /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1646 * m_reftime, m_orgtime, m_rectime, m_xmttime
1647 */
1648 );
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001649 }
1650
1651 /* Muck with statictics and update the clock */
Denys Vlasenko0b002812010-01-03 08:59:59 +01001652 filter_datapoints(p);
1653 q = select_and_cluster();
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001654 rc = -1;
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001655 if (q) {
1656 rc = 0;
Denys Vlasenko12628b72010-01-11 01:31:59 +01001657 if (!(option_mask32 & OPT_w)) {
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001658 rc = update_local_clock(q);
Denys Vlasenko12628b72010-01-11 01:31:59 +01001659 /* If drift is dangerously large, immediately
1660 * drop poll interval one step down.
1661 */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001662 if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
Denys Vlasenko65d722b2010-01-11 02:14:04 +01001663 VERB3 bb_error_msg("offset:%f > POLLDOWN_OFFSET", q->filter_offset);
Denys Vlasenko12628b72010-01-11 01:31:59 +01001664 goto poll_down;
1665 }
1666 }
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001667 }
Denys Vlasenko12628b72010-01-11 01:31:59 +01001668 /* else: no peer selected, rc = -1: we want to poll more often */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001669
1670 if (rc != 0) {
1671 /* Adjust the poll interval by comparing the current offset
1672 * with the clock jitter. If the offset is less than
1673 * the clock jitter times a constant, then the averaging interval
1674 * is increased, otherwise it is decreased. A bit of hysteresis
1675 * helps calm the dance. Works best using burst mode.
1676 */
1677 VERB4 if (rc > 0) {
1678 bb_error_msg("offset:%f POLLADJ_GATE*discipline_jitter:%f poll:%s",
1679 q->filter_offset, POLLADJ_GATE * G.discipline_jitter,
1680 fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter
1681 ? "grows" : "falls"
1682 );
1683 }
1684 if (rc > 0 && fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter) {
Denys Vlasenkobfc2a322010-01-01 18:12:06 +01001685 /* was += G.poll_exp but it is a bit
1686 * too optimistic for my taste at high poll_exp's */
1687 G.polladj_count += MINPOLL;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001688 if (G.polladj_count > POLLADJ_LIMIT) {
1689 G.polladj_count = 0;
1690 if (G.poll_exp < MAXPOLL) {
1691 G.poll_exp++;
1692 VERB3 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1693 G.discipline_jitter, G.poll_exp);
1694 }
1695 } else {
1696 VERB3 bb_error_msg("polladj: incr:%d", G.polladj_count);
1697 }
1698 } else {
1699 G.polladj_count -= G.poll_exp * 2;
Denys Vlasenko12628b72010-01-11 01:31:59 +01001700 if (G.polladj_count < -POLLADJ_LIMIT || G.poll_exp >= BIGPOLL) {
1701 poll_down:
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001702 G.polladj_count = 0;
1703 if (G.poll_exp > MINPOLL) {
Denys Vlasenko2e36eb82010-01-02 01:50:16 +01001704 llist_t *item;
1705
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001706 G.poll_exp--;
Denys Vlasenko2e36eb82010-01-02 01:50:16 +01001707 /* Correct p->next_action_time in each peer
1708 * which waits for sending, so that they send earlier.
1709 * Old pp->next_action_time are on the order
1710 * of t + (1 << old_poll_exp) + small_random,
1711 * we simply need to subtract ~half of that.
1712 */
1713 for (item = G.ntp_peers; item != NULL; item = item->link) {
1714 peer_t *pp = (peer_t *) item->data;
1715 if (pp->p_fd < 0)
1716 pp->next_action_time -= (1 << G.poll_exp);
1717 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001718 VERB3 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1719 G.discipline_jitter, G.poll_exp);
1720 }
1721 } else {
1722 VERB3 bb_error_msg("polladj: decr:%d", G.polladj_count);
1723 }
1724 }
1725 }
1726
1727 /* Decide when to send new query for this peer */
1728 interval = poll_interval(0);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001729
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001730 set_next_and_close_sock:
1731 set_next(p, interval);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001732 /* We do not expect any more packets from this peer for now.
1733 * Closing the socket informs kernel about it.
1734 * We open a new socket when we send a new query.
1735 */
1736 close(p->p_fd);
1737 p->p_fd = -1;
1738 bail:
1739 return;
1740}
1741
1742#if ENABLE_FEATURE_NTPD_SERVER
Denys Vlasenko0b002812010-01-03 08:59:59 +01001743static NOINLINE void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001744recv_and_process_client_pkt(void /*int fd*/)
1745{
1746 ssize_t size;
Cristian Ionescu-Idbohrn662972a2011-05-16 03:53:00 +02001747 //uint8_t version;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001748 len_and_sockaddr *to;
1749 struct sockaddr *from;
1750 msg_t msg;
1751 uint8_t query_status;
1752 l_fixedpt_t query_xmttime;
1753
1754 to = get_sock_lsa(G.listen_fd);
1755 from = xzalloc(to->len);
1756
1757 size = recv_from_to(G.listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
1758 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1759 char *addr;
1760 if (size < 0) {
1761 if (errno == EAGAIN)
1762 goto bail;
1763 bb_perror_msg_and_die("recv");
1764 }
1765 addr = xmalloc_sockaddr2dotted_noport(from);
1766 bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
1767 free(addr);
1768 goto bail;
1769 }
1770
1771 query_status = msg.m_status;
1772 query_xmttime = msg.m_xmttime;
1773
1774 /* Build a reply packet */
1775 memset(&msg, 0, sizeof(msg));
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001776 msg.m_status = G.stratum < MAXSTRAT ? G.ntp_status : LI_ALARM;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001777 msg.m_status |= (query_status & VERSION_MASK);
1778 msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
1779 MODE_SERVER : MODE_SYM_PAS;
1780 msg.m_stratum = G.stratum;
1781 msg.m_ppoll = G.poll_exp;
1782 msg.m_precision_exp = G_precision_exp;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001783 /* this time was obtained between poll() and recv() */
1784 msg.m_rectime = d_to_lfp(G.cur_time);
1785 msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
Denys Vlasenkod6782572010-10-04 01:20:44 +02001786 if (G.peer_cnt == 0) {
1787 /* we have no peers: "stratum 1 server" mode. reftime = our own time */
1788 G.reftime = G.cur_time;
1789 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001790 msg.m_reftime = d_to_lfp(G.reftime);
1791 msg.m_orgtime = query_xmttime;
1792 msg.m_rootdelay = d_to_sfp(G.rootdelay);
1793//simple code does not do this, fix simple code!
1794 msg.m_rootdisp = d_to_sfp(G.rootdisp);
Cristian Ionescu-Idbohrn662972a2011-05-16 03:53:00 +02001795 //version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001796 msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
1797
1798 /* We reply from the local address packet was sent to,
1799 * this makes to/from look swapped here: */
1800 do_sendto(G.listen_fd,
1801 /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
1802 &msg, size);
1803
1804 bail:
1805 free(to);
1806 free(from);
1807}
1808#endif
1809
1810/* Upstream ntpd's options:
1811 *
1812 * -4 Force DNS resolution of host names to the IPv4 namespace.
1813 * -6 Force DNS resolution of host names to the IPv6 namespace.
1814 * -a Require cryptographic authentication for broadcast client,
1815 * multicast client and symmetric passive associations.
1816 * This is the default.
1817 * -A Do not require cryptographic authentication for broadcast client,
1818 * multicast client and symmetric passive associations.
1819 * This is almost never a good idea.
1820 * -b Enable the client to synchronize to broadcast servers.
1821 * -c conffile
1822 * Specify the name and path of the configuration file,
1823 * default /etc/ntp.conf
1824 * -d Specify debugging mode. This option may occur more than once,
1825 * with each occurrence indicating greater detail of display.
1826 * -D level
1827 * Specify debugging level directly.
1828 * -f driftfile
1829 * Specify the name and path of the frequency file.
1830 * This is the same operation as the "driftfile FILE"
1831 * configuration command.
1832 * -g Normally, ntpd exits with a message to the system log
1833 * if the offset exceeds the panic threshold, which is 1000 s
1834 * by default. This option allows the time to be set to any value
1835 * without restriction; however, this can happen only once.
1836 * If the threshold is exceeded after that, ntpd will exit
1837 * with a message to the system log. This option can be used
1838 * with the -q and -x options. See the tinker command for other options.
1839 * -i jaildir
1840 * Chroot the server to the directory jaildir. This option also implies
1841 * that the server attempts to drop root privileges at startup
1842 * (otherwise, chroot gives very little additional security).
1843 * You may need to also specify a -u option.
1844 * -k keyfile
1845 * Specify the name and path of the symmetric key file,
1846 * default /etc/ntp/keys. This is the same operation
1847 * as the "keys FILE" configuration command.
1848 * -l logfile
1849 * Specify the name and path of the log file. The default
1850 * is the system log file. This is the same operation as
1851 * the "logfile FILE" configuration command.
1852 * -L Do not listen to virtual IPs. The default is to listen.
1853 * -n Don't fork.
1854 * -N To the extent permitted by the operating system,
1855 * run the ntpd at the highest priority.
1856 * -p pidfile
1857 * Specify the name and path of the file used to record the ntpd
1858 * process ID. This is the same operation as the "pidfile FILE"
1859 * configuration command.
1860 * -P priority
1861 * To the extent permitted by the operating system,
1862 * run the ntpd at the specified priority.
1863 * -q Exit the ntpd just after the first time the clock is set.
1864 * This behavior mimics that of the ntpdate program, which is
1865 * to be retired. The -g and -x options can be used with this option.
1866 * Note: The kernel time discipline is disabled with this option.
1867 * -r broadcastdelay
1868 * Specify the default propagation delay from the broadcast/multicast
1869 * server to this client. This is necessary only if the delay
1870 * cannot be computed automatically by the protocol.
1871 * -s statsdir
1872 * Specify the directory path for files created by the statistics
1873 * facility. This is the same operation as the "statsdir DIR"
1874 * configuration command.
1875 * -t key
1876 * Add a key number to the trusted key list. This option can occur
1877 * more than once.
1878 * -u user[:group]
1879 * Specify a user, and optionally a group, to switch to.
1880 * -v variable
1881 * -V variable
1882 * Add a system variable listed by default.
1883 * -x Normally, the time is slewed if the offset is less than the step
1884 * threshold, which is 128 ms by default, and stepped if above
1885 * the threshold. This option sets the threshold to 600 s, which is
1886 * well within the accuracy window to set the clock manually.
1887 * Note: since the slew rate of typical Unix kernels is limited
1888 * to 0.5 ms/s, each second of adjustment requires an amortization
1889 * interval of 2000 s. Thus, an adjustment as much as 600 s
1890 * will take almost 14 days to complete. This option can be used
1891 * with the -g and -q options. See the tinker command for other options.
1892 * Note: The kernel time discipline is disabled with this option.
1893 */
1894
1895/* By doing init in a separate function we decrease stack usage
1896 * in main loop.
1897 */
1898static NOINLINE void ntp_init(char **argv)
1899{
1900 unsigned opts;
1901 llist_t *peers;
1902
1903 srandom(getpid());
1904
1905 if (getuid())
1906 bb_error_msg_and_die(bb_msg_you_must_be_root);
1907
1908 /* Set some globals */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001909 G.stratum = MAXSTRAT;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001910 if (BURSTPOLL != 0)
1911 G.poll_exp = BURSTPOLL; /* speeds up initial sync */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001912 G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001913
1914 /* Parse options */
1915 peers = NULL;
Denys Vlasenko074e8dc2010-01-04 23:58:13 +01001916 opt_complementary = "dd:p::wn"; /* d: counter; p: list; -w implies -n */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001917 opts = getopt32(argv,
1918 "nqNx" /* compat */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001919 "wp:S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001920 "d" /* compat */
1921 "46aAbgL", /* compat, ignored */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001922 &peers, &G.script_name, &G.verbose);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001923 if (!(opts & (OPT_p|OPT_l)))
1924 bb_show_usage();
1925// if (opts & OPT_x) /* disable stepping, only slew is allowed */
1926// G.time_was_stepped = 1;
Denys Vlasenkod6782572010-10-04 01:20:44 +02001927 if (peers) {
1928 while (peers)
1929 add_peers(llist_pop(&peers));
1930 } else {
1931 /* -l but no peers: "stratum 1 server" mode */
1932 G.stratum = 1;
1933 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001934 if (!(opts & OPT_n)) {
1935 bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
1936 logmode = LOGMODE_NONE;
1937 }
1938#if ENABLE_FEATURE_NTPD_SERVER
1939 G.listen_fd = -1;
1940 if (opts & OPT_l) {
1941 G.listen_fd = create_and_bind_dgram_or_die(NULL, 123);
1942 socket_want_pktinfo(G.listen_fd);
1943 setsockopt(G.listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
1944 }
1945#endif
1946 /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
1947 if (opts & OPT_N)
1948 setpriority(PRIO_PROCESS, 0, -15);
1949
Denys Vlasenko74c992a2010-08-27 02:15:01 +02001950 /* If network is up, syncronization occurs in ~10 seconds.
Denys Vlasenko8e23faf2011-04-07 01:45:20 +02001951 * We give "ntpd -q" 10 seconds to get first reply,
1952 * then another 50 seconds to finish syncing.
Denys Vlasenko74c992a2010-08-27 02:15:01 +02001953 *
1954 * I tested ntpd 4.2.6p1 and apparently it never exits
1955 * (will try forever), but it does not feel right.
1956 * The goal of -q is to act like ntpdate: set time
1957 * after a reasonably small period of polling, or fail.
1958 */
Denys Vlasenko8e23faf2011-04-07 01:45:20 +02001959 if (opts & OPT_q) {
1960 option_mask32 |= OPT_qq;
1961 alarm(10);
1962 }
Denys Vlasenko74c992a2010-08-27 02:15:01 +02001963
1964 bb_signals(0
1965 | (1 << SIGTERM)
1966 | (1 << SIGINT)
1967 | (1 << SIGALRM)
1968 , record_signo
1969 );
1970 bb_signals(0
1971 | (1 << SIGPIPE)
1972 | (1 << SIGCHLD)
1973 , SIG_IGN
1974 );
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001975}
1976
1977int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
1978int ntpd_main(int argc UNUSED_PARAM, char **argv)
1979{
Denys Vlasenko0b002812010-01-03 08:59:59 +01001980#undef G
1981 struct globals G;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001982 struct pollfd *pfd;
1983 peer_t **idx2peer;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001984 unsigned cnt;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001985
Denys Vlasenko0b002812010-01-03 08:59:59 +01001986 memset(&G, 0, sizeof(G));
1987 SET_PTR_TO_GLOBALS(&G);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001988
1989 ntp_init(argv);
1990
Denys Vlasenko0b002812010-01-03 08:59:59 +01001991 /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
1992 cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
1993 idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
1994 pfd = xzalloc(sizeof(pfd[0]) * cnt);
1995
Leonid Lisovskiy894ef602010-10-20 22:36:51 +02001996 /* Countdown: we never sync before we sent INITIAL_SAMPLES+1
Denys Vlasenko65d722b2010-01-11 02:14:04 +01001997 * packets to each peer.
Denys Vlasenko0b002812010-01-03 08:59:59 +01001998 * NB: if some peer is not responding, we may end up sending
1999 * fewer packets to it and more to other peers.
Leonid Lisovskiy894ef602010-10-20 22:36:51 +02002000 * NB2: sync usually happens using INITIAL_SAMPLES packets,
Denys Vlasenko65d722b2010-01-11 02:14:04 +01002001 * since last reply does not come back instantaneously.
Denys Vlasenko0b002812010-01-03 08:59:59 +01002002 */
Leonid Lisovskiy894ef602010-10-20 22:36:51 +02002003 cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002004
2005 while (!bb_got_signal) {
2006 llist_t *item;
2007 unsigned i, j;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002008 int nfds, timeout;
Denys Vlasenko0b002812010-01-03 08:59:59 +01002009 double nextaction;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002010
2011 /* Nothing between here and poll() blocks for any significant time */
2012
Denys Vlasenko0b002812010-01-03 08:59:59 +01002013 nextaction = G.cur_time + 3600;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002014
2015 i = 0;
2016#if ENABLE_FEATURE_NTPD_SERVER
Denys Vlasenko0b002812010-01-03 08:59:59 +01002017 if (G.listen_fd != -1) {
2018 pfd[0].fd = G.listen_fd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002019 pfd[0].events = POLLIN;
2020 i++;
2021 }
2022#endif
2023 /* Pass over peer list, send requests, time out on receives */
Denys Vlasenko0b002812010-01-03 08:59:59 +01002024 for (item = G.ntp_peers; item != NULL; item = item->link) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002025 peer_t *p = (peer_t *) item->data;
2026
Denys Vlasenko0b002812010-01-03 08:59:59 +01002027 if (p->next_action_time <= G.cur_time) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002028 if (p->p_fd == -1) {
2029 /* Time to send new req */
Denys Vlasenko0b002812010-01-03 08:59:59 +01002030 if (--cnt == 0) {
2031 G.initial_poll_complete = 1;
2032 }
2033 send_query_to_peer(p);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002034 } else {
2035 /* Timed out waiting for reply */
2036 close(p->p_fd);
2037 p->p_fd = -1;
Denys Vlasenko0b002812010-01-03 08:59:59 +01002038 timeout = poll_interval(-2); /* -2: try a bit sooner */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002039 bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
Denys Vlasenko0b002812010-01-03 08:59:59 +01002040 p->p_dotted, p->reachable_bits, timeout);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002041 set_next(p, timeout);
2042 }
2043 }
2044
2045 if (p->next_action_time < nextaction)
2046 nextaction = p->next_action_time;
2047
2048 if (p->p_fd >= 0) {
2049 /* Wait for reply from this peer */
2050 pfd[i].fd = p->p_fd;
2051 pfd[i].events = POLLIN;
2052 idx2peer[i] = p;
2053 i++;
2054 }
2055 }
2056
Denys Vlasenko0b002812010-01-03 08:59:59 +01002057 timeout = nextaction - G.cur_time;
2058 if (timeout < 0)
2059 timeout = 0;
2060 timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002061
2062 /* Here we may block */
Denys Vlasenkoae473352010-01-07 11:51:13 +01002063 VERB2 bb_error_msg("poll %us, sockets:%u, poll interval:%us", timeout, i, 1 << G.poll_exp);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002064 nfds = poll(pfd, i, timeout * 1000);
Denys Vlasenko0b002812010-01-03 08:59:59 +01002065 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002066 if (nfds <= 0) {
Denys Vlasenko24928ff2010-01-25 19:30:16 +01002067 if (G.script_name && G.cur_time - G.last_script_run > 11*60) {
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002068 /* Useful for updating battery-backed RTC and such */
Denys Vlasenko12628b72010-01-11 01:31:59 +01002069 run_script("periodic", G.last_update_offset);
Denys Vlasenko06667f22010-01-06 13:05:08 +01002070 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002071 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002072 continue;
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002073 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002074
2075 /* Process any received packets */
2076 j = 0;
2077#if ENABLE_FEATURE_NTPD_SERVER
Denys Vlasenko0b002812010-01-03 08:59:59 +01002078 if (G.listen_fd != -1) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002079 if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2080 nfds--;
Denys Vlasenko0b002812010-01-03 08:59:59 +01002081 recv_and_process_client_pkt(/*G.listen_fd*/);
2082 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002083 }
2084 j = 1;
2085 }
2086#endif
2087 for (; nfds != 0 && j < i; j++) {
2088 if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
Denys Vlasenko8e23faf2011-04-07 01:45:20 +02002089 /*
2090 * At init, alarm was set to 10 sec.
2091 * Now we did get a reply.
2092 * Increase timeout to 50 seconds to finish syncing.
2093 */
2094 if (option_mask32 & OPT_qq) {
2095 option_mask32 &= ~OPT_qq;
2096 alarm(50);
2097 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002098 nfds--;
2099 recv_and_process_peer_pkt(idx2peer[j]);
Denys Vlasenko0b002812010-01-03 08:59:59 +01002100 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002101 }
2102 }
2103 } /* while (!bb_got_signal) */
2104
2105 kill_myself_with_sig(bb_got_signal);
2106}
2107
2108
2109
2110
2111
2112
2113/*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2114
2115/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2116
2117#if 0
2118static double
2119direct_freq(double fp_offset)
2120{
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002121#ifdef KERNEL_PLL
2122 /*
2123 * If the kernel is enabled, we need the residual offset to
2124 * calculate the frequency correction.
2125 */
2126 if (pll_control && kern_enable) {
2127 memset(&ntv, 0, sizeof(ntv));
2128 ntp_adjtime(&ntv);
2129#ifdef STA_NANO
2130 clock_offset = ntv.offset / 1e9;
2131#else /* STA_NANO */
2132 clock_offset = ntv.offset / 1e6;
2133#endif /* STA_NANO */
2134 drift_comp = FREQTOD(ntv.freq);
2135 }
2136#endif /* KERNEL_PLL */
2137 set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2138 wander_resid = 0;
2139 return drift_comp;
2140}
2141
2142static void
Denys Vlasenkofb132e42010-10-29 11:46:52 +02002143set_freq(double freq) /* frequency update */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002144{
2145 char tbuf[80];
2146
2147 drift_comp = freq;
2148
2149#ifdef KERNEL_PLL
2150 /*
2151 * If the kernel is enabled, update the kernel frequency.
2152 */
2153 if (pll_control && kern_enable) {
2154 memset(&ntv, 0, sizeof(ntv));
2155 ntv.modes = MOD_FREQUENCY;
2156 ntv.freq = DTOFREQ(drift_comp);
2157 ntp_adjtime(&ntv);
2158 snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2159 report_event(EVNT_FSET, NULL, tbuf);
2160 } else {
2161 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2162 report_event(EVNT_FSET, NULL, tbuf);
2163 }
2164#else /* KERNEL_PLL */
2165 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2166 report_event(EVNT_FSET, NULL, tbuf);
2167#endif /* KERNEL_PLL */
2168}
2169
2170...
2171...
2172...
2173
2174#ifdef KERNEL_PLL
2175 /*
2176 * This code segment works when clock adjustments are made using
2177 * precision time kernel support and the ntp_adjtime() system
2178 * call. This support is available in Solaris 2.6 and later,
2179 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2180 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2181 * DECstation 5000/240 and Alpha AXP, additional kernel
2182 * modifications provide a true microsecond clock and nanosecond
2183 * clock, respectively.
2184 *
2185 * Important note: The kernel discipline is used only if the
2186 * step threshold is less than 0.5 s, as anything higher can
2187 * lead to overflow problems. This might occur if some misguided
2188 * lad set the step threshold to something ridiculous.
2189 */
2190 if (pll_control && kern_enable) {
2191
2192#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2193
2194 /*
2195 * We initialize the structure for the ntp_adjtime()
2196 * system call. We have to convert everything to
2197 * microseconds or nanoseconds first. Do not update the
2198 * system variables if the ext_enable flag is set. In
2199 * this case, the external clock driver will update the
2200 * variables, which will be read later by the local
2201 * clock driver. Afterwards, remember the time and
2202 * frequency offsets for jitter and stability values and
2203 * to update the frequency file.
2204 */
2205 memset(&ntv, 0, sizeof(ntv));
2206 if (ext_enable) {
2207 ntv.modes = MOD_STATUS;
2208 } else {
2209#ifdef STA_NANO
2210 ntv.modes = MOD_BITS | MOD_NANO;
2211#else /* STA_NANO */
2212 ntv.modes = MOD_BITS;
2213#endif /* STA_NANO */
2214 if (clock_offset < 0)
2215 dtemp = -.5;
2216 else
2217 dtemp = .5;
2218#ifdef STA_NANO
2219 ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2220 ntv.constant = sys_poll;
2221#else /* STA_NANO */
2222 ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2223 ntv.constant = sys_poll - 4;
2224#endif /* STA_NANO */
2225 ntv.esterror = (u_int32)(clock_jitter * 1e6);
2226 ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2227 ntv.status = STA_PLL;
2228
2229 /*
2230 * Enable/disable the PPS if requested.
2231 */
2232 if (pps_enable) {
2233 if (!(pll_status & STA_PPSTIME))
2234 report_event(EVNT_KERN,
2235 NULL, "PPS enabled");
2236 ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2237 } else {
2238 if (pll_status & STA_PPSTIME)
2239 report_event(EVNT_KERN,
2240 NULL, "PPS disabled");
2241 ntv.status &= ~(STA_PPSTIME |
2242 STA_PPSFREQ);
2243 }
2244 if (sys_leap == LEAP_ADDSECOND)
2245 ntv.status |= STA_INS;
2246 else if (sys_leap == LEAP_DELSECOND)
2247 ntv.status |= STA_DEL;
2248 }
2249
2250 /*
2251 * Pass the stuff to the kernel. If it squeals, turn off
2252 * the pps. In any case, fetch the kernel offset,
2253 * frequency and jitter.
2254 */
2255 if (ntp_adjtime(&ntv) == TIME_ERROR) {
2256 if (!(ntv.status & STA_PPSSIGNAL))
2257 report_event(EVNT_KERN, NULL,
2258 "PPS no signal");
2259 }
2260 pll_status = ntv.status;
2261#ifdef STA_NANO
2262 clock_offset = ntv.offset / 1e9;
2263#else /* STA_NANO */
2264 clock_offset = ntv.offset / 1e6;
2265#endif /* STA_NANO */
2266 clock_frequency = FREQTOD(ntv.freq);
2267
2268 /*
2269 * If the kernel PPS is lit, monitor its performance.
2270 */
2271 if (ntv.status & STA_PPSTIME) {
2272#ifdef STA_NANO
2273 clock_jitter = ntv.jitter / 1e9;
2274#else /* STA_NANO */
2275 clock_jitter = ntv.jitter / 1e6;
2276#endif /* STA_NANO */
2277 }
2278
2279#if defined(STA_NANO) && NTP_API == 4
2280 /*
2281 * If the TAI changes, update the kernel TAI.
2282 */
2283 if (loop_tai != sys_tai) {
2284 loop_tai = sys_tai;
2285 ntv.modes = MOD_TAI;
2286 ntv.constant = sys_tai;
2287 ntp_adjtime(&ntv);
2288 }
2289#endif /* STA_NANO */
2290 }
2291#endif /* KERNEL_PLL */
2292#endif