Mike Frysinger | 51a43b4 | 2005-09-24 07:11:16 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Dictionary Abstract Data Type |
| 3 | * Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net> |
| 4 | * |
| 5 | * Free Software License: |
| 6 | * |
| 7 | * All rights are reserved by the author, with the following exceptions: |
| 8 | * Permission is granted to freely reproduce and distribute this software, |
| 9 | * possibly in exchange for a fee, provided that this copyright notice appears |
| 10 | * intact. Permission is also granted to adapt this software to produce |
| 11 | * derivative works, as long as the modified versions carry this copyright |
| 12 | * notice and additional notices stating that the work has been modified. |
| 13 | * This source code may be translated into executable form and incorporated |
| 14 | * into proprietary software; there is no requirement for such software to |
| 15 | * contain a copyright notice related to this source. |
| 16 | * |
| 17 | * $Id: dict.c,v 1.40.2.7 2000/11/13 01:36:44 kaz Exp $ |
| 18 | * $Name: kazlib_1_20 $ |
| 19 | */ |
| 20 | |
| 21 | #ifdef __GNUC__ |
| 22 | #define EXT2FS_ATTR(x) __attribute__(x) |
| 23 | #else |
| 24 | #define EXT2FS_ATTR(x) |
| 25 | #endif |
| 26 | |
| 27 | #include <stdlib.h> |
| 28 | #include <stddef.h> |
| 29 | #include <assert.h> |
| 30 | #define DICT_IMPLEMENTATION |
| 31 | #include "dict.h" |
| 32 | |
Mike Frysinger | 5423df9 | 2005-09-24 07:20:59 +0000 | [diff] [blame] | 33 | #define NDEBUG |
Mike Frysinger | 51a43b4 | 2005-09-24 07:11:16 +0000 | [diff] [blame] | 34 | |
| 35 | /* |
| 36 | * These macros provide short convenient names for structure members, |
| 37 | * which are embellished with dict_ prefixes so that they are |
| 38 | * properly confined to the documented namespace. It's legal for a |
| 39 | * program which uses dict to define, for instance, a macro called ``parent''. |
| 40 | * Such a macro would interfere with the dnode_t struct definition. |
| 41 | * In general, highly portable and reusable C modules which expose their |
| 42 | * structures need to confine structure member names to well-defined spaces. |
| 43 | * The resulting identifiers aren't necessarily convenient to use, nor |
| 44 | * readable, in the implementation, however! |
| 45 | */ |
| 46 | |
| 47 | #define left dict_left |
| 48 | #define right dict_right |
| 49 | #define parent dict_parent |
| 50 | #define color dict_color |
| 51 | #define key dict_key |
| 52 | #define data dict_data |
| 53 | |
| 54 | #define nilnode dict_nilnode |
| 55 | #define nodecount dict_nodecount |
| 56 | #define maxcount dict_maxcount |
| 57 | #define compare dict_compare |
| 58 | #define allocnode dict_allocnode |
| 59 | #define freenode dict_freenode |
| 60 | #define context dict_context |
| 61 | #define dupes dict_dupes |
| 62 | |
| 63 | #define dictptr dict_dictptr |
| 64 | |
| 65 | #define dict_root(D) ((D)->nilnode.left) |
| 66 | #define dict_nil(D) (&(D)->nilnode) |
| 67 | #define DICT_DEPTH_MAX 64 |
| 68 | |
| 69 | static dnode_t *dnode_alloc(void *context); |
| 70 | static void dnode_free(dnode_t *node, void *context); |
| 71 | |
| 72 | /* |
| 73 | * Perform a ``left rotation'' adjustment on the tree. The given node P and |
| 74 | * its right child C are rearranged so that the P instead becomes the left |
| 75 | * child of C. The left subtree of C is inherited as the new right subtree |
| 76 | * for P. The ordering of the keys within the tree is thus preserved. |
| 77 | */ |
| 78 | |
| 79 | static void rotate_left(dnode_t *upper) |
| 80 | { |
| 81 | dnode_t *lower, *lowleft, *upparent; |
| 82 | |
| 83 | lower = upper->right; |
| 84 | upper->right = lowleft = lower->left; |
| 85 | lowleft->parent = upper; |
| 86 | |
| 87 | lower->parent = upparent = upper->parent; |
| 88 | |
| 89 | /* don't need to check for root node here because root->parent is |
| 90 | the sentinel nil node, and root->parent->left points back to root */ |
| 91 | |
| 92 | if (upper == upparent->left) { |
| 93 | upparent->left = lower; |
| 94 | } else { |
| 95 | assert (upper == upparent->right); |
| 96 | upparent->right = lower; |
| 97 | } |
| 98 | |
| 99 | lower->left = upper; |
| 100 | upper->parent = lower; |
| 101 | } |
| 102 | |
| 103 | /* |
| 104 | * This operation is the ``mirror'' image of rotate_left. It is |
| 105 | * the same procedure, but with left and right interchanged. |
| 106 | */ |
| 107 | |
| 108 | static void rotate_right(dnode_t *upper) |
| 109 | { |
| 110 | dnode_t *lower, *lowright, *upparent; |
| 111 | |
| 112 | lower = upper->left; |
| 113 | upper->left = lowright = lower->right; |
| 114 | lowright->parent = upper; |
| 115 | |
| 116 | lower->parent = upparent = upper->parent; |
| 117 | |
| 118 | if (upper == upparent->right) { |
| 119 | upparent->right = lower; |
| 120 | } else { |
| 121 | assert (upper == upparent->left); |
| 122 | upparent->left = lower; |
| 123 | } |
| 124 | |
| 125 | lower->right = upper; |
| 126 | upper->parent = lower; |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * Do a postorder traversal of the tree rooted at the specified |
| 131 | * node and free everything under it. Used by dict_free(). |
| 132 | */ |
| 133 | |
| 134 | static void free_nodes(dict_t *dict, dnode_t *node, dnode_t *nil) |
| 135 | { |
| 136 | if (node == nil) |
| 137 | return; |
| 138 | free_nodes(dict, node->left, nil); |
| 139 | free_nodes(dict, node->right, nil); |
| 140 | dict->freenode(node, dict->context); |
| 141 | } |
| 142 | |
| 143 | /* |
| 144 | * This procedure performs a verification that the given subtree is a binary |
| 145 | * search tree. It performs an inorder traversal of the tree using the |
| 146 | * dict_next() successor function, verifying that the key of each node is |
| 147 | * strictly lower than that of its successor, if duplicates are not allowed, |
| 148 | * or lower or equal if duplicates are allowed. This function is used for |
| 149 | * debugging purposes. |
| 150 | */ |
| 151 | #ifndef NDEBUG |
| 152 | static int verify_bintree(dict_t *dict) |
| 153 | { |
| 154 | dnode_t *first, *next; |
| 155 | |
| 156 | first = dict_first(dict); |
| 157 | |
| 158 | if (dict->dupes) { |
| 159 | while (first && (next = dict_next(dict, first))) { |
| 160 | if (dict->compare(first->key, next->key) > 0) |
| 161 | return 0; |
| 162 | first = next; |
| 163 | } |
| 164 | } else { |
| 165 | while (first && (next = dict_next(dict, first))) { |
| 166 | if (dict->compare(first->key, next->key) >= 0) |
| 167 | return 0; |
| 168 | first = next; |
| 169 | } |
| 170 | } |
| 171 | return 1; |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * This function recursively verifies that the given binary subtree satisfies |
| 176 | * three of the red black properties. It checks that every red node has only |
| 177 | * black children. It makes sure that each node is either red or black. And it |
| 178 | * checks that every path has the same count of black nodes from root to leaf. |
| 179 | * It returns the blackheight of the given subtree; this allows blackheights to |
| 180 | * be computed recursively and compared for left and right siblings for |
| 181 | * mismatches. It does not check for every nil node being black, because there |
| 182 | * is only one sentinel nil node. The return value of this function is the |
| 183 | * black height of the subtree rooted at the node ``root'', or zero if the |
| 184 | * subtree is not red-black. |
| 185 | */ |
| 186 | |
| 187 | static unsigned int verify_redblack(dnode_t *nil, dnode_t *root) |
| 188 | { |
| 189 | unsigned height_left, height_right; |
| 190 | |
| 191 | if (root != nil) { |
| 192 | height_left = verify_redblack(nil, root->left); |
| 193 | height_right = verify_redblack(nil, root->right); |
| 194 | if (height_left == 0 || height_right == 0) |
| 195 | return 0; |
| 196 | if (height_left != height_right) |
| 197 | return 0; |
| 198 | if (root->color == dnode_red) { |
| 199 | if (root->left->color != dnode_black) |
| 200 | return 0; |
| 201 | if (root->right->color != dnode_black) |
| 202 | return 0; |
| 203 | return height_left; |
| 204 | } |
| 205 | if (root->color != dnode_black) |
| 206 | return 0; |
| 207 | return height_left + 1; |
| 208 | } |
| 209 | return 1; |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * Compute the actual count of nodes by traversing the tree and |
| 214 | * return it. This could be compared against the stored count to |
| 215 | * detect a mismatch. |
| 216 | */ |
| 217 | |
| 218 | static dictcount_t verify_node_count(dnode_t *nil, dnode_t *root) |
| 219 | { |
| 220 | if (root == nil) |
| 221 | return 0; |
| 222 | else |
| 223 | return 1 + verify_node_count(nil, root->left) |
| 224 | + verify_node_count(nil, root->right); |
| 225 | } |
| 226 | #endif |
| 227 | |
| 228 | /* |
| 229 | * Verify that the tree contains the given node. This is done by |
| 230 | * traversing all of the nodes and comparing their pointers to the |
| 231 | * given pointer. Returns 1 if the node is found, otherwise |
| 232 | * returns zero. It is intended for debugging purposes. |
| 233 | */ |
| 234 | |
| 235 | static int verify_dict_has_node(dnode_t *nil, dnode_t *root, dnode_t *node) |
| 236 | { |
| 237 | if (root != nil) { |
| 238 | return root == node |
| 239 | || verify_dict_has_node(nil, root->left, node) |
| 240 | || verify_dict_has_node(nil, root->right, node); |
| 241 | } |
| 242 | return 0; |
| 243 | } |
| 244 | |
| 245 | |
| 246 | #ifdef E2FSCK_NOTUSED |
| 247 | /* |
| 248 | * Dynamically allocate and initialize a dictionary object. |
| 249 | */ |
| 250 | |
| 251 | dict_t *dict_create(dictcount_t maxcount, dict_comp_t comp) |
| 252 | { |
| 253 | dict_t *new = malloc(sizeof *new); |
| 254 | |
| 255 | if (new) { |
| 256 | new->compare = comp; |
| 257 | new->allocnode = dnode_alloc; |
| 258 | new->freenode = dnode_free; |
| 259 | new->context = NULL; |
| 260 | new->nodecount = 0; |
| 261 | new->maxcount = maxcount; |
| 262 | new->nilnode.left = &new->nilnode; |
| 263 | new->nilnode.right = &new->nilnode; |
| 264 | new->nilnode.parent = &new->nilnode; |
| 265 | new->nilnode.color = dnode_black; |
| 266 | new->dupes = 0; |
| 267 | } |
| 268 | return new; |
| 269 | } |
| 270 | #endif /* E2FSCK_NOTUSED */ |
| 271 | |
| 272 | /* |
| 273 | * Select a different set of node allocator routines. |
| 274 | */ |
| 275 | |
| 276 | void dict_set_allocator(dict_t *dict, dnode_alloc_t al, |
| 277 | dnode_free_t fr, void *context) |
| 278 | { |
| 279 | assert (dict_count(dict) == 0); |
| 280 | assert ((al == NULL && fr == NULL) || (al != NULL && fr != NULL)); |
| 281 | |
| 282 | dict->allocnode = al ? al : dnode_alloc; |
| 283 | dict->freenode = fr ? fr : dnode_free; |
| 284 | dict->context = context; |
| 285 | } |
| 286 | |
| 287 | #ifdef E2FSCK_NOTUSED |
| 288 | /* |
| 289 | * Free a dynamically allocated dictionary object. Removing the nodes |
| 290 | * from the tree before deleting it is required. |
| 291 | */ |
| 292 | |
| 293 | void dict_destroy(dict_t *dict) |
| 294 | { |
| 295 | assert (dict_isempty(dict)); |
| 296 | free(dict); |
| 297 | } |
| 298 | #endif |
| 299 | |
| 300 | /* |
| 301 | * Free all the nodes in the dictionary by using the dictionary's |
| 302 | * installed free routine. The dictionary is emptied. |
| 303 | */ |
| 304 | |
| 305 | void dict_free_nodes(dict_t *dict) |
| 306 | { |
| 307 | dnode_t *nil = dict_nil(dict), *root = dict_root(dict); |
| 308 | free_nodes(dict, root, nil); |
| 309 | dict->nodecount = 0; |
| 310 | dict->nilnode.left = &dict->nilnode; |
| 311 | dict->nilnode.right = &dict->nilnode; |
| 312 | } |
| 313 | |
| 314 | #ifdef E2FSCK_NOTUSED |
| 315 | /* |
| 316 | * Obsolescent function, equivalent to dict_free_nodes |
| 317 | */ |
| 318 | void dict_free(dict_t *dict) |
| 319 | { |
| 320 | #ifdef KAZLIB_OBSOLESCENT_DEBUG |
| 321 | assert ("call to obsolescent function dict_free()" && 0); |
| 322 | #endif |
| 323 | dict_free_nodes(dict); |
| 324 | } |
| 325 | #endif |
| 326 | |
| 327 | /* |
| 328 | * Initialize a user-supplied dictionary object. |
| 329 | */ |
| 330 | |
| 331 | dict_t *dict_init(dict_t *dict, dictcount_t maxcount, dict_comp_t comp) |
| 332 | { |
| 333 | dict->compare = comp; |
| 334 | dict->allocnode = dnode_alloc; |
| 335 | dict->freenode = dnode_free; |
| 336 | dict->context = NULL; |
| 337 | dict->nodecount = 0; |
| 338 | dict->maxcount = maxcount; |
| 339 | dict->nilnode.left = &dict->nilnode; |
| 340 | dict->nilnode.right = &dict->nilnode; |
| 341 | dict->nilnode.parent = &dict->nilnode; |
| 342 | dict->nilnode.color = dnode_black; |
| 343 | dict->dupes = 0; |
| 344 | return dict; |
| 345 | } |
| 346 | |
| 347 | #ifdef E2FSCK_NOTUSED |
| 348 | /* |
| 349 | * Initialize a dictionary in the likeness of another dictionary |
| 350 | */ |
| 351 | |
| 352 | void dict_init_like(dict_t *dict, const dict_t *template) |
| 353 | { |
| 354 | dict->compare = template->compare; |
| 355 | dict->allocnode = template->allocnode; |
| 356 | dict->freenode = template->freenode; |
| 357 | dict->context = template->context; |
| 358 | dict->nodecount = 0; |
| 359 | dict->maxcount = template->maxcount; |
| 360 | dict->nilnode.left = &dict->nilnode; |
| 361 | dict->nilnode.right = &dict->nilnode; |
| 362 | dict->nilnode.parent = &dict->nilnode; |
| 363 | dict->nilnode.color = dnode_black; |
| 364 | dict->dupes = template->dupes; |
| 365 | |
| 366 | assert (dict_similar(dict, template)); |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * Remove all nodes from the dictionary (without freeing them in any way). |
| 371 | */ |
| 372 | |
| 373 | static void dict_clear(dict_t *dict) |
| 374 | { |
| 375 | dict->nodecount = 0; |
| 376 | dict->nilnode.left = &dict->nilnode; |
| 377 | dict->nilnode.right = &dict->nilnode; |
| 378 | dict->nilnode.parent = &dict->nilnode; |
| 379 | assert (dict->nilnode.color == dnode_black); |
| 380 | } |
| 381 | |
| 382 | |
| 383 | /* |
| 384 | * Verify the integrity of the dictionary structure. This is provided for |
| 385 | * debugging purposes, and should be placed in assert statements. Just because |
| 386 | * this function succeeds doesn't mean that the tree is not corrupt. Certain |
| 387 | * corruptions in the tree may simply cause undefined behavior. |
| 388 | */ |
| 389 | |
| 390 | int dict_verify(dict_t *dict) |
| 391 | { |
| 392 | #ifndef NDEBUG |
| 393 | dnode_t *nil = dict_nil(dict), *root = dict_root(dict); |
| 394 | |
| 395 | /* check that the sentinel node and root node are black */ |
| 396 | if (root->color != dnode_black) |
| 397 | return 0; |
| 398 | if (nil->color != dnode_black) |
| 399 | return 0; |
| 400 | if (nil->right != nil) |
| 401 | return 0; |
| 402 | /* nil->left is the root node; check that its parent pointer is nil */ |
| 403 | if (nil->left->parent != nil) |
| 404 | return 0; |
| 405 | /* perform a weak test that the tree is a binary search tree */ |
| 406 | if (!verify_bintree(dict)) |
| 407 | return 0; |
| 408 | /* verify that the tree is a red-black tree */ |
| 409 | if (!verify_redblack(nil, root)) |
| 410 | return 0; |
| 411 | if (verify_node_count(nil, root) != dict_count(dict)) |
| 412 | return 0; |
| 413 | #endif |
| 414 | return 1; |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * Determine whether two dictionaries are similar: have the same comparison and |
| 419 | * allocator functions, and same status as to whether duplicates are allowed. |
| 420 | */ |
| 421 | |
| 422 | int dict_similar(const dict_t *left, const dict_t *right) |
| 423 | { |
| 424 | if (left->compare != right->compare) |
| 425 | return 0; |
| 426 | |
| 427 | if (left->allocnode != right->allocnode) |
| 428 | return 0; |
| 429 | |
| 430 | if (left->freenode != right->freenode) |
| 431 | return 0; |
| 432 | |
| 433 | if (left->context != right->context) |
| 434 | return 0; |
| 435 | |
| 436 | if (left->dupes != right->dupes) |
| 437 | return 0; |
| 438 | |
| 439 | return 1; |
| 440 | } |
| 441 | #endif /* E2FSCK_NOTUSED */ |
| 442 | |
| 443 | /* |
| 444 | * Locate a node in the dictionary having the given key. |
| 445 | * If the node is not found, a null a pointer is returned (rather than |
| 446 | * a pointer that dictionary's nil sentinel node), otherwise a pointer to the |
| 447 | * located node is returned. |
| 448 | */ |
| 449 | |
| 450 | dnode_t *dict_lookup(dict_t *dict, const void *key) |
| 451 | { |
| 452 | dnode_t *root = dict_root(dict); |
| 453 | dnode_t *nil = dict_nil(dict); |
| 454 | dnode_t *saved; |
| 455 | int result; |
| 456 | |
| 457 | /* simple binary search adapted for trees that contain duplicate keys */ |
| 458 | |
| 459 | while (root != nil) { |
| 460 | result = dict->compare(key, root->key); |
| 461 | if (result < 0) |
| 462 | root = root->left; |
| 463 | else if (result > 0) |
| 464 | root = root->right; |
| 465 | else { |
| 466 | if (!dict->dupes) { /* no duplicates, return match */ |
| 467 | return root; |
| 468 | } else { /* could be dupes, find leftmost one */ |
| 469 | do { |
| 470 | saved = root; |
| 471 | root = root->left; |
| 472 | while (root != nil && dict->compare(key, root->key)) |
| 473 | root = root->right; |
| 474 | } while (root != nil); |
| 475 | return saved; |
| 476 | } |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | return NULL; |
| 481 | } |
| 482 | |
| 483 | #ifdef E2FSCK_NOTUSED |
| 484 | /* |
| 485 | * Look for the node corresponding to the lowest key that is equal to or |
| 486 | * greater than the given key. If there is no such node, return null. |
| 487 | */ |
| 488 | |
| 489 | dnode_t *dict_lower_bound(dict_t *dict, const void *key) |
| 490 | { |
| 491 | dnode_t *root = dict_root(dict); |
| 492 | dnode_t *nil = dict_nil(dict); |
| 493 | dnode_t *tentative = 0; |
| 494 | |
| 495 | while (root != nil) { |
| 496 | int result = dict->compare(key, root->key); |
| 497 | |
| 498 | if (result > 0) { |
| 499 | root = root->right; |
| 500 | } else if (result < 0) { |
| 501 | tentative = root; |
| 502 | root = root->left; |
| 503 | } else { |
| 504 | if (!dict->dupes) { |
| 505 | return root; |
| 506 | } else { |
| 507 | tentative = root; |
| 508 | root = root->left; |
| 509 | } |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | return tentative; |
| 514 | } |
| 515 | |
| 516 | /* |
| 517 | * Look for the node corresponding to the greatest key that is equal to or |
| 518 | * lower than the given key. If there is no such node, return null. |
| 519 | */ |
| 520 | |
| 521 | dnode_t *dict_upper_bound(dict_t *dict, const void *key) |
| 522 | { |
| 523 | dnode_t *root = dict_root(dict); |
| 524 | dnode_t *nil = dict_nil(dict); |
| 525 | dnode_t *tentative = 0; |
| 526 | |
| 527 | while (root != nil) { |
| 528 | int result = dict->compare(key, root->key); |
| 529 | |
| 530 | if (result < 0) { |
| 531 | root = root->left; |
| 532 | } else if (result > 0) { |
| 533 | tentative = root; |
| 534 | root = root->right; |
| 535 | } else { |
| 536 | if (!dict->dupes) { |
| 537 | return root; |
| 538 | } else { |
| 539 | tentative = root; |
| 540 | root = root->right; |
| 541 | } |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | return tentative; |
| 546 | } |
| 547 | #endif |
| 548 | |
| 549 | /* |
| 550 | * Insert a node into the dictionary. The node should have been |
| 551 | * initialized with a data field. All other fields are ignored. |
| 552 | * The behavior is undefined if the user attempts to insert into |
| 553 | * a dictionary that is already full (for which the dict_isfull() |
| 554 | * function returns true). |
| 555 | */ |
| 556 | |
| 557 | void dict_insert(dict_t *dict, dnode_t *node, const void *key) |
| 558 | { |
| 559 | dnode_t *where = dict_root(dict), *nil = dict_nil(dict); |
| 560 | dnode_t *parent = nil, *uncle, *grandpa; |
| 561 | int result = -1; |
| 562 | |
| 563 | node->key = key; |
| 564 | |
| 565 | assert (!dict_isfull(dict)); |
| 566 | assert (!dict_contains(dict, node)); |
| 567 | assert (!dnode_is_in_a_dict(node)); |
| 568 | |
| 569 | /* basic binary tree insert */ |
| 570 | |
| 571 | while (where != nil) { |
| 572 | parent = where; |
| 573 | result = dict->compare(key, where->key); |
| 574 | /* trap attempts at duplicate key insertion unless it's explicitly allowed */ |
| 575 | assert (dict->dupes || result != 0); |
| 576 | if (result < 0) |
| 577 | where = where->left; |
| 578 | else |
| 579 | where = where->right; |
| 580 | } |
| 581 | |
| 582 | assert (where == nil); |
| 583 | |
| 584 | if (result < 0) |
| 585 | parent->left = node; |
| 586 | else |
| 587 | parent->right = node; |
| 588 | |
| 589 | node->parent = parent; |
| 590 | node->left = nil; |
| 591 | node->right = nil; |
| 592 | |
| 593 | dict->nodecount++; |
| 594 | |
| 595 | /* red black adjustments */ |
| 596 | |
| 597 | node->color = dnode_red; |
| 598 | |
| 599 | while (parent->color == dnode_red) { |
| 600 | grandpa = parent->parent; |
| 601 | if (parent == grandpa->left) { |
| 602 | uncle = grandpa->right; |
| 603 | if (uncle->color == dnode_red) { /* red parent, red uncle */ |
| 604 | parent->color = dnode_black; |
| 605 | uncle->color = dnode_black; |
| 606 | grandpa->color = dnode_red; |
| 607 | node = grandpa; |
| 608 | parent = grandpa->parent; |
| 609 | } else { /* red parent, black uncle */ |
| 610 | if (node == parent->right) { |
| 611 | rotate_left(parent); |
| 612 | parent = node; |
| 613 | assert (grandpa == parent->parent); |
| 614 | /* rotation between parent and child preserves grandpa */ |
| 615 | } |
| 616 | parent->color = dnode_black; |
| 617 | grandpa->color = dnode_red; |
| 618 | rotate_right(grandpa); |
| 619 | break; |
| 620 | } |
| 621 | } else { /* symmetric cases: parent == parent->parent->right */ |
| 622 | uncle = grandpa->left; |
| 623 | if (uncle->color == dnode_red) { |
| 624 | parent->color = dnode_black; |
| 625 | uncle->color = dnode_black; |
| 626 | grandpa->color = dnode_red; |
| 627 | node = grandpa; |
| 628 | parent = grandpa->parent; |
| 629 | } else { |
| 630 | if (node == parent->left) { |
| 631 | rotate_right(parent); |
| 632 | parent = node; |
| 633 | assert (grandpa == parent->parent); |
| 634 | } |
| 635 | parent->color = dnode_black; |
| 636 | grandpa->color = dnode_red; |
| 637 | rotate_left(grandpa); |
| 638 | break; |
| 639 | } |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | dict_root(dict)->color = dnode_black; |
| 644 | |
| 645 | assert (dict_verify(dict)); |
| 646 | } |
| 647 | |
| 648 | #ifdef E2FSCK_NOTUSED |
| 649 | /* |
| 650 | * Delete the given node from the dictionary. If the given node does not belong |
| 651 | * to the given dictionary, undefined behavior results. A pointer to the |
| 652 | * deleted node is returned. |
| 653 | */ |
| 654 | |
| 655 | dnode_t *dict_delete(dict_t *dict, dnode_t *delete) |
| 656 | { |
| 657 | dnode_t *nil = dict_nil(dict), *child, *delparent = delete->parent; |
| 658 | |
| 659 | /* basic deletion */ |
| 660 | |
| 661 | assert (!dict_isempty(dict)); |
| 662 | assert (dict_contains(dict, delete)); |
| 663 | |
| 664 | /* |
| 665 | * If the node being deleted has two children, then we replace it with its |
| 666 | * successor (i.e. the leftmost node in the right subtree.) By doing this, |
| 667 | * we avoid the traditional algorithm under which the successor's key and |
| 668 | * value *only* move to the deleted node and the successor is spliced out |
| 669 | * from the tree. We cannot use this approach because the user may hold |
| 670 | * pointers to the successor, or nodes may be inextricably tied to some |
| 671 | * other structures by way of embedding, etc. So we must splice out the |
| 672 | * node we are given, not some other node, and must not move contents from |
| 673 | * one node to another behind the user's back. |
| 674 | */ |
| 675 | |
| 676 | if (delete->left != nil && delete->right != nil) { |
| 677 | dnode_t *next = dict_next(dict, delete); |
| 678 | dnode_t *nextparent = next->parent; |
| 679 | dnode_color_t nextcolor = next->color; |
| 680 | |
| 681 | assert (next != nil); |
| 682 | assert (next->parent != nil); |
| 683 | assert (next->left == nil); |
| 684 | |
| 685 | /* |
| 686 | * First, splice out the successor from the tree completely, by |
| 687 | * moving up its right child into its place. |
| 688 | */ |
| 689 | |
| 690 | child = next->right; |
| 691 | child->parent = nextparent; |
| 692 | |
| 693 | if (nextparent->left == next) { |
| 694 | nextparent->left = child; |
| 695 | } else { |
| 696 | assert (nextparent->right == next); |
| 697 | nextparent->right = child; |
| 698 | } |
| 699 | |
| 700 | /* |
| 701 | * Now that the successor has been extricated from the tree, install it |
| 702 | * in place of the node that we want deleted. |
| 703 | */ |
| 704 | |
| 705 | next->parent = delparent; |
| 706 | next->left = delete->left; |
| 707 | next->right = delete->right; |
| 708 | next->left->parent = next; |
| 709 | next->right->parent = next; |
| 710 | next->color = delete->color; |
| 711 | delete->color = nextcolor; |
| 712 | |
| 713 | if (delparent->left == delete) { |
| 714 | delparent->left = next; |
| 715 | } else { |
| 716 | assert (delparent->right == delete); |
| 717 | delparent->right = next; |
| 718 | } |
| 719 | |
| 720 | } else { |
| 721 | assert (delete != nil); |
| 722 | assert (delete->left == nil || delete->right == nil); |
| 723 | |
| 724 | child = (delete->left != nil) ? delete->left : delete->right; |
| 725 | |
| 726 | child->parent = delparent = delete->parent; |
| 727 | |
| 728 | if (delete == delparent->left) { |
| 729 | delparent->left = child; |
| 730 | } else { |
| 731 | assert (delete == delparent->right); |
| 732 | delparent->right = child; |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | delete->parent = NULL; |
| 737 | delete->right = NULL; |
| 738 | delete->left = NULL; |
| 739 | |
| 740 | dict->nodecount--; |
| 741 | |
| 742 | assert (verify_bintree(dict)); |
| 743 | |
| 744 | /* red-black adjustments */ |
| 745 | |
| 746 | if (delete->color == dnode_black) { |
| 747 | dnode_t *parent, *sister; |
| 748 | |
| 749 | dict_root(dict)->color = dnode_red; |
| 750 | |
| 751 | while (child->color == dnode_black) { |
| 752 | parent = child->parent; |
| 753 | if (child == parent->left) { |
| 754 | sister = parent->right; |
| 755 | assert (sister != nil); |
| 756 | if (sister->color == dnode_red) { |
| 757 | sister->color = dnode_black; |
| 758 | parent->color = dnode_red; |
| 759 | rotate_left(parent); |
| 760 | sister = parent->right; |
| 761 | assert (sister != nil); |
| 762 | } |
| 763 | if (sister->left->color == dnode_black |
| 764 | && sister->right->color == dnode_black) { |
| 765 | sister->color = dnode_red; |
| 766 | child = parent; |
| 767 | } else { |
| 768 | if (sister->right->color == dnode_black) { |
| 769 | assert (sister->left->color == dnode_red); |
| 770 | sister->left->color = dnode_black; |
| 771 | sister->color = dnode_red; |
| 772 | rotate_right(sister); |
| 773 | sister = parent->right; |
| 774 | assert (sister != nil); |
| 775 | } |
| 776 | sister->color = parent->color; |
| 777 | sister->right->color = dnode_black; |
| 778 | parent->color = dnode_black; |
| 779 | rotate_left(parent); |
| 780 | break; |
| 781 | } |
| 782 | } else { /* symmetric case: child == child->parent->right */ |
| 783 | assert (child == parent->right); |
| 784 | sister = parent->left; |
| 785 | assert (sister != nil); |
| 786 | if (sister->color == dnode_red) { |
| 787 | sister->color = dnode_black; |
| 788 | parent->color = dnode_red; |
| 789 | rotate_right(parent); |
| 790 | sister = parent->left; |
| 791 | assert (sister != nil); |
| 792 | } |
| 793 | if (sister->right->color == dnode_black |
| 794 | && sister->left->color == dnode_black) { |
| 795 | sister->color = dnode_red; |
| 796 | child = parent; |
| 797 | } else { |
| 798 | if (sister->left->color == dnode_black) { |
| 799 | assert (sister->right->color == dnode_red); |
| 800 | sister->right->color = dnode_black; |
| 801 | sister->color = dnode_red; |
| 802 | rotate_left(sister); |
| 803 | sister = parent->left; |
| 804 | assert (sister != nil); |
| 805 | } |
| 806 | sister->color = parent->color; |
| 807 | sister->left->color = dnode_black; |
| 808 | parent->color = dnode_black; |
| 809 | rotate_right(parent); |
| 810 | break; |
| 811 | } |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | child->color = dnode_black; |
| 816 | dict_root(dict)->color = dnode_black; |
| 817 | } |
| 818 | |
| 819 | assert (dict_verify(dict)); |
| 820 | |
| 821 | return delete; |
| 822 | } |
| 823 | #endif /* E2FSCK_NOTUSED */ |
| 824 | |
| 825 | /* |
| 826 | * Allocate a node using the dictionary's allocator routine, give it |
| 827 | * the data item. |
| 828 | */ |
| 829 | |
| 830 | int dict_alloc_insert(dict_t *dict, const void *key, void *data) |
| 831 | { |
| 832 | dnode_t *node = dict->allocnode(dict->context); |
| 833 | |
| 834 | if (node) { |
| 835 | dnode_init(node, data); |
| 836 | dict_insert(dict, node, key); |
| 837 | return 1; |
| 838 | } |
| 839 | return 0; |
| 840 | } |
| 841 | |
| 842 | #ifdef E2FSCK_NOTUSED |
| 843 | void dict_delete_free(dict_t *dict, dnode_t *node) |
| 844 | { |
| 845 | dict_delete(dict, node); |
| 846 | dict->freenode(node, dict->context); |
| 847 | } |
| 848 | #endif |
| 849 | |
| 850 | /* |
| 851 | * Return the node with the lowest (leftmost) key. If the dictionary is empty |
| 852 | * (that is, dict_isempty(dict) returns 1) a null pointer is returned. |
| 853 | */ |
| 854 | |
| 855 | dnode_t *dict_first(dict_t *dict) |
| 856 | { |
| 857 | dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *left; |
| 858 | |
| 859 | if (root != nil) |
| 860 | while ((left = root->left) != nil) |
| 861 | root = left; |
| 862 | |
| 863 | return (root == nil) ? NULL : root; |
| 864 | } |
| 865 | |
| 866 | /* |
| 867 | * Return the node with the highest (rightmost) key. If the dictionary is empty |
| 868 | * (that is, dict_isempty(dict) returns 1) a null pointer is returned. |
| 869 | */ |
| 870 | |
| 871 | dnode_t *dict_last(dict_t *dict) |
| 872 | { |
| 873 | dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *right; |
| 874 | |
| 875 | if (root != nil) |
| 876 | while ((right = root->right) != nil) |
| 877 | root = right; |
| 878 | |
| 879 | return (root == nil) ? NULL : root; |
| 880 | } |
| 881 | |
| 882 | /* |
| 883 | * Return the given node's successor node---the node which has the |
| 884 | * next key in the the left to right ordering. If the node has |
| 885 | * no successor, a null pointer is returned rather than a pointer to |
| 886 | * the nil node. |
| 887 | */ |
| 888 | |
| 889 | dnode_t *dict_next(dict_t *dict, dnode_t *curr) |
| 890 | { |
| 891 | dnode_t *nil = dict_nil(dict), *parent, *left; |
| 892 | |
| 893 | if (curr->right != nil) { |
| 894 | curr = curr->right; |
| 895 | while ((left = curr->left) != nil) |
| 896 | curr = left; |
| 897 | return curr; |
| 898 | } |
| 899 | |
| 900 | parent = curr->parent; |
| 901 | |
| 902 | while (parent != nil && curr == parent->right) { |
| 903 | curr = parent; |
| 904 | parent = curr->parent; |
| 905 | } |
| 906 | |
| 907 | return (parent == nil) ? NULL : parent; |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * Return the given node's predecessor, in the key order. |
| 912 | * The nil sentinel node is returned if there is no predecessor. |
| 913 | */ |
| 914 | |
| 915 | dnode_t *dict_prev(dict_t *dict, dnode_t *curr) |
| 916 | { |
| 917 | dnode_t *nil = dict_nil(dict), *parent, *right; |
| 918 | |
| 919 | if (curr->left != nil) { |
| 920 | curr = curr->left; |
| 921 | while ((right = curr->right) != nil) |
| 922 | curr = right; |
| 923 | return curr; |
| 924 | } |
| 925 | |
| 926 | parent = curr->parent; |
| 927 | |
| 928 | while (parent != nil && curr == parent->left) { |
| 929 | curr = parent; |
| 930 | parent = curr->parent; |
| 931 | } |
| 932 | |
| 933 | return (parent == nil) ? NULL : parent; |
| 934 | } |
| 935 | |
| 936 | void dict_allow_dupes(dict_t *dict) |
| 937 | { |
| 938 | dict->dupes = 1; |
| 939 | } |
| 940 | |
| 941 | #undef dict_count |
| 942 | #undef dict_isempty |
| 943 | #undef dict_isfull |
| 944 | #undef dnode_get |
| 945 | #undef dnode_put |
| 946 | #undef dnode_getkey |
| 947 | |
| 948 | dictcount_t dict_count(dict_t *dict) |
| 949 | { |
| 950 | return dict->nodecount; |
| 951 | } |
| 952 | |
| 953 | int dict_isempty(dict_t *dict) |
| 954 | { |
| 955 | return dict->nodecount == 0; |
| 956 | } |
| 957 | |
| 958 | int dict_isfull(dict_t *dict) |
| 959 | { |
| 960 | return dict->nodecount == dict->maxcount; |
| 961 | } |
| 962 | |
| 963 | int dict_contains(dict_t *dict, dnode_t *node) |
| 964 | { |
| 965 | return verify_dict_has_node(dict_nil(dict), dict_root(dict), node); |
| 966 | } |
| 967 | |
| 968 | static dnode_t *dnode_alloc(void *context EXT2FS_ATTR((unused))) |
| 969 | { |
| 970 | return malloc(sizeof *dnode_alloc(NULL)); |
| 971 | } |
| 972 | |
| 973 | static void dnode_free(dnode_t *node, void *context EXT2FS_ATTR((unused))) |
| 974 | { |
| 975 | free(node); |
| 976 | } |
| 977 | |
| 978 | dnode_t *dnode_create(void *data) |
| 979 | { |
| 980 | dnode_t *new = malloc(sizeof *new); |
| 981 | if (new) { |
| 982 | new->data = data; |
| 983 | new->parent = NULL; |
| 984 | new->left = NULL; |
| 985 | new->right = NULL; |
| 986 | } |
| 987 | return new; |
| 988 | } |
| 989 | |
| 990 | dnode_t *dnode_init(dnode_t *dnode, void *data) |
| 991 | { |
| 992 | dnode->data = data; |
| 993 | dnode->parent = NULL; |
| 994 | dnode->left = NULL; |
| 995 | dnode->right = NULL; |
| 996 | return dnode; |
| 997 | } |
| 998 | |
| 999 | void dnode_destroy(dnode_t *dnode) |
| 1000 | { |
| 1001 | assert (!dnode_is_in_a_dict(dnode)); |
| 1002 | free(dnode); |
| 1003 | } |
| 1004 | |
| 1005 | void *dnode_get(dnode_t *dnode) |
| 1006 | { |
| 1007 | return dnode->data; |
| 1008 | } |
| 1009 | |
| 1010 | const void *dnode_getkey(dnode_t *dnode) |
| 1011 | { |
| 1012 | return dnode->key; |
| 1013 | } |
| 1014 | |
| 1015 | #ifdef E2FSCK_NOTUSED |
| 1016 | void dnode_put(dnode_t *dnode, void *data) |
| 1017 | { |
| 1018 | dnode->data = data; |
| 1019 | } |
| 1020 | |
| 1021 | int dnode_is_in_a_dict(dnode_t *dnode) |
| 1022 | { |
| 1023 | return (dnode->parent && dnode->left && dnode->right); |
| 1024 | } |
| 1025 | |
| 1026 | void dict_process(dict_t *dict, void *context, dnode_process_t function) |
| 1027 | { |
| 1028 | dnode_t *node = dict_first(dict), *next; |
| 1029 | |
| 1030 | while (node != NULL) { |
| 1031 | /* check for callback function deleting */ |
| 1032 | /* the next node from under us */ |
| 1033 | assert (dict_contains(dict, node)); |
| 1034 | next = dict_next(dict, node); |
| 1035 | function(dict, node, context); |
| 1036 | node = next; |
| 1037 | } |
| 1038 | } |
| 1039 | |
| 1040 | static void load_begin_internal(dict_load_t *load, dict_t *dict) |
| 1041 | { |
| 1042 | load->dictptr = dict; |
| 1043 | load->nilnode.left = &load->nilnode; |
| 1044 | load->nilnode.right = &load->nilnode; |
| 1045 | } |
| 1046 | |
| 1047 | void dict_load_begin(dict_load_t *load, dict_t *dict) |
| 1048 | { |
| 1049 | assert (dict_isempty(dict)); |
| 1050 | load_begin_internal(load, dict); |
| 1051 | } |
| 1052 | |
| 1053 | void dict_load_next(dict_load_t *load, dnode_t *newnode, const void *key) |
| 1054 | { |
| 1055 | dict_t *dict = load->dictptr; |
| 1056 | dnode_t *nil = &load->nilnode; |
| 1057 | |
| 1058 | assert (!dnode_is_in_a_dict(newnode)); |
| 1059 | assert (dict->nodecount < dict->maxcount); |
| 1060 | |
| 1061 | #ifndef NDEBUG |
| 1062 | if (dict->nodecount > 0) { |
| 1063 | if (dict->dupes) |
| 1064 | assert (dict->compare(nil->left->key, key) <= 0); |
| 1065 | else |
| 1066 | assert (dict->compare(nil->left->key, key) < 0); |
| 1067 | } |
| 1068 | #endif |
| 1069 | |
| 1070 | newnode->key = key; |
| 1071 | nil->right->left = newnode; |
| 1072 | nil->right = newnode; |
| 1073 | newnode->left = nil; |
| 1074 | dict->nodecount++; |
| 1075 | } |
| 1076 | |
| 1077 | void dict_load_end(dict_load_t *load) |
| 1078 | { |
| 1079 | dict_t *dict = load->dictptr; |
| 1080 | dnode_t *tree[DICT_DEPTH_MAX] = { 0 }; |
| 1081 | dnode_t *curr, *dictnil = dict_nil(dict), *loadnil = &load->nilnode, *next; |
| 1082 | dnode_t *complete = 0; |
| 1083 | dictcount_t fullcount = DICTCOUNT_T_MAX, nodecount = dict->nodecount; |
| 1084 | dictcount_t botrowcount; |
| 1085 | unsigned baselevel = 0, level = 0, i; |
| 1086 | |
| 1087 | assert (dnode_red == 0 && dnode_black == 1); |
| 1088 | |
| 1089 | while (fullcount >= nodecount && fullcount) |
| 1090 | fullcount >>= 1; |
| 1091 | |
| 1092 | botrowcount = nodecount - fullcount; |
| 1093 | |
| 1094 | for (curr = loadnil->left; curr != loadnil; curr = next) { |
| 1095 | next = curr->left; |
| 1096 | |
| 1097 | if (complete == NULL && botrowcount-- == 0) { |
| 1098 | assert (baselevel == 0); |
| 1099 | assert (level == 0); |
| 1100 | baselevel = level = 1; |
| 1101 | complete = tree[0]; |
| 1102 | |
| 1103 | if (complete != 0) { |
| 1104 | tree[0] = 0; |
| 1105 | complete->right = dictnil; |
| 1106 | while (tree[level] != 0) { |
| 1107 | tree[level]->right = complete; |
| 1108 | complete->parent = tree[level]; |
| 1109 | complete = tree[level]; |
| 1110 | tree[level++] = 0; |
| 1111 | } |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | if (complete == NULL) { |
| 1116 | curr->left = dictnil; |
| 1117 | curr->right = dictnil; |
| 1118 | curr->color = level % 2; |
| 1119 | complete = curr; |
| 1120 | |
| 1121 | assert (level == baselevel); |
| 1122 | while (tree[level] != 0) { |
| 1123 | tree[level]->right = complete; |
| 1124 | complete->parent = tree[level]; |
| 1125 | complete = tree[level]; |
| 1126 | tree[level++] = 0; |
| 1127 | } |
| 1128 | } else { |
| 1129 | curr->left = complete; |
| 1130 | curr->color = (level + 1) % 2; |
| 1131 | complete->parent = curr; |
| 1132 | tree[level] = curr; |
| 1133 | complete = 0; |
| 1134 | level = baselevel; |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | if (complete == NULL) |
| 1139 | complete = dictnil; |
| 1140 | |
| 1141 | for (i = 0; i < DICT_DEPTH_MAX; i++) { |
| 1142 | if (tree[i] != 0) { |
| 1143 | tree[i]->right = complete; |
| 1144 | complete->parent = tree[i]; |
| 1145 | complete = tree[i]; |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | dictnil->color = dnode_black; |
| 1150 | dictnil->right = dictnil; |
| 1151 | complete->parent = dictnil; |
| 1152 | complete->color = dnode_black; |
| 1153 | dict_root(dict) = complete; |
| 1154 | |
| 1155 | assert (dict_verify(dict)); |
| 1156 | } |
| 1157 | |
| 1158 | void dict_merge(dict_t *dest, dict_t *source) |
| 1159 | { |
| 1160 | dict_load_t load; |
| 1161 | dnode_t *leftnode = dict_first(dest), *rightnode = dict_first(source); |
| 1162 | |
| 1163 | assert (dict_similar(dest, source)); |
| 1164 | |
| 1165 | if (source == dest) |
| 1166 | return; |
| 1167 | |
| 1168 | dest->nodecount = 0; |
| 1169 | load_begin_internal(&load, dest); |
| 1170 | |
| 1171 | for (;;) { |
| 1172 | if (leftnode != NULL && rightnode != NULL) { |
| 1173 | if (dest->compare(leftnode->key, rightnode->key) < 0) |
| 1174 | goto copyleft; |
| 1175 | else |
| 1176 | goto copyright; |
| 1177 | } else if (leftnode != NULL) { |
| 1178 | goto copyleft; |
| 1179 | } else if (rightnode != NULL) { |
| 1180 | goto copyright; |
| 1181 | } else { |
| 1182 | assert (leftnode == NULL && rightnode == NULL); |
| 1183 | break; |
| 1184 | } |
| 1185 | |
| 1186 | copyleft: |
| 1187 | { |
| 1188 | dnode_t *next = dict_next(dest, leftnode); |
| 1189 | #ifndef NDEBUG |
| 1190 | leftnode->left = NULL; /* suppress assertion in dict_load_next */ |
| 1191 | #endif |
| 1192 | dict_load_next(&load, leftnode, leftnode->key); |
| 1193 | leftnode = next; |
| 1194 | continue; |
| 1195 | } |
| 1196 | |
| 1197 | copyright: |
| 1198 | { |
| 1199 | dnode_t *next = dict_next(source, rightnode); |
| 1200 | #ifndef NDEBUG |
| 1201 | rightnode->left = NULL; |
| 1202 | #endif |
| 1203 | dict_load_next(&load, rightnode, rightnode->key); |
| 1204 | rightnode = next; |
| 1205 | continue; |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | dict_clear(source); |
| 1210 | dict_load_end(&load); |
| 1211 | } |
| 1212 | #endif /* E2FSCK_NOTUSED */ |
| 1213 | |
| 1214 | #ifdef KAZLIB_TEST_MAIN |
| 1215 | |
| 1216 | #include <stdio.h> |
| 1217 | #include <string.h> |
| 1218 | #include <ctype.h> |
| 1219 | #include <stdarg.h> |
| 1220 | |
| 1221 | typedef char input_t[256]; |
| 1222 | |
| 1223 | static int tokenize(char *string, ...) |
| 1224 | { |
| 1225 | char **tokptr; |
| 1226 | va_list arglist; |
| 1227 | int tokcount = 0; |
| 1228 | |
| 1229 | va_start(arglist, string); |
| 1230 | tokptr = va_arg(arglist, char **); |
| 1231 | while (tokptr) { |
| 1232 | while (*string && isspace((unsigned char) *string)) |
| 1233 | string++; |
| 1234 | if (!*string) |
| 1235 | break; |
| 1236 | *tokptr = string; |
| 1237 | while (*string && !isspace((unsigned char) *string)) |
| 1238 | string++; |
| 1239 | tokptr = va_arg(arglist, char **); |
| 1240 | tokcount++; |
| 1241 | if (!*string) |
| 1242 | break; |
| 1243 | *string++ = 0; |
| 1244 | } |
| 1245 | va_end(arglist); |
| 1246 | |
| 1247 | return tokcount; |
| 1248 | } |
| 1249 | |
| 1250 | static int comparef(const void *key1, const void *key2) |
| 1251 | { |
| 1252 | return strcmp(key1, key2); |
| 1253 | } |
| 1254 | |
| 1255 | static char *dupstring(char *str) |
| 1256 | { |
| 1257 | int sz = strlen(str) + 1; |
| 1258 | char *new = malloc(sz); |
| 1259 | if (new) |
| 1260 | memcpy(new, str, sz); |
| 1261 | return new; |
| 1262 | } |
| 1263 | |
| 1264 | static dnode_t *new_node(void *c) |
| 1265 | { |
| 1266 | static dnode_t few[5]; |
| 1267 | static int count; |
| 1268 | |
| 1269 | if (count < 5) |
| 1270 | return few + count++; |
| 1271 | |
| 1272 | return NULL; |
| 1273 | } |
| 1274 | |
| 1275 | static void del_node(dnode_t *n, void *c) |
| 1276 | { |
| 1277 | } |
| 1278 | |
| 1279 | static int prompt = 0; |
| 1280 | |
| 1281 | static void construct(dict_t *d) |
| 1282 | { |
| 1283 | input_t in; |
| 1284 | int done = 0; |
| 1285 | dict_load_t dl; |
| 1286 | dnode_t *dn; |
| 1287 | char *tok1, *tok2, *val; |
| 1288 | const char *key; |
| 1289 | char *help = |
| 1290 | "p turn prompt on\n" |
| 1291 | "q finish construction\n" |
| 1292 | "a <key> <val> add new entry\n"; |
| 1293 | |
| 1294 | if (!dict_isempty(d)) |
| 1295 | puts("warning: dictionary not empty!"); |
| 1296 | |
| 1297 | dict_load_begin(&dl, d); |
| 1298 | |
| 1299 | while (!done) { |
| 1300 | if (prompt) |
| 1301 | putchar('>'); |
| 1302 | fflush(stdout); |
| 1303 | |
| 1304 | if (!fgets(in, sizeof(input_t), stdin)) |
| 1305 | break; |
| 1306 | |
| 1307 | switch (in[0]) { |
| 1308 | case '?': |
| 1309 | puts(help); |
| 1310 | break; |
| 1311 | case 'p': |
| 1312 | prompt = 1; |
| 1313 | break; |
| 1314 | case 'q': |
| 1315 | done = 1; |
| 1316 | break; |
| 1317 | case 'a': |
| 1318 | if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) { |
| 1319 | puts("what?"); |
| 1320 | break; |
| 1321 | } |
| 1322 | key = dupstring(tok1); |
| 1323 | val = dupstring(tok2); |
| 1324 | dn = dnode_create(val); |
| 1325 | |
| 1326 | if (!key || !val || !dn) { |
| 1327 | puts("out of memory"); |
| 1328 | free((void *) key); |
| 1329 | free(val); |
| 1330 | if (dn) |
| 1331 | dnode_destroy(dn); |
| 1332 | } |
| 1333 | |
| 1334 | dict_load_next(&dl, dn, key); |
| 1335 | break; |
| 1336 | default: |
| 1337 | putchar('?'); |
| 1338 | putchar('\n'); |
| 1339 | break; |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | dict_load_end(&dl); |
| 1344 | } |
| 1345 | |
| 1346 | int main(void) |
| 1347 | { |
| 1348 | input_t in; |
| 1349 | dict_t darray[10]; |
| 1350 | dict_t *d = &darray[0]; |
| 1351 | dnode_t *dn; |
| 1352 | int i; |
| 1353 | char *tok1, *tok2, *val; |
| 1354 | const char *key; |
| 1355 | |
| 1356 | char *help = |
| 1357 | "a <key> <val> add value to dictionary\n" |
| 1358 | "d <key> delete value from dictionary\n" |
| 1359 | "l <key> lookup value in dictionary\n" |
| 1360 | "( <key> lookup lower bound\n" |
| 1361 | ") <key> lookup upper bound\n" |
| 1362 | "# <num> switch to alternate dictionary (0-9)\n" |
| 1363 | "j <num> <num> merge two dictionaries\n" |
| 1364 | "f free the whole dictionary\n" |
| 1365 | "k allow duplicate keys\n" |
| 1366 | "c show number of entries\n" |
| 1367 | "t dump whole dictionary in sort order\n" |
| 1368 | "m make dictionary out of sorted items\n" |
| 1369 | "p turn prompt on\n" |
| 1370 | "s switch to non-functioning allocator\n" |
| 1371 | "q quit"; |
| 1372 | |
| 1373 | for (i = 0; i < sizeof darray / sizeof *darray; i++) |
| 1374 | dict_init(&darray[i], DICTCOUNT_T_MAX, comparef); |
| 1375 | |
| 1376 | for (;;) { |
| 1377 | if (prompt) |
| 1378 | putchar('>'); |
| 1379 | fflush(stdout); |
| 1380 | |
| 1381 | if (!fgets(in, sizeof(input_t), stdin)) |
| 1382 | break; |
| 1383 | |
| 1384 | switch(in[0]) { |
| 1385 | case '?': |
| 1386 | puts(help); |
| 1387 | break; |
| 1388 | case 'a': |
| 1389 | if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) { |
| 1390 | puts("what?"); |
| 1391 | break; |
| 1392 | } |
| 1393 | key = dupstring(tok1); |
| 1394 | val = dupstring(tok2); |
| 1395 | |
| 1396 | if (!key || !val) { |
| 1397 | puts("out of memory"); |
| 1398 | free((void *) key); |
| 1399 | free(val); |
| 1400 | } |
| 1401 | |
| 1402 | if (!dict_alloc_insert(d, key, val)) { |
| 1403 | puts("dict_alloc_insert failed"); |
| 1404 | free((void *) key); |
| 1405 | free(val); |
| 1406 | break; |
| 1407 | } |
| 1408 | break; |
| 1409 | case 'd': |
| 1410 | if (tokenize(in+1, &tok1, (char **) 0) != 1) { |
| 1411 | puts("what?"); |
| 1412 | break; |
| 1413 | } |
| 1414 | dn = dict_lookup(d, tok1); |
| 1415 | if (!dn) { |
| 1416 | puts("dict_lookup failed"); |
| 1417 | break; |
| 1418 | } |
| 1419 | val = dnode_get(dn); |
| 1420 | key = dnode_getkey(dn); |
| 1421 | dict_delete_free(d, dn); |
| 1422 | |
| 1423 | free(val); |
| 1424 | free((void *) key); |
| 1425 | break; |
| 1426 | case 'f': |
| 1427 | dict_free(d); |
| 1428 | break; |
| 1429 | case 'l': |
| 1430 | case '(': |
| 1431 | case ')': |
| 1432 | if (tokenize(in+1, &tok1, (char **) 0) != 1) { |
| 1433 | puts("what?"); |
| 1434 | break; |
| 1435 | } |
| 1436 | dn = 0; |
| 1437 | switch (in[0]) { |
| 1438 | case 'l': |
| 1439 | dn = dict_lookup(d, tok1); |
| 1440 | break; |
| 1441 | case '(': |
| 1442 | dn = dict_lower_bound(d, tok1); |
| 1443 | break; |
| 1444 | case ')': |
| 1445 | dn = dict_upper_bound(d, tok1); |
| 1446 | break; |
| 1447 | } |
| 1448 | if (!dn) { |
| 1449 | puts("lookup failed"); |
| 1450 | break; |
| 1451 | } |
| 1452 | val = dnode_get(dn); |
| 1453 | puts(val); |
| 1454 | break; |
| 1455 | case 'm': |
| 1456 | construct(d); |
| 1457 | break; |
| 1458 | case 'k': |
| 1459 | dict_allow_dupes(d); |
| 1460 | break; |
| 1461 | case 'c': |
| 1462 | printf("%lu\n", (unsigned long) dict_count(d)); |
| 1463 | break; |
| 1464 | case 't': |
| 1465 | for (dn = dict_first(d); dn; dn = dict_next(d, dn)) { |
| 1466 | printf("%s\t%s\n", (char *) dnode_getkey(dn), |
| 1467 | (char *) dnode_get(dn)); |
| 1468 | } |
| 1469 | break; |
| 1470 | case 'q': |
| 1471 | exit(0); |
| 1472 | break; |
| 1473 | case '\0': |
| 1474 | break; |
| 1475 | case 'p': |
| 1476 | prompt = 1; |
| 1477 | break; |
| 1478 | case 's': |
| 1479 | dict_set_allocator(d, new_node, del_node, NULL); |
| 1480 | break; |
| 1481 | case '#': |
| 1482 | if (tokenize(in+1, &tok1, (char **) 0) != 1) { |
| 1483 | puts("what?"); |
| 1484 | break; |
| 1485 | } else { |
| 1486 | int dictnum = atoi(tok1); |
| 1487 | if (dictnum < 0 || dictnum > 9) { |
| 1488 | puts("invalid number"); |
| 1489 | break; |
| 1490 | } |
| 1491 | d = &darray[dictnum]; |
| 1492 | } |
| 1493 | break; |
| 1494 | case 'j': |
| 1495 | if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) { |
| 1496 | puts("what?"); |
| 1497 | break; |
| 1498 | } else { |
| 1499 | int dict1 = atoi(tok1), dict2 = atoi(tok2); |
| 1500 | if (dict1 < 0 || dict1 > 9 || dict2 < 0 || dict2 > 9) { |
| 1501 | puts("invalid number"); |
| 1502 | break; |
| 1503 | } |
| 1504 | dict_merge(&darray[dict1], &darray[dict2]); |
| 1505 | } |
| 1506 | break; |
| 1507 | default: |
| 1508 | putchar('?'); |
| 1509 | putchar('\n'); |
| 1510 | break; |
| 1511 | } |
| 1512 | } |
| 1513 | |
| 1514 | return 0; |
| 1515 | } |
| 1516 | |
| 1517 | #endif |