blob: 73dae6c7b73268b071a3732a7466a452453c5aff [file] [log] [blame]
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +02001/*
2 * Copyright (C) 2021 Denys Vlasenko
3 *
4 * Licensed under GPLv2, see file LICENSE in this source tree.
5 */
6#include "tls.h"
7
8#define SP_DEBUG 0
9#define FIXED_SECRET 0
10#define FIXED_PEER_PUBKEY 0
11
12#if SP_DEBUG
13# define dbg(...) fprintf(stderr, __VA_ARGS__)
14static void dump_hex(const char *fmt, const void *vp, int len)
15{
16 char hexbuf[32 * 1024 + 4];
17 const uint8_t *p = vp;
18
19 bin2hex(hexbuf, (void*)p, len)[0] = '\0';
20 dbg(fmt, hexbuf);
21}
22#else
23# define dbg(...) ((void)0)
24# define dump_hex(...) ((void)0)
25#endif
26
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +020027typedef int32_t sp_digit;
28
29/* The code below is taken from parts of
30 * wolfssl-3.15.3/wolfcrypt/src/sp_c32.c
31 * and heavily modified.
32 * Header comment is kept intact:
33 */
34
35/* sp.c
36 *
37 * Copyright (C) 2006-2018 wolfSSL Inc.
38 *
39 * This file is part of wolfSSL.
40 *
41 * wolfSSL is free software; you can redistribute it and/or modify
42 * it under the terms of the GNU General Public License as published by
43 * the Free Software Foundation; either version 2 of the License, or
44 * (at your option) any later version.
45 *
46 * wolfSSL is distributed in the hope that it will be useful,
47 * but WITHOUT ANY WARRANTY; without even the implied warranty of
48 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
49 * GNU General Public License for more details.
50 *
51 * You should have received a copy of the GNU General Public License
52 * along with this program; if not, write to the Free Software
53 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
54 */
55
56/* Implementation by Sean Parkinson. */
57
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +020058typedef struct sp_point {
59 sp_digit x[2 * 10];
60 sp_digit y[2 * 10];
61 sp_digit z[2 * 10];
62 int infinity;
63} sp_point;
64
65/* The modulus (prime) of the curve P256. */
66static const sp_digit p256_mod[10] = {
67 0x3ffffff,0x3ffffff,0x3ffffff,0x003ffff,0x0000000,
68 0x0000000,0x0000000,0x0000400,0x3ff0000,0x03fffff,
69};
70
71#define p256_mp_mod ((sp_digit)0x000001)
72
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +020073/* Write r as big endian to byte aray.
74 * Fixed length number of bytes written: 32
75 *
76 * r A single precision integer.
77 * a Byte array.
78 */
79static void sp_256_to_bin(sp_digit* r, uint8_t* a)
80{
Denys Vlasenko12040122021-04-26 20:24:34 +020081 int i, j, s = 0, b;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +020082
Denys Vlasenko12040122021-04-26 20:24:34 +020083 for (i = 0; i < 9; i++) {
84 r[i+1] += r[i] >> 26;
85 r[i] &= 0x3ffffff;
86 }
87 j = 256 / 8 - 1;
88 a[j] = 0;
89 for (i = 0; i < 10 && j >= 0; i++) {
90 b = 0;
91 a[j--] |= r[i] << s; b += 8 - s;
92 if (j < 0)
93 break;
94 while (b < 26) {
95 a[j--] = r[i] >> b; b += 8;
96 if (j < 0)
97 break;
98 }
99 s = 8 - (b - 26);
100 if (j >= 0)
101 a[j] = 0;
102 if (s != 0)
103 j++;
104 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200105}
106
107/* Read big endian unsigned byte aray into r.
108 *
109 * r A single precision integer.
110 * a Byte array.
111 * n Number of bytes in array to read.
112 */
113static void sp_256_from_bin(sp_digit* r, int max, const uint8_t* a, int n)
114{
Denys Vlasenko12040122021-04-26 20:24:34 +0200115 int i, j = 0, s = 0;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200116
Denys Vlasenko12040122021-04-26 20:24:34 +0200117 r[0] = 0;
118 for (i = n-1; i >= 0; i--) {
119 r[j] |= ((sp_digit)a[i]) << s;
120 if (s >= 18) {
121 r[j] &= 0x3ffffff;
122 s = 26 - s;
123 if (j + 1 >= max)
124 break;
125 r[++j] = a[i] >> s;
126 s = 8 - s;
127 }
128 else
129 s += 8;
130 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200131
Denys Vlasenko12040122021-04-26 20:24:34 +0200132 for (j++; j < max; j++)
133 r[j] = 0;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200134}
135
136/* Convert a point of big-endian 32-byte x,y pair to type sp_point. */
137static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32)
138{
Denys Vlasenko12040122021-04-26 20:24:34 +0200139 memset(p, 0, sizeof(*p));
140 /*p->infinity = 0;*/
141 sp_256_from_bin(p->x, 2 * 10, bin2x32, 32);
142 sp_256_from_bin(p->y, 2 * 10, bin2x32 + 32, 32);
143 //static const uint8_t one[1] = { 1 };
144 //sp_256_from_bin(p->z, 2 * 10, one, 1);
145 p->z[0] = 1;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200146}
147
Denys Vlasenkob3b17132021-04-26 16:53:53 +0200148/* Compare a with b.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200149 *
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200150 * return -ve, 0 or +ve if a is less than, equal to or greater than b
151 * respectively.
152 */
153static sp_digit sp_256_cmp_10(const sp_digit* a, const sp_digit* b)
154{
Denys Vlasenko12040122021-04-26 20:24:34 +0200155 sp_digit r;
156 int i;
157 for (i = 9; i >= 0; i--) {
158 r = a[i] - b[i];
159 if (r != 0)
160 break;
161 }
162 return r;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200163}
164
165/* Compare two numbers to determine if they are equal.
166 *
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200167 * return 1 when equal and 0 otherwise.
168 */
169static int sp_256_cmp_equal_10(const sp_digit* a, const sp_digit* b)
170{
Denys Vlasenko12040122021-04-26 20:24:34 +0200171 return sp_256_cmp_10(a, b) == 0;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200172}
173
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200174/* Normalize the values in each word to 26 bits. */
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200175static void sp_256_norm_10(sp_digit* a)
176{
Denys Vlasenko12040122021-04-26 20:24:34 +0200177 int i;
178 for (i = 0; i < 9; i++) {
179 a[i+1] += a[i] >> 26;
180 a[i] &= 0x3ffffff;
181 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200182}
183
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200184/* Add b to a into r. (r = a + b) */
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200185static void sp_256_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
186{
Denys Vlasenko12040122021-04-26 20:24:34 +0200187 int i;
188 for (i = 0; i < 10; i++)
189 r[i] = a[i] + b[i];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200190}
191
Denys Vlasenko9a40be42021-04-26 21:58:04 +0200192/* Sub b from a into r. (r = a - b) */
193static void sp_256_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200194{
Denys Vlasenko12040122021-04-26 20:24:34 +0200195 int i;
196 for (i = 0; i < 10; i++)
Denys Vlasenko9a40be42021-04-26 21:58:04 +0200197 r[i] = a[i] - b[i];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200198}
199
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200200/* Shift number left one bit. Bottom bit is lost. */
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200201static void sp_256_rshift1_10(sp_digit* r, sp_digit* a)
202{
Denys Vlasenko12040122021-04-26 20:24:34 +0200203 int i;
204 for (i = 0; i < 9; i++)
205 r[i] = ((a[i] >> 1) | (a[i + 1] << 25)) & 0x3ffffff;
206 r[9] = a[9] >> 1;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200207}
208
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200209/* Mul a by scalar b and add into r. (r += a * b) */
210static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b)
211{
212 int64_t tb = b;
213 int64_t t = 0;
214 int i;
215
216 for (i = 0; i < 10; i++) {
217 t += (tb * a[i]) + r[i];
218 r[i] = t & 0x3ffffff;
219 t >>= 26;
220 }
221 r[10] += t;
222}
223
224/* Multiply a and b into r. (r = a * b) */
225static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
226{
227 int i, j, k;
228 int64_t c;
229
230 c = ((int64_t)a[9]) * b[9];
231 r[19] = (sp_digit)(c >> 26);
232 c = (c & 0x3ffffff) << 26;
233 for (k = 17; k >= 0; k--) {
234 for (i = 9; i >= 0; i--) {
235 j = k - i;
236 if (j >= 10)
237 break;
238 if (j < 0)
239 continue;
240 c += ((int64_t)a[i]) * b[j];
241 }
242 r[k + 2] += c >> 52;
243 r[k + 1] = (c >> 26) & 0x3ffffff;
244 c = (c & 0x3ffffff) << 26;
245 }
246 r[0] = (sp_digit)(c >> 26);
247}
248
249/* Square a and put result in r. (r = a * a) */
250static void sp_256_sqr_10(sp_digit* r, const sp_digit* a)
251{
252 int i, j, k;
253 int64_t c;
254
255 c = ((int64_t)a[9]) * a[9];
256 r[19] = (sp_digit)(c >> 26);
257 c = (c & 0x3ffffff) << 26;
258 for (k = 17; k >= 0; k--) {
259 for (i = 9; i >= 0; i--) {
260 j = k - i;
261 if (j >= 10 || i <= j)
262 break;
263 if (j < 0)
264 continue;
265 c += ((int64_t)a[i]) * a[j] * 2;
266 }
267 if (i == j)
268 c += ((int64_t)a[i]) * a[i];
269 r[k + 2] += c >> 52;
270 r[k + 1] = (c >> 26) & 0x3ffffff;
271 c = (c & 0x3ffffff) << 26;
272 }
273 r[0] = (sp_digit)(c >> 26);
274}
275
276/* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */
277static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
278{
279 if (a[0] & 1)
280 sp_256_add_10(r, a, m);
281 sp_256_norm_10(r);
282 sp_256_rshift1_10(r, r);
283}
284
285/* Add two Montgomery form numbers (r = a + b % m) */
286static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
287 const sp_digit* m)
288{
289 sp_256_add_10(r, a, b);
290 sp_256_norm_10(r);
291 if ((r[9] >> 22) > 0)
292 sp_256_sub_10(r, r, m);
293 sp_256_norm_10(r);
294}
295
296/* Subtract two Montgomery form numbers (r = a - b % m) */
297static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
298 const sp_digit* m)
299{
300 sp_256_sub_10(r, a, b);
301 if (r[9] >> 22)
302 sp_256_add_10(r, r, m);
303 sp_256_norm_10(r);
304}
305
306/* Double a Montgomery form number (r = a + a % m) */
307static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
308{
309 sp_256_add_10(r, a, a);
310 sp_256_norm_10(r);
311 if ((r[9] >> 22) > 0)
312 sp_256_sub_10(r, r, m);
313 sp_256_norm_10(r);
314}
315
316/* Triple a Montgomery form number (r = a + a + a % m) */
317static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
318{
319 sp_256_add_10(r, a, a);
320 sp_256_norm_10(r);
321 if ((r[9] >> 22) > 0)
322 sp_256_sub_10(r, r, m);
323 sp_256_norm_10(r);
324 sp_256_add_10(r, r, a);
325 sp_256_norm_10(r);
326 if ((r[9] >> 22) > 0)
327 sp_256_sub_10(r, r, m);
328 sp_256_norm_10(r);
329}
330
331/* Shift the result in the high 256 bits down to the bottom. */
332static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a)
333{
334 int i;
335 sp_digit n, s;
336
337 s = a[10];
338 n = a[9] >> 22;
339 for (i = 0; i < 9; i++) {
340 n += (s & 0x3ffffff) << 4;
341 r[i] = n & 0x3ffffff;
342 n >>= 26;
343 s = a[11 + i] + (s >> 26);
344 }
345 n += s << 4;
346 r[9] = n;
347 memset(&r[10], 0, sizeof(*r) * 10);
348}
349
350/* Reduce the number back to 256 bits using Montgomery reduction.
351 *
352 * a A single precision number to reduce in place.
353 * m The single precision number representing the modulus.
354 * mp The digit representing the negative inverse of m mod 2^n.
355 */
356static void sp_256_mont_reduce_10(sp_digit* a, const sp_digit* m, sp_digit mp)
357{
358 int i;
359 sp_digit mu;
360
361 if (mp != 1) {
362 for (i = 0; i < 9; i++) {
363 mu = (a[i] * mp) & 0x3ffffff;
364 sp_256_mul_add_10(a+i, m, mu);
365 a[i+1] += a[i] >> 26;
366 }
367 mu = (a[i] * mp) & 0x3fffffl;
368 sp_256_mul_add_10(a+i, m, mu);
369 a[i+1] += a[i] >> 26;
370 a[i] &= 0x3ffffff;
371 }
372 else {
373 for (i = 0; i < 9; i++) {
374 mu = a[i] & 0x3ffffff;
375 sp_256_mul_add_10(a+i, p256_mod, mu);
376 a[i+1] += a[i] >> 26;
377 }
378 mu = a[i] & 0x3fffffl;
379 sp_256_mul_add_10(a+i, p256_mod, mu);
380 a[i+1] += a[i] >> 26;
381 a[i] &= 0x3ffffff;
382 }
383
384 sp_256_mont_shift_10(a, a);
385 if ((a[9] >> 22) > 0)
386 sp_256_sub_10(a, a, m);
387 sp_256_norm_10(a);
388}
389
390/* Multiply two Montogmery form numbers mod the modulus (prime).
391 * (r = a * b mod m)
392 *
393 * r Result of multiplication.
394 * a First number to multiply in Montogmery form.
395 * b Second number to multiply in Montogmery form.
396 * m Modulus (prime).
397 * mp Montogmery mulitplier.
398 */
399static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
400 const sp_digit* m, sp_digit mp)
401{
402 sp_256_mul_10(r, a, b);
403 sp_256_mont_reduce_10(r, m, mp);
404}
405
406/* Square the Montgomery form number. (r = a * a mod m)
407 *
408 * r Result of squaring.
409 * a Number to square in Montogmery form.
410 * m Modulus (prime).
411 * mp Montogmery mulitplier.
412 */
413static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a, const sp_digit* m,
414 sp_digit mp)
415{
416 sp_256_sqr_10(r, a);
417 sp_256_mont_reduce_10(r, m, mp);
418}
419
420/* Invert the number, in Montgomery form, modulo the modulus (prime) of the
421 * P256 curve. (r = 1 / a mod m)
422 *
423 * r Inverse result.
424 * a Number to invert.
425 */
426#if 0
427/* Mod-2 for the P256 curve. */
428static const uint32_t p256_mod_2[8] = {
429 0xfffffffd,0xffffffff,0xffffffff,0x00000000,
430 0x00000000,0x00000000,0x00000001,0xffffffff,
431};
432//Bit pattern:
433//2 2 2 2 2 2 2 1...1
434//5 5 4 3 2 1 0 9...0 9...1
435//543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210
436//111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101
437#endif
438static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a)
439{
440 sp_digit t[2*10]; //can be just [10]?
441 int i;
442
443 memcpy(t, a, sizeof(sp_digit) * 10);
444 for (i = 254; i >= 0; i--) {
445 sp_256_mont_sqr_10(t, t, p256_mod, p256_mp_mod);
446 /*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
447 if (i >= 224 || i == 192 || (i <= 95 && i != 1))
448 sp_256_mont_mul_10(t, t, a, p256_mod, p256_mp_mod);
449 }
450 memcpy(r, t, sizeof(sp_digit) * 10);
451}
452
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200453/* Multiply a number by Montogmery normalizer mod modulus (prime).
454 *
455 * r The resulting Montgomery form number.
456 * a The number to convert.
457 */
458static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a)
459{
Denys Vlasenko12040122021-04-26 20:24:34 +0200460 int64_t t[8];
Denys Vlasenko12040122021-04-26 20:24:34 +0200461 int64_t o;
Denys Vlasenko646e8562021-04-27 13:09:44 +0200462 uint32_t a32;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200463
Denys Vlasenko12040122021-04-26 20:24:34 +0200464 /* 1 1 0 -1 -1 -1 -1 0 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200465 /* 0 1 1 0 -1 -1 -1 -1 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200466 /* 0 0 1 1 0 -1 -1 -1 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200467 /* -1 -1 0 2 2 1 0 -1 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200468 /* 0 -1 -1 0 2 2 1 0 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200469 /* 0 0 -1 -1 0 2 2 1 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200470 /* -1 -1 0 0 0 1 3 2 */
Denys Vlasenko12040122021-04-26 20:24:34 +0200471 /* 1 0 -1 -1 -1 -1 0 3 */
Denys Vlasenko646e8562021-04-27 13:09:44 +0200472 // t[] should be calculated from "a" (converted from 26-bit to 32-bit vector a32[8])
473 // according to the above matrix:
474 //t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6] ;
475 //t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7] ;
476 //t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7] ;
477 //t[3] = 0 - a32[0] - a32[1] + 2*a32[3] + 2*a32[4] + a32[5] - a32[7] ;
478 //t[4] = 0 - a32[1] - a32[2] + 2*a32[4] + 2*a32[5] + a32[6] ;
479 //t[5] = 0 - a32[2] - a32[3] + 2*a32[5] + 2*a32[6] + a32[7] ;
480 //t[6] = 0 - a32[0] - a32[1] + a32[5] + 3*a32[6] + 2*a32[7];
481 //t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3*a32[7];
482 // We can do it "piecemeal" after each a32[i] is known, no need to store entire a32[8] vector:
483
484#define A32 (int64_t)a32
485 a32 = a[0] | (a[1] << 26);
486 t[0] = 0 + A32;
487 t[3] = 0 - A32;
488 t[6] = 0 - A32;
489 t[7] = 0 + A32;
490
491 a32 = (a[1] >> 6) | (a[2] << 20);
492 t[0] += A32 ;
493 t[1] = 0 + A32;
494 t[3] -= A32 ;
495 t[4] = 0 - A32;
496 t[6] -= A32 ;
497
498 a32 = (a[2] >> 12) | (a[3] << 14);
499 t[1] += A32 ;
500 t[2] = 0 + A32;
501 t[4] -= A32 ;
502 t[5] = 0 - A32;
503 t[7] -= A32 ;
504
505 a32 = (a[3] >> 18) | (a[4] << 8);
506 t[0] -= A32 ;
507 t[2] += A32 ;
508 t[3] += 2*A32;
509 t[5] -= A32 ;
510 t[7] -= A32 ;
511
512 a32 = (a[4] >> 24) | (a[5] << 2) | (a[6] << 28);
513 t[0] -= A32 ;
514 t[1] -= A32 ;
515 t[3] += 2*A32;
516 t[4] += 2*A32;
517 t[7] -= A32 ;
518
519 a32 = (a[6] >> 4) | (a[7] << 22);
520 t[0] -= A32 ;
521 t[1] -= A32 ;
522 t[2] -= A32 ;
523 t[3] += A32 ;
524 t[4] += 2*A32;
525 t[5] += 2*A32;
526 t[6] += A32 ;
527 t[7] -= A32 ;
528
529 a32 = (a[7] >> 10) | (a[8] << 16);
530 t[0] -= A32 ;
531 t[1] -= A32 ;
532 t[2] -= A32 ;
533 t[4] += A32 ;
534 t[5] += 2*A32;
535 t[6] += 3*A32;
536
537 a32 = (a[8] >> 16) | (a[9] << 10);
538 t[1] -= A32 ;
539 t[2] -= A32 ;
540 t[3] -= A32 ;
541 t[5] += A32 ;
542 t[6] += 2*A32;
543 t[7] += 3*A32;
544#undef A32
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200545
Denys Vlasenko12040122021-04-26 20:24:34 +0200546 t[1] += t[0] >> 32; t[0] &= 0xffffffff;
547 t[2] += t[1] >> 32; t[1] &= 0xffffffff;
548 t[3] += t[2] >> 32; t[2] &= 0xffffffff;
549 t[4] += t[3] >> 32; t[3] &= 0xffffffff;
550 t[5] += t[4] >> 32; t[4] &= 0xffffffff;
551 t[6] += t[5] >> 32; t[5] &= 0xffffffff;
552 t[7] += t[6] >> 32; t[6] &= 0xffffffff;
553 o = t[7] >> 32; t[7] &= 0xffffffff;
554 t[0] += o;
555 t[3] -= o;
556 t[6] -= o;
557 t[7] += o;
Denys Vlasenko840ae692021-04-27 13:31:26 +0200558 t[1] += t[0] >> 32; //t[0] &= 0xffffffff;
559 t[2] += t[1] >> 32; //t[1] &= 0xffffffff;
560 t[3] += t[2] >> 32; //t[2] &= 0xffffffff;
561 t[4] += t[3] >> 32; //t[3] &= 0xffffffff;
562 t[5] += t[4] >> 32; //t[4] &= 0xffffffff;
563 t[6] += t[5] >> 32; //t[5] &= 0xffffffff;
564 t[7] += t[6] >> 32; //t[6] &= 0xffffffff; - (uint32_t)t[i] casts below accomplish masking
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200565
Denys Vlasenko840ae692021-04-27 13:31:26 +0200566 r[0] = 0x3ffffff & ((sp_digit)((uint32_t)t[0]));
567 r[1] = 0x3ffffff & ((sp_digit)((uint32_t)t[0] >> 26) | ((sp_digit)t[1] << 6));
568 r[2] = 0x3ffffff & ((sp_digit)((uint32_t)t[1] >> 20) | ((sp_digit)t[2] << 12));
569 r[3] = 0x3ffffff & ((sp_digit)((uint32_t)t[2] >> 14) | ((sp_digit)t[3] << 18));
570 r[4] = 0x3ffffff & ((sp_digit)((uint32_t)t[3] >> 8) | ((sp_digit)t[4] << 24));
571 r[5] = 0x3ffffff & ((sp_digit)((uint32_t)t[4] >> 2));
572 r[6] = 0x3ffffff & ((sp_digit)((uint32_t)t[4] >> 28) | ((sp_digit)t[5] << 4));
573 r[7] = 0x3ffffff & ((sp_digit)((uint32_t)t[5] >> 22) | ((sp_digit)t[6] << 10));
574 r[8] = 0x3ffffff & ((sp_digit)((uint32_t)t[6] >> 16) | ((sp_digit)t[7] << 16));
575 r[9] = ((sp_digit)((uint32_t)t[7] >> 10));
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200576}
577
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200578/* Map the Montgomery form projective co-ordinate point to an affine point.
579 *
580 * r Resulting affine co-ordinate point.
581 * p Montgomery form projective co-ordinate point.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200582 */
Denys Vlasenko6381f3d2021-04-26 17:41:43 +0200583static void sp_256_map_10(sp_point* r, sp_point* p)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200584{
Denys Vlasenko12040122021-04-26 20:24:34 +0200585 sp_digit t1[2*10];
586 sp_digit t2[2*10];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200587
Denys Vlasenko12040122021-04-26 20:24:34 +0200588 sp_256_mont_inv_10(t1, p->z);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200589
Denys Vlasenko12040122021-04-26 20:24:34 +0200590 sp_256_mont_sqr_10(t2, t1, p256_mod, p256_mp_mod);
591 sp_256_mont_mul_10(t1, t2, t1, p256_mod, p256_mp_mod);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200592
Denys Vlasenko12040122021-04-26 20:24:34 +0200593 /* x /= z^2 */
594 sp_256_mont_mul_10(r->x, p->x, t2, p256_mod, p256_mp_mod);
595 memset(r->x + 10, 0, sizeof(r->x) / 2);
596 sp_256_mont_reduce_10(r->x, p256_mod, p256_mp_mod);
597 /* Reduce x to less than modulus */
Denys Vlasenko9a40be42021-04-26 21:58:04 +0200598 if (sp_256_cmp_10(r->x, p256_mod) >= 0)
599 sp_256_sub_10(r->x, r->x, p256_mod);
Denys Vlasenko12040122021-04-26 20:24:34 +0200600 sp_256_norm_10(r->x);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200601
Denys Vlasenko12040122021-04-26 20:24:34 +0200602 /* y /= z^3 */
603 sp_256_mont_mul_10(r->y, p->y, t1, p256_mod, p256_mp_mod);
604 memset(r->y + 10, 0, sizeof(r->y) / 2);
605 sp_256_mont_reduce_10(r->y, p256_mod, p256_mp_mod);
606 /* Reduce y to less than modulus */
Denys Vlasenko9a40be42021-04-26 21:58:04 +0200607 if (sp_256_cmp_10(r->y, p256_mod) >= 0)
608 sp_256_sub_10(r->y, r->y, p256_mod);
Denys Vlasenko12040122021-04-26 20:24:34 +0200609 sp_256_norm_10(r->y);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200610
Denys Vlasenko12040122021-04-26 20:24:34 +0200611 memset(r->z, 0, sizeof(r->z));
612 r->z[0] = 1;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200613}
614
615/* Double the Montgomery form projective point p.
616 *
617 * r Result of doubling point.
618 * p Point to double.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200619 */
Denys Vlasenko6381f3d2021-04-26 17:41:43 +0200620static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200621{
Denys Vlasenko12040122021-04-26 20:24:34 +0200622 sp_point tp;
623 sp_digit t1[2*10];
624 sp_digit t2[2*10];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200625
Denys Vlasenko12040122021-04-26 20:24:34 +0200626 /* Put point to double into result */
627 if (r != p)
628 *r = *p; /* struct copy */
Denys Vlasenko4d3a5c12021-04-26 15:21:38 +0200629
Denys Vlasenko12040122021-04-26 20:24:34 +0200630 if (r->infinity) {
631 /* If infinity, don't double (work on dummy value) */
632 r = &tp;
633 }
634 /* T1 = Z * Z */
635 sp_256_mont_sqr_10(t1, r->z, p256_mod, p256_mp_mod);
636 /* Z = Y * Z */
637 sp_256_mont_mul_10(r->z, r->y, r->z, p256_mod, p256_mp_mod);
638 /* Z = 2Z */
639 sp_256_mont_dbl_10(r->z, r->z, p256_mod);
640 /* T2 = X - T1 */
641 sp_256_mont_sub_10(t2, r->x, t1, p256_mod);
642 /* T1 = X + T1 */
643 sp_256_mont_add_10(t1, r->x, t1, p256_mod);
644 /* T2 = T1 * T2 */
645 sp_256_mont_mul_10(t2, t1, t2, p256_mod, p256_mp_mod);
646 /* T1 = 3T2 */
647 sp_256_mont_tpl_10(t1, t2, p256_mod);
648 /* Y = 2Y */
649 sp_256_mont_dbl_10(r->y, r->y, p256_mod);
650 /* Y = Y * Y */
651 sp_256_mont_sqr_10(r->y, r->y, p256_mod, p256_mp_mod);
652 /* T2 = Y * Y */
653 sp_256_mont_sqr_10(t2, r->y, p256_mod, p256_mp_mod);
654 /* T2 = T2/2 */
655 sp_256_div2_10(t2, t2, p256_mod);
656 /* Y = Y * X */
657 sp_256_mont_mul_10(r->y, r->y, r->x, p256_mod, p256_mp_mod);
658 /* X = T1 * T1 */
659 sp_256_mont_mul_10(r->x, t1, t1, p256_mod, p256_mp_mod);
660 /* X = X - Y */
661 sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod);
662 /* X = X - Y */
663 sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod);
664 /* Y = Y - X */
665 sp_256_mont_sub_10(r->y, r->y, r->x, p256_mod);
666 /* Y = Y * T1 */
667 sp_256_mont_mul_10(r->y, r->y, t1, p256_mod, p256_mp_mod);
668 /* Y = Y - T2 */
669 sp_256_mont_sub_10(r->y, r->y, t2, p256_mod);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200670}
671
672/* Add two Montgomery form projective points.
673 *
674 * r Result of addition.
675 * p Frist point to add.
676 * q Second point to add.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200677 */
Denys Vlasenko6381f3d2021-04-26 17:41:43 +0200678static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200679{
Denys Vlasenko12040122021-04-26 20:24:34 +0200680 sp_digit t1[2*10];
681 sp_digit t2[2*10];
682 sp_digit t3[2*10];
683 sp_digit t4[2*10];
684 sp_digit t5[2*10];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200685
Denys Vlasenko12040122021-04-26 20:24:34 +0200686 /* Ensure only the first point is the same as the result. */
687 if (q == r) {
688 sp_point* a = p;
689 p = q;
690 q = a;
691 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200692
Denys Vlasenko12040122021-04-26 20:24:34 +0200693 /* Check double */
694 sp_256_sub_10(t1, p256_mod, q->y);
695 sp_256_norm_10(t1);
696 if (sp_256_cmp_equal_10(p->x, q->x)
697 && sp_256_cmp_equal_10(p->z, q->z)
698 && (sp_256_cmp_equal_10(p->y, q->y) || sp_256_cmp_equal_10(p->y, t1))
699 ) {
700 sp_256_proj_point_dbl_10(r, p);
701 }
702 else {
703 sp_point tp;
704 sp_point *v;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200705
Denys Vlasenko12040122021-04-26 20:24:34 +0200706 v = r;
707 if (p->infinity | q->infinity) {
708 memset(&tp, 0, sizeof(tp));
709 v = &tp;
710 }
Denys Vlasenko772e1872021-04-26 17:25:27 +0200711
Denys Vlasenko12040122021-04-26 20:24:34 +0200712 *r = p->infinity ? *q : *p; /* struct copy */
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200713
Denys Vlasenko12040122021-04-26 20:24:34 +0200714 /* U1 = X1*Z2^2 */
715 sp_256_mont_sqr_10(t1, q->z, p256_mod, p256_mp_mod);
716 sp_256_mont_mul_10(t3, t1, q->z, p256_mod, p256_mp_mod);
717 sp_256_mont_mul_10(t1, t1, v->x, p256_mod, p256_mp_mod);
718 /* U2 = X2*Z1^2 */
719 sp_256_mont_sqr_10(t2, v->z, p256_mod, p256_mp_mod);
720 sp_256_mont_mul_10(t4, t2, v->z, p256_mod, p256_mp_mod);
721 sp_256_mont_mul_10(t2, t2, q->x, p256_mod, p256_mp_mod);
722 /* S1 = Y1*Z2^3 */
723 sp_256_mont_mul_10(t3, t3, v->y, p256_mod, p256_mp_mod);
724 /* S2 = Y2*Z1^3 */
725 sp_256_mont_mul_10(t4, t4, q->y, p256_mod, p256_mp_mod);
726 /* H = U2 - U1 */
727 sp_256_mont_sub_10(t2, t2, t1, p256_mod);
728 /* R = S2 - S1 */
729 sp_256_mont_sub_10(t4, t4, t3, p256_mod);
730 /* Z3 = H*Z1*Z2 */
731 sp_256_mont_mul_10(v->z, v->z, q->z, p256_mod, p256_mp_mod);
732 sp_256_mont_mul_10(v->z, v->z, t2, p256_mod, p256_mp_mod);
733 /* X3 = R^2 - H^3 - 2*U1*H^2 */
734 sp_256_mont_sqr_10(v->x, t4, p256_mod, p256_mp_mod);
735 sp_256_mont_sqr_10(t5, t2, p256_mod, p256_mp_mod);
736 sp_256_mont_mul_10(v->y, t1, t5, p256_mod, p256_mp_mod);
737 sp_256_mont_mul_10(t5, t5, t2, p256_mod, p256_mp_mod);
738 sp_256_mont_sub_10(v->x, v->x, t5, p256_mod);
739 sp_256_mont_dbl_10(t1, v->y, p256_mod);
740 sp_256_mont_sub_10(v->x, v->x, t1, p256_mod);
741 /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
742 sp_256_mont_sub_10(v->y, v->y, v->x, p256_mod);
743 sp_256_mont_mul_10(v->y, v->y, t4, p256_mod, p256_mp_mod);
744 sp_256_mont_mul_10(t5, t5, t3, p256_mod, p256_mp_mod);
745 sp_256_mont_sub_10(v->y, v->y, t5, p256_mod);
746 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200747}
748
749/* Multiply the point by the scalar and return the result.
750 * If map is true then convert result to affine co-ordinates.
751 *
752 * r Resulting point.
753 * g Point to multiply.
754 * k Scalar to multiply by.
Denys Vlasenko03ab2a92021-04-26 14:55:46 +0200755 * map Indicates whether to convert result to affine.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200756 */
757static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/)
758{
Denys Vlasenko12040122021-04-26 20:24:34 +0200759 enum { map = 1 }; /* we always convert result to affine coordinates */
760 sp_point t[3];
761 sp_digit n;
762 int i;
763 int c, y;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200764
Denys Vlasenko12040122021-04-26 20:24:34 +0200765 memset(t, 0, sizeof(t));
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200766
Denys Vlasenko12040122021-04-26 20:24:34 +0200767 /* t[0] = {0, 0, 1} * norm */
768 t[0].infinity = 1;
769 /* t[1] = {g->x, g->y, g->z} * norm */
770 sp_256_mod_mul_norm_10(t[1].x, g->x);
771 sp_256_mod_mul_norm_10(t[1].y, g->y);
772 sp_256_mod_mul_norm_10(t[1].z, g->z);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200773
Denys Vlasenko12040122021-04-26 20:24:34 +0200774 i = 9;
775 c = 22;
776 n = k[i--] << (26 - c);
777 for (; ; c--) {
778 if (c == 0) {
779 if (i == -1)
780 break;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200781
Denys Vlasenko12040122021-04-26 20:24:34 +0200782 n = k[i--];
783 c = 26;
784 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200785
Denys Vlasenko12040122021-04-26 20:24:34 +0200786 y = (n >> 25) & 1;
787 n <<= 1;
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200788
Denys Vlasenko12040122021-04-26 20:24:34 +0200789 sp_256_proj_point_add_10(&t[y^1], &t[0], &t[1]);
790 memcpy(&t[2], &t[y], sizeof(sp_point));
791 sp_256_proj_point_dbl_10(&t[2], &t[2]);
792 memcpy(&t[y], &t[2], sizeof(sp_point));
793 }
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200794
Denys Vlasenko12040122021-04-26 20:24:34 +0200795 if (map)
796 sp_256_map_10(r, &t[0]);
797 else
798 memcpy(r, &t[0], sizeof(sp_point));
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200799
Denys Vlasenko12040122021-04-26 20:24:34 +0200800 memset(t, 0, sizeof(t)); //paranoia
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200801}
802
803/* Multiply the base point of P256 by the scalar and return the result.
804 * If map is true then convert result to affine co-ordinates.
805 *
806 * r Resulting point.
807 * k Scalar to multiply by.
Denys Vlasenko03ab2a92021-04-26 14:55:46 +0200808 * map Indicates whether to convert result to affine.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200809 */
810static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/)
811{
Denys Vlasenko39a3ef52021-04-27 01:31:51 +0200812 /* Since this function is called only once, save space:
813 * don't have "static const sp_point p256_base = {...}",
814 * it would have more zeros than data.
815 */
Denys Vlasenko48a18d12021-04-27 12:24:21 +0200816 static const uint8_t p256_base_bin[] = {
817 /* x (big-endian) */
818 0x6b,0x17,0xd1,0xf2,0xe1,0x2c,0x42,0x47,0xf8,0xbc,0xe6,0xe5,0x63,0xa4,0x40,0xf2,0x77,0x03,0x7d,0x81,0x2d,0xeb,0x33,0xa0,0xf4,0xa1,0x39,0x45,0xd8,0x98,0xc2,0x96,
819 /* y */
820 0x4f,0xe3,0x42,0xe2,0xfe,0x1a,0x7f,0x9b,0x8e,0xe7,0xeb,0x4a,0x7c,0x0f,0x9e,0x16,0x2b,0xce,0x33,0x57,0x6b,0x31,0x5e,0xce,0xcb,0xb6,0x40,0x68,0x37,0xbf,0x51,0xf5,
Denys Vlasenko646e8562021-04-27 13:09:44 +0200821 /* z will be set to 1, infinity flag to "false" */
Denys Vlasenko39a3ef52021-04-27 01:31:51 +0200822 };
823 sp_point p256_base;
824
Denys Vlasenko48a18d12021-04-27 12:24:21 +0200825 sp_256_point_from_bin2x32(&p256_base, p256_base_bin);
Denys Vlasenko39a3ef52021-04-27 01:31:51 +0200826
Denys Vlasenko12040122021-04-26 20:24:34 +0200827 sp_256_ecc_mulmod_10(r, &p256_base, k /*, map*/);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200828}
829
830/* Multiply the point by the scalar and serialize the X ordinate.
831 * The number is 0 padded to maximum size on output.
832 *
833 * priv Scalar to multiply the point by.
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200834 * pub2x32 Point to multiply.
835 * out32 Buffer to hold X ordinate.
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200836 */
Denys Vlasenkoa2bc52d2021-04-27 01:21:26 +0200837static void sp_ecc_secret_gen_256(const sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200838{
Denys Vlasenko12040122021-04-26 20:24:34 +0200839 sp_point point[1];
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200840
841#if FIXED_PEER_PUBKEY
Denys Vlasenko12040122021-04-26 20:24:34 +0200842 memset((void*)pub2x32, 0x55, 64);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200843#endif
Denys Vlasenko12040122021-04-26 20:24:34 +0200844 dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */
845 dump_hex(" %s\n", pub2x32 + 32, 32);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200846
Denys Vlasenko12040122021-04-26 20:24:34 +0200847 sp_256_point_from_bin2x32(point, pub2x32);
848 dump_hex("point->x %s\n", point->x, sizeof(point->x));
849 dump_hex("point->y %s\n", point->y, sizeof(point->y));
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200850
Denys Vlasenko12040122021-04-26 20:24:34 +0200851 sp_256_ecc_mulmod_10(point, point, priv);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200852
Denys Vlasenko12040122021-04-26 20:24:34 +0200853 sp_256_to_bin(point->x, out32);
854 dump_hex("out32: %s\n", out32, 32);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200855}
856
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200857/* Generates a scalar that is in the range 1..order-1. */
858#define SIMPLIFY 1
859/* Add 1 to a. (a = a + 1) */
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200860static void sp_256_add_one_10(sp_digit* a)
861{
Denys Vlasenko12040122021-04-26 20:24:34 +0200862 a[0]++;
863 sp_256_norm_10(a);
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200864}
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200865static void sp_256_ecc_gen_k_10(sp_digit k[10])
866{
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200867#if !SIMPLIFY
868 /* The order of the curve P256 minus 2. */
869 static const sp_digit p256_order2[10] = {
870 0x063254f,0x272b0bf,0x1e84f3b,0x2b69c5e,0x3bce6fa,
871 0x3ffffff,0x3ffffff,0x00003ff,0x3ff0000,0x03fffff,
872 };
873#endif
874 uint8_t buf[32];
875
876 for (;;) {
877 tls_get_random(buf, sizeof(buf));
878#if FIXED_SECRET
879 memset(buf, 0x77, sizeof(buf));
880#endif
881 sp_256_from_bin(k, 10, buf, sizeof(buf));
882#if !SIMPLIFY
883 if (sp_256_cmp_10(k, p256_order2) < 0)
884 break;
885#else
886 /* non-loopy version (and not needing p256_order2[]):
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200887 * if most-significant word seems that k can be larger
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200888 * than p256_order2, fix it up:
889 */
890 if (k[9] >= 0x03fffff)
891 k[9] = 0x03ffffe;
892 break;
893#endif
894 }
895 sp_256_add_one_10(k);
896#undef SIMPLIFY
897}
898
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200899/* Makes a random EC key pair. */
900static void sp_ecc_make_key_256(sp_digit privkey[10], uint8_t *pubkey)
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200901{
902 sp_point point[1];
903
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200904 sp_256_ecc_gen_k_10(privkey);
905 sp_256_ecc_mulmod_base_10(point, privkey);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200906 sp_256_to_bin(point->x, pubkey);
907 sp_256_to_bin(point->y, pubkey + 32);
908
909 memset(point, 0, sizeof(point)); //paranoia
910}
911
912void FAST_FUNC curve_P256_compute_pubkey_and_premaster(
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200913 uint8_t *pubkey2x32, uint8_t *premaster32,
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200914 const uint8_t *peerkey2x32)
915{
916 sp_digit privkey[10];
917
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200918 sp_ecc_make_key_256(privkey, pubkey2x32);
919 dump_hex("pubkey: %s\n", pubkey2x32, 32);
920 dump_hex(" %s\n", pubkey2x32 + 32, 32);
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200921
Denys Vlasenko074b33b2021-04-26 14:33:38 +0200922 /* Combine our privkey and peer's public key to generate premaster */
Denys Vlasenkof18a1fd2021-04-26 13:25:56 +0200923 sp_ecc_secret_gen_256(privkey, /*x,y:*/peerkey2x32, premaster32);
924 dump_hex("premaster: %s\n", premaster32, 32);
925}