blob: e27dbaa6bd8021624b080b94be75b324b0274874 [file] [log] [blame]
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001/*
2 * NTP client/server, based on OpenNTPD 3.9p1
3 *
4 * Author: Adam Tkac <vonsch@gmail.com>
5 *
Denys Vlasenko0ef64bd2010-08-16 20:14:46 +02006 * Licensed under GPLv2, see file LICENSE in this source tree.
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01007 *
8 * Parts of OpenNTPD clock syncronization code is replaced by
Denys Vlasenkobfc2a322010-01-01 18:12:06 +01009 * code which is based on ntp-4.2.6, whuch carries the following
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010010 * copyright notice:
11 *
12 ***********************************************************************
13 * *
14 * Copyright (c) University of Delaware 1992-2009 *
15 * *
16 * Permission to use, copy, modify, and distribute this software and *
17 * its documentation for any purpose with or without fee is hereby *
18 * granted, provided that the above copyright notice appears in all *
19 * copies and that both the copyright notice and this permission *
20 * notice appear in supporting documentation, and that the name *
21 * University of Delaware not be used in advertising or publicity *
22 * pertaining to distribution of the software without specific, *
23 * written prior permission. The University of Delaware makes no *
24 * representations about the suitability this software for any *
25 * purpose. It is provided "as is" without express or implied *
26 * warranty. *
27 * *
28 ***********************************************************************
29 */
Pere Orga5bc8c002011-04-11 03:29:49 +020030
31//usage:#define ntpd_trivial_usage
32//usage: "[-dnqNw"IF_FEATURE_NTPD_SERVER("l")"] [-S PROG] [-p PEER]..."
33//usage:#define ntpd_full_usage "\n\n"
34//usage: "NTP client/server\n"
35//usage: "\nOptions:"
36//usage: "\n -d Verbose"
37//usage: "\n -n Do not daemonize"
38//usage: "\n -q Quit after clock is set"
39//usage: "\n -N Run at high priority"
40//usage: "\n -w Do not set time (only query peers), implies -n"
41//usage: IF_FEATURE_NTPD_SERVER(
42//usage: "\n -l Run as server on port 123"
43//usage: )
44//usage: "\n -S PROG Run PROG after stepping time, stratum change, and every 11 mins"
45//usage: "\n -p PEER Obtain time from PEER (may be repeated)"
46
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010047#include "libbb.h"
48#include <math.h>
49#include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
50#include <sys/timex.h>
51#ifndef IPTOS_LOWDELAY
52# define IPTOS_LOWDELAY 0x10
53#endif
54#ifndef IP_PKTINFO
55# error "Sorry, your kernel has to support IP_PKTINFO"
56#endif
57
58
Denys Vlasenkobfc2a322010-01-01 18:12:06 +010059/* Verbosity control (max level of -dddd options accepted).
60 * max 5 is very talkative (and bloated). 2 is non-bloated,
61 * production level setting.
62 */
Denys Vlasenko61313112010-01-01 19:56:16 +010063#define MAX_VERBOSE 2
Denys Vlasenkobfc2a322010-01-01 18:12:06 +010064
65
Denys Vlasenko65d722b2010-01-11 02:14:04 +010066/* High-level description of the algorithm:
67 *
68 * We start running with very small poll_exp, BURSTPOLL,
Leonid Lisovskiy894ef602010-10-20 22:36:51 +020069 * in order to quickly accumulate INITIAL_SAMPLES datapoints
Denys Vlasenko65d722b2010-01-11 02:14:04 +010070 * for each peer. Then, time is stepped if the offset is larger
71 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
72 * poll_exp to MINPOLL and enter frequency measurement step:
73 * we collect new datapoints but ignore them for WATCH_THRESHOLD
74 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
75 * offset and estimate frequency drift.
76 *
Denys Vlasenko5b9a9102010-01-17 01:05:58 +010077 * (frequency measurement step seems to not be strictly needed,
78 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
79 * define set to 0)
80 *
Denys Vlasenko65d722b2010-01-11 02:14:04 +010081 * After this, we enter "steady state": we collect a datapoint,
82 * we select the best peer, if this datapoint is not a new one
83 * (IOW: if this datapoint isn't for selected peer), sleep
84 * and collect another one; otherwise, use its offset to update
85 * frequency drift, if offset is somewhat large, reduce poll_exp,
86 * otherwise increase poll_exp.
87 *
88 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
89 * happen, we assume that something "bad" happened (computer
90 * was hibernated, someone set totally wrong date, etc),
91 * then the time is stepped, all datapoints are discarded,
92 * and we go back to steady state.
93 */
94
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010095#define RETRY_INTERVAL 5 /* on error, retry in N secs */
Denys Vlasenko0b002812010-01-03 08:59:59 +010096#define RESPONSE_INTERVAL 15 /* wait for reply up to N secs */
Leonid Lisovskiy894ef602010-10-20 22:36:51 +020097#define INITIAL_SAMPLES 4 /* how many samples do we want for init */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010098
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010099/* Clock discipline parameters and constants */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100100
101/* Step threshold (sec). std ntpd uses 0.128.
102 * Using exact power of 2 (1/8) results in smaller code */
103#define STEP_THRESHOLD 0.125
104#define WATCH_THRESHOLD 128 /* stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100105/* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100106//UNUSED: #define PANIC_THRESHOLD 1000 /* panic threshold (sec) */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100107
108#define FREQ_TOLERANCE 0.000015 /* frequency tolerance (15 PPM) */
Denys Vlasenkofb132e42010-10-29 11:46:52 +0200109#define BURSTPOLL 0 /* initial poll */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100110#define MINPOLL 5 /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100111#define BIGPOLL 10 /* drop to lower poll at any trouble (10: 17 min) */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100112#define MAXPOLL 12 /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
113/* Actively lower poll when we see such big offsets.
114 * With STEP_THRESHOLD = 0.125, it means we try to sync more aggressively
115 * if offset increases over 0.03 sec */
116#define POLLDOWN_OFFSET (STEP_THRESHOLD / 4)
117#define MINDISP 0.01 /* minimum dispersion (sec) */
118#define MAXDISP 16 /* maximum dispersion (sec) */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100119#define MAXSTRAT 16 /* maximum stratum (infinity metric) */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100120#define MAXDIST 1 /* distance threshold (sec) */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100121#define MIN_SELECTED 1 /* minimum intersection survivors */
122#define MIN_CLUSTERED 3 /* minimum cluster survivors */
123
124#define MAXDRIFT 0.000500 /* frequency drift we can correct (500 PPM) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100125
126/* Poll-adjust threshold.
127 * When we see that offset is small enough compared to discipline jitter,
Denys Vlasenkobfc2a322010-01-01 18:12:06 +0100128 * we grow a counter: += MINPOLL. When it goes over POLLADJ_LIMIT,
Denys Vlasenko61313112010-01-01 19:56:16 +0100129 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
130 * and when it goes below -POLLADJ_LIMIT, we poll_exp--
Denys Vlasenko65d722b2010-01-11 02:14:04 +0100131 * (bumped from 30 to 36 since otherwise I often see poll_exp going *2* steps down)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100132 */
Denys Vlasenko65d722b2010-01-11 02:14:04 +0100133#define POLLADJ_LIMIT 36
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100134/* If offset < POLLADJ_GATE * discipline_jitter, then we can increase
135 * poll interval (we think we can't improve timekeeping
136 * by staying at smaller poll).
137 */
Denys Vlasenko61313112010-01-01 19:56:16 +0100138#define POLLADJ_GATE 4
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100139/* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
Denys Vlasenko61313112010-01-01 19:56:16 +0100140#define ALLAN 512
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100141/* PLL loop gain */
Denys Vlasenko61313112010-01-01 19:56:16 +0100142#define PLL 65536
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100143/* FLL loop gain [why it depends on MAXPOLL??] */
Denys Vlasenko61313112010-01-01 19:56:16 +0100144#define FLL (MAXPOLL + 1)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100145/* Parameter averaging constant */
Denys Vlasenko61313112010-01-01 19:56:16 +0100146#define AVG 4
147
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100148
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100149enum {
150 NTP_VERSION = 4,
151 NTP_MAXSTRATUM = 15,
152
153 NTP_DIGESTSIZE = 16,
154 NTP_MSGSIZE_NOAUTH = 48,
155 NTP_MSGSIZE = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
156
157 /* Status Masks */
158 MODE_MASK = (7 << 0),
159 VERSION_MASK = (7 << 3),
160 VERSION_SHIFT = 3,
161 LI_MASK = (3 << 6),
162
163 /* Leap Second Codes (high order two bits of m_status) */
164 LI_NOWARNING = (0 << 6), /* no warning */
165 LI_PLUSSEC = (1 << 6), /* add a second (61 seconds) */
166 LI_MINUSSEC = (2 << 6), /* minus a second (59 seconds) */
167 LI_ALARM = (3 << 6), /* alarm condition */
168
169 /* Mode values */
170 MODE_RES0 = 0, /* reserved */
171 MODE_SYM_ACT = 1, /* symmetric active */
172 MODE_SYM_PAS = 2, /* symmetric passive */
173 MODE_CLIENT = 3, /* client */
174 MODE_SERVER = 4, /* server */
175 MODE_BROADCAST = 5, /* broadcast */
176 MODE_RES1 = 6, /* reserved for NTP control message */
177 MODE_RES2 = 7, /* reserved for private use */
178};
179
180//TODO: better base selection
181#define OFFSET_1900_1970 2208988800UL /* 1970 - 1900 in seconds */
182
183#define NUM_DATAPOINTS 8
184
185typedef struct {
186 uint32_t int_partl;
187 uint32_t fractionl;
188} l_fixedpt_t;
189
190typedef struct {
191 uint16_t int_parts;
192 uint16_t fractions;
193} s_fixedpt_t;
194
195typedef struct {
196 uint8_t m_status; /* status of local clock and leap info */
197 uint8_t m_stratum;
198 uint8_t m_ppoll; /* poll value */
199 int8_t m_precision_exp;
200 s_fixedpt_t m_rootdelay;
201 s_fixedpt_t m_rootdisp;
202 uint32_t m_refid;
203 l_fixedpt_t m_reftime;
204 l_fixedpt_t m_orgtime;
205 l_fixedpt_t m_rectime;
206 l_fixedpt_t m_xmttime;
207 uint32_t m_keyid;
208 uint8_t m_digest[NTP_DIGESTSIZE];
209} msg_t;
210
211typedef struct {
212 double d_recv_time;
213 double d_offset;
214 double d_dispersion;
215} datapoint_t;
216
217typedef struct {
218 len_and_sockaddr *p_lsa;
219 char *p_dotted;
220 /* when to send new query (if p_fd == -1)
221 * or when receive times out (if p_fd >= 0): */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100222 int p_fd;
223 int datapoint_idx;
224 uint32_t lastpkt_refid;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100225 uint8_t lastpkt_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100226 uint8_t lastpkt_stratum;
Denys Vlasenko0b002812010-01-03 08:59:59 +0100227 uint8_t reachable_bits;
228 double next_action_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100229 double p_xmttime;
230 double lastpkt_recv_time;
231 double lastpkt_delay;
232 double lastpkt_rootdelay;
233 double lastpkt_rootdisp;
234 /* produced by filter algorithm: */
235 double filter_offset;
236 double filter_dispersion;
237 double filter_jitter;
238 datapoint_t filter_datapoint[NUM_DATAPOINTS];
239 /* last sent packet: */
240 msg_t p_xmt_msg;
241} peer_t;
242
243
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100244#define USING_KERNEL_PLL_LOOP 1
245#define USING_INITIAL_FREQ_ESTIMATION 0
246
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100247enum {
248 OPT_n = (1 << 0),
249 OPT_q = (1 << 1),
250 OPT_N = (1 << 2),
251 OPT_x = (1 << 3),
252 /* Insert new options above this line. */
253 /* Non-compat options: */
Denys Vlasenko4168fdd2010-01-04 00:19:13 +0100254 OPT_w = (1 << 4),
255 OPT_p = (1 << 5),
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100256 OPT_S = (1 << 6),
257 OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
Denys Vlasenko8e23faf2011-04-07 01:45:20 +0200258 /* We hijack some bits for other purposes */
259 OPT_qq = (1 << 8),
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100260};
261
262struct globals {
Denys Vlasenko0b002812010-01-03 08:59:59 +0100263 double cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100264 /* total round trip delay to currently selected reference clock */
265 double rootdelay;
266 /* reference timestamp: time when the system clock was last set or corrected */
267 double reftime;
268 /* total dispersion to currently selected reference clock */
269 double rootdisp;
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100270
271 double last_script_run;
272 char *script_name;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100273 llist_t *ntp_peers;
274#if ENABLE_FEATURE_NTPD_SERVER
275 int listen_fd;
276#endif
277 unsigned verbose;
278 unsigned peer_cnt;
279 /* refid: 32-bit code identifying the particular server or reference clock
280 * in stratum 0 packets this is a four-character ASCII string,
281 * called the kiss code, used for debugging and monitoring
282 * in stratum 1 packets this is a four-character ASCII string
283 * assigned to the reference clock by IANA. Example: "GPS "
284 * in stratum 2+ packets, it's IPv4 address or 4 first bytes of MD5 hash of IPv6
285 */
286 uint32_t refid;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100287 uint8_t ntp_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100288 /* precision is defined as the larger of the resolution and time to
289 * read the clock, in log2 units. For instance, the precision of a
290 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
291 * system clock hardware representation is to the nanosecond.
292 *
293 * Delays, jitters of various kinds are clamper down to precision.
294 *
295 * If precision_sec is too large, discipline_jitter gets clamped to it
296 * and if offset is much smaller than discipline_jitter, poll interval
297 * grows even though we really can benefit from staying at smaller one,
298 * collecting non-lagged datapoits and correcting the offset.
299 * (Lagged datapoits exist when poll_exp is large but we still have
300 * systematic offset error - the time distance between datapoints
301 * is significat and older datapoints have smaller offsets.
302 * This makes our offset estimation a bit smaller than reality)
303 * Due to this effect, setting G_precision_sec close to
304 * STEP_THRESHOLD isn't such a good idea - offsets may grow
305 * too big and we will step. I observed it with -6.
306 *
307 * OTOH, setting precision too small would result in futile attempts
308 * to syncronize to the unachievable precision.
309 *
310 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
311 */
312#define G_precision_exp -8
313#define G_precision_sec (1.0 / (1 << (- G_precision_exp)))
314 uint8_t stratum;
315 /* Bool. After set to 1, never goes back to 0: */
Denys Vlasenko0b002812010-01-03 08:59:59 +0100316 smallint initial_poll_complete;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100317
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100318#define STATE_NSET 0 /* initial state, "nothing is set" */
319//#define STATE_FSET 1 /* frequency set from file */
320#define STATE_SPIK 2 /* spike detected */
321//#define STATE_FREQ 3 /* initial frequency */
322#define STATE_SYNC 4 /* clock synchronized (normal operation) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100323 uint8_t discipline_state; // doc calls it c.state
324 uint8_t poll_exp; // s.poll
325 int polladj_count; // c.count
Denys Vlasenko61313112010-01-01 19:56:16 +0100326 long kernel_freq_drift;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100327 peer_t *last_update_peer;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100328 double last_update_offset; // c.last
Denys Vlasenko61313112010-01-01 19:56:16 +0100329 double last_update_recv_time; // s.t
330 double discipline_jitter; // c.jitter
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100331 //double cluster_offset; // s.offset
332 //double cluster_jitter; // s.jitter
Denys Vlasenko61313112010-01-01 19:56:16 +0100333#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100334 double discipline_freq_drift; // c.freq
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100335 /* Maybe conditionally calculate wander? it's used only for logging */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100336 double discipline_wander; // c.wander
Denys Vlasenko61313112010-01-01 19:56:16 +0100337#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100338};
339#define G (*ptr_to_globals)
340
341static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY;
342
343
Denys Vlasenkobfc2a322010-01-01 18:12:06 +0100344#define VERB1 if (MAX_VERBOSE && G.verbose)
345#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
346#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
347#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
348#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
349
350
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100351static double LOG2D(int a)
352{
353 if (a < 0)
354 return 1.0 / (1UL << -a);
355 return 1UL << a;
356}
357static ALWAYS_INLINE double SQUARE(double x)
358{
359 return x * x;
360}
361static ALWAYS_INLINE double MAXD(double a, double b)
362{
363 if (a > b)
364 return a;
365 return b;
366}
367static ALWAYS_INLINE double MIND(double a, double b)
368{
369 if (a < b)
370 return a;
371 return b;
372}
Denys Vlasenkod498ff02010-01-03 21:06:27 +0100373static NOINLINE double my_SQRT(double X)
374{
375 union {
376 float f;
377 int32_t i;
378 } v;
379 double invsqrt;
380 double Xhalf = X * 0.5;
381
382 /* Fast and good approximation to 1/sqrt(X), black magic */
383 v.f = X;
384 /*v.i = 0x5f3759df - (v.i >> 1);*/
385 v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
386 invsqrt = v.f; /* better than 0.2% accuracy */
387
388 /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
389 * f(x) = 1/(x*x) - X (f==0 when x = 1/sqrt(X))
390 * f'(x) = -2/(x*x*x)
391 * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
392 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
393 */
394 invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
395 /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
396 /* With 4 iterations, more than half results will be exact,
397 * at 6th iterations result stabilizes with about 72% results exact.
398 * We are well satisfied with 0.05% accuracy.
399 */
400
401 return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
402}
403static ALWAYS_INLINE double SQRT(double X)
404{
405 /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
406 if (sizeof(float) != 4)
407 return sqrt(X);
408
Denys Vlasenko2d3253d2010-01-03 21:52:46 +0100409 /* This avoids needing libm, saves about 0.5k on x86-32 */
Denys Vlasenkod498ff02010-01-03 21:06:27 +0100410 return my_SQRT(X);
411}
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100412
413static double
414gettime1900d(void)
415{
416 struct timeval tv;
417 gettimeofday(&tv, NULL); /* never fails */
Denys Vlasenko0b002812010-01-03 08:59:59 +0100418 G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
419 return G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100420}
421
422static void
423d_to_tv(double d, struct timeval *tv)
424{
425 tv->tv_sec = (long)d;
426 tv->tv_usec = (d - tv->tv_sec) * 1000000;
427}
428
429static double
430lfp_to_d(l_fixedpt_t lfp)
431{
432 double ret;
433 lfp.int_partl = ntohl(lfp.int_partl);
434 lfp.fractionl = ntohl(lfp.fractionl);
435 ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
436 return ret;
437}
438static double
439sfp_to_d(s_fixedpt_t sfp)
440{
441 double ret;
442 sfp.int_parts = ntohs(sfp.int_parts);
443 sfp.fractions = ntohs(sfp.fractions);
444 ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
445 return ret;
446}
447#if ENABLE_FEATURE_NTPD_SERVER
448static l_fixedpt_t
449d_to_lfp(double d)
450{
451 l_fixedpt_t lfp;
452 lfp.int_partl = (uint32_t)d;
453 lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
454 lfp.int_partl = htonl(lfp.int_partl);
455 lfp.fractionl = htonl(lfp.fractionl);
456 return lfp;
457}
458static s_fixedpt_t
459d_to_sfp(double d)
460{
461 s_fixedpt_t sfp;
462 sfp.int_parts = (uint16_t)d;
463 sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
464 sfp.int_parts = htons(sfp.int_parts);
465 sfp.fractions = htons(sfp.fractions);
466 return sfp;
467}
468#endif
469
470static double
Denys Vlasenko0b002812010-01-03 08:59:59 +0100471dispersion(const datapoint_t *dp)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100472{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100473 return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100474}
475
476static double
Denys Vlasenko0b002812010-01-03 08:59:59 +0100477root_distance(peer_t *p)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100478{
479 /* The root synchronization distance is the maximum error due to
480 * all causes of the local clock relative to the primary server.
481 * It is defined as half the total delay plus total dispersion
482 * plus peer jitter.
483 */
484 return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
485 + p->lastpkt_rootdisp
486 + p->filter_dispersion
Denys Vlasenko0b002812010-01-03 08:59:59 +0100487 + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100488 + p->filter_jitter;
489}
490
491static void
492set_next(peer_t *p, unsigned t)
493{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100494 p->next_action_time = G.cur_time + t;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100495}
496
497/*
498 * Peer clock filter and its helpers
499 */
500static void
Denys Vlasenko0b002812010-01-03 08:59:59 +0100501filter_datapoints(peer_t *p)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100502{
503 int i, idx;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100504 int got_newest;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100505 double minoff, maxoff, wavg, sum, w;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100506 double x = x; /* for compiler */
507 double oldest_off = oldest_off;
508 double oldest_age = oldest_age;
509 double newest_off = newest_off;
510 double newest_age = newest_age;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100511
512 minoff = maxoff = p->filter_datapoint[0].d_offset;
513 for (i = 1; i < NUM_DATAPOINTS; i++) {
514 if (minoff > p->filter_datapoint[i].d_offset)
515 minoff = p->filter_datapoint[i].d_offset;
516 if (maxoff < p->filter_datapoint[i].d_offset)
517 maxoff = p->filter_datapoint[i].d_offset;
518 }
519
520 idx = p->datapoint_idx; /* most recent datapoint */
521 /* Average offset:
522 * Drop two outliers and take weighted average of the rest:
523 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
524 * we use older6/32, not older6/64 since sum of weights should be 1:
525 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
526 */
527 wavg = 0;
528 w = 0.5;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100529 /* n-1
530 * --- dispersion(i)
531 * filter_dispersion = \ -------------
532 * / (i+1)
533 * --- 2
534 * i=0
535 */
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100536 got_newest = 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100537 sum = 0;
538 for (i = 0; i < NUM_DATAPOINTS; i++) {
539 VERB4 {
540 bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
541 i,
542 p->filter_datapoint[idx].d_offset,
Denys Vlasenko0b002812010-01-03 08:59:59 +0100543 p->filter_datapoint[idx].d_dispersion, dispersion(&p->filter_datapoint[idx]),
544 G.cur_time - p->filter_datapoint[idx].d_recv_time,
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100545 (minoff == p->filter_datapoint[idx].d_offset || maxoff == p->filter_datapoint[idx].d_offset)
546 ? " (outlier by offset)" : ""
547 );
548 }
549
Denys Vlasenko0b002812010-01-03 08:59:59 +0100550 sum += dispersion(&p->filter_datapoint[idx]) / (2 << i);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100551
552 if (minoff == p->filter_datapoint[idx].d_offset) {
Denys Vlasenkoe4844b82010-01-01 21:59:49 +0100553 minoff -= 1; /* so that we don't match it ever again */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100554 } else
555 if (maxoff == p->filter_datapoint[idx].d_offset) {
556 maxoff += 1;
557 } else {
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100558 oldest_off = p->filter_datapoint[idx].d_offset;
Denys Vlasenko0b002812010-01-03 08:59:59 +0100559 oldest_age = G.cur_time - p->filter_datapoint[idx].d_recv_time;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100560 if (!got_newest) {
561 got_newest = 1;
562 newest_off = oldest_off;
563 newest_age = oldest_age;
564 }
565 x = oldest_off * w;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100566 wavg += x;
567 w /= 2;
568 }
569
570 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
571 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100572 p->filter_dispersion = sum;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100573 wavg += x; /* add another older6/64 to form older6/32 */
574 /* Fix systematic underestimation with large poll intervals.
575 * Imagine that we still have a bit of uncorrected drift,
576 * and poll interval is big (say, 100 sec). Offsets form a progression:
577 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
578 * The algorithm above drops 0.0 and 0.7 as outliers,
579 * and then we have this estimation, ~25% off from 0.7:
580 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
581 */
Denys Vlasenko0b002812010-01-03 08:59:59 +0100582 x = oldest_age - newest_age;
583 if (x != 0) {
584 x = newest_age / x; /* in above example, 100 / (600 - 100) */
585 if (x < 1) { /* paranoia check */
586 x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
587 wavg += x;
588 }
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100589 }
590 p->filter_offset = wavg;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100591
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100592 /* +----- -----+ ^ 1/2
593 * | n-1 |
594 * | --- |
595 * | 1 \ 2 |
596 * filter_jitter = | --- * / (avg-offset_j) |
597 * | n --- |
598 * | j=0 |
599 * +----- -----+
600 * where n is the number of valid datapoints in the filter (n > 1);
601 * if filter_jitter < precision then filter_jitter = precision
602 */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100603 sum = 0;
604 for (i = 0; i < NUM_DATAPOINTS; i++) {
605 sum += SQUARE(wavg - p->filter_datapoint[i].d_offset);
606 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100607 sum = SQRT(sum / NUM_DATAPOINTS);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100608 p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
609
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100610 VERB3 bb_error_msg("filter offset:%f(corr:%e) disp:%f jitter:%f",
611 p->filter_offset, x,
612 p->filter_dispersion,
613 p->filter_jitter);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100614}
615
616static void
Denys Vlasenko0b002812010-01-03 08:59:59 +0100617reset_peer_stats(peer_t *p, double offset)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100618{
619 int i;
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100620 bool small_ofs = fabs(offset) < 16 * STEP_THRESHOLD;
621
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100622 for (i = 0; i < NUM_DATAPOINTS; i++) {
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100623 if (small_ofs) {
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200624 p->filter_datapoint[i].d_recv_time += offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100625 if (p->filter_datapoint[i].d_offset != 0) {
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200626 p->filter_datapoint[i].d_offset += offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100627 }
628 } else {
Denys Vlasenko0b002812010-01-03 08:59:59 +0100629 p->filter_datapoint[i].d_recv_time = G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100630 p->filter_datapoint[i].d_offset = 0;
631 p->filter_datapoint[i].d_dispersion = MAXDISP;
632 }
633 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100634 if (small_ofs) {
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200635 p->lastpkt_recv_time += offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100636 } else {
Denys Vlasenko0b002812010-01-03 08:59:59 +0100637 p->reachable_bits = 0;
638 p->lastpkt_recv_time = G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100639 }
Denys Vlasenko0b002812010-01-03 08:59:59 +0100640 filter_datapoints(p); /* recalc p->filter_xxx */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100641 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
642}
643
644static void
645add_peers(char *s)
646{
647 peer_t *p;
648
649 p = xzalloc(sizeof(*p));
650 p->p_lsa = xhost2sockaddr(s, 123);
651 p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa);
652 p->p_fd = -1;
653 p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
Denys Vlasenko0b002812010-01-03 08:59:59 +0100654 p->next_action_time = G.cur_time; /* = set_next(p, 0); */
655 reset_peer_stats(p, 16 * STEP_THRESHOLD);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100656
657 llist_add_to(&G.ntp_peers, p);
658 G.peer_cnt++;
659}
660
661static int
662do_sendto(int fd,
663 const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
664 msg_t *msg, ssize_t len)
665{
666 ssize_t ret;
667
668 errno = 0;
669 if (!from) {
670 ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
671 } else {
672 ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
673 }
674 if (ret != len) {
675 bb_perror_msg("send failed");
676 return -1;
677 }
678 return 0;
679}
680
Denys Vlasenko0b002812010-01-03 08:59:59 +0100681static void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100682send_query_to_peer(peer_t *p)
683{
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100684 /* Why do we need to bind()?
685 * See what happens when we don't bind:
686 *
687 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
688 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
689 * gettimeofday({1259071266, 327885}, NULL) = 0
690 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
691 * ^^^ we sent it from some source port picked by kernel.
692 * time(NULL) = 1259071266
693 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
694 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
695 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
696 * ^^^ this recv will receive packets to any local port!
697 *
698 * Uncomment this and use strace to see it in action:
699 */
700#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100701
702 if (p->p_fd == -1) {
703 int fd, family;
704 len_and_sockaddr *local_lsa;
705
706 family = p->p_lsa->u.sa.sa_family;
707 p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
708 /* local_lsa has "null" address and port 0 now.
709 * bind() ensures we have a *particular port* selected by kernel
710 * and remembered in p->p_fd, thus later recv(p->p_fd)
711 * receives only packets sent to this port.
712 */
713 PROBE_LOCAL_ADDR
714 xbind(fd, &local_lsa->u.sa, local_lsa->len);
715 PROBE_LOCAL_ADDR
716#if ENABLE_FEATURE_IPV6
717 if (family == AF_INET)
718#endif
719 setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
720 free(local_lsa);
721 }
722
723 /*
724 * Send out a random 64-bit number as our transmit time. The NTP
725 * server will copy said number into the originate field on the
726 * response that it sends us. This is totally legal per the SNTP spec.
727 *
728 * The impact of this is two fold: we no longer send out the current
729 * system time for the world to see (which may aid an attacker), and
730 * it gives us a (not very secure) way of knowing that we're not
731 * getting spoofed by an attacker that can't capture our traffic
732 * but can spoof packets from the NTP server we're communicating with.
733 *
734 * Save the real transmit timestamp locally.
735 */
736 p->p_xmt_msg.m_xmttime.int_partl = random();
737 p->p_xmt_msg.m_xmttime.fractionl = random();
738 p->p_xmttime = gettime1900d();
739
740 if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
741 &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
742 ) {
743 close(p->p_fd);
744 p->p_fd = -1;
745 set_next(p, RETRY_INTERVAL);
Denys Vlasenko0b002812010-01-03 08:59:59 +0100746 return;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100747 }
748
Denys Vlasenko0b002812010-01-03 08:59:59 +0100749 p->reachable_bits <<= 1;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100750 VERB1 bb_error_msg("sent query to %s", p->p_dotted);
Denys Vlasenko0b002812010-01-03 08:59:59 +0100751 set_next(p, RESPONSE_INTERVAL);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100752}
753
754
Denys Vlasenko24928ff2010-01-25 19:30:16 +0100755/* Note that there is no provision to prevent several run_scripts
756 * to be done in quick succession. In fact, it happens rather often
757 * if initial syncronization results in a step.
758 * You will see "step" and then "stratum" script runs, sometimes
759 * as close as only 0.002 seconds apart.
760 * Script should be ready to deal with this.
761 */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100762static void run_script(const char *action, double offset)
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100763{
764 char *argv[3];
Denys Vlasenko12628b72010-01-11 01:31:59 +0100765 char *env1, *env2, *env3, *env4;
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100766
767 if (!G.script_name)
768 return;
769
770 argv[0] = (char*) G.script_name;
771 argv[1] = (char*) action;
772 argv[2] = NULL;
773
774 VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
775
Denys Vlasenkoae473352010-01-07 11:51:13 +0100776 env1 = xasprintf("%s=%u", "stratum", G.stratum);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100777 putenv(env1);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100778 env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100779 putenv(env2);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100780 env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
781 putenv(env3);
Denys Vlasenko12628b72010-01-11 01:31:59 +0100782 env4 = xasprintf("%s=%f", "offset", offset);
783 putenv(env4);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100784 /* Other items of potential interest: selected peer,
Denys Vlasenkoae473352010-01-07 11:51:13 +0100785 * rootdelay, reftime, rootdisp, refid, ntp_status,
Denys Vlasenko12628b72010-01-11 01:31:59 +0100786 * last_update_offset, last_update_recv_time, discipline_jitter,
787 * how many peers have reachable_bits = 0?
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100788 */
789
Denys Vlasenko6959f6b2010-01-07 08:31:46 +0100790 /* Don't want to wait: it may run hwclock --systohc, and that
791 * may take some time (seconds): */
Denys Vlasenko8531d762010-03-18 22:44:00 +0100792 /*spawn_and_wait(argv);*/
Denys Vlasenko6959f6b2010-01-07 08:31:46 +0100793 spawn(argv);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100794
795 unsetenv("stratum");
796 unsetenv("freq_drift_ppm");
Denys Vlasenkoae473352010-01-07 11:51:13 +0100797 unsetenv("poll_interval");
Denys Vlasenko12628b72010-01-11 01:31:59 +0100798 unsetenv("offset");
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100799 free(env1);
800 free(env2);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100801 free(env3);
Denys Vlasenko12628b72010-01-11 01:31:59 +0100802 free(env4);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100803
804 G.last_script_run = G.cur_time;
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100805}
806
Denys Vlasenko0b002812010-01-03 08:59:59 +0100807static NOINLINE void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100808step_time(double offset)
809{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100810 llist_t *item;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100811 double dtime;
812 struct timeval tv;
813 char buf[80];
814 time_t tval;
815
816 gettimeofday(&tv, NULL); /* never fails */
817 dtime = offset + tv.tv_sec;
818 dtime += 1.0e-6 * tv.tv_usec;
819 d_to_tv(dtime, &tv);
820
821 if (settimeofday(&tv, NULL) == -1)
822 bb_perror_msg_and_die("settimeofday");
823
824 tval = tv.tv_sec;
825 strftime(buf, sizeof(buf), "%a %b %e %H:%M:%S %Z %Y", localtime(&tval));
826
827 bb_error_msg("setting clock to %s (offset %fs)", buf, offset);
Denys Vlasenko0b002812010-01-03 08:59:59 +0100828
829 /* Correct various fields which contain time-relative values: */
830
831 /* p->lastpkt_recv_time, p->next_action_time and such: */
832 for (item = G.ntp_peers; item != NULL; item = item->link) {
833 peer_t *pp = (peer_t *) item->data;
834 reset_peer_stats(pp, offset);
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200835 //bb_error_msg("offset:%f pp->next_action_time:%f -> %f",
836 // offset, pp->next_action_time, pp->next_action_time + offset);
837 pp->next_action_time += offset;
Denys Vlasenko0b002812010-01-03 08:59:59 +0100838 }
839 /* Globals: */
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200840 G.cur_time += offset;
841 G.last_update_recv_time += offset;
842 G.last_script_run += offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100843}
844
845
846/*
847 * Selection and clustering, and their helpers
848 */
849typedef struct {
850 peer_t *p;
851 int type;
852 double edge;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100853 double opt_rd; /* optimization */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100854} point_t;
855static int
856compare_point_edge(const void *aa, const void *bb)
857{
858 const point_t *a = aa;
859 const point_t *b = bb;
860 if (a->edge < b->edge) {
861 return -1;
862 }
863 return (a->edge > b->edge);
864}
865typedef struct {
866 peer_t *p;
867 double metric;
868} survivor_t;
869static int
870compare_survivor_metric(const void *aa, const void *bb)
871{
872 const survivor_t *a = aa;
873 const survivor_t *b = bb;
Denys Vlasenko510f56a2010-01-03 12:00:26 +0100874 if (a->metric < b->metric) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100875 return -1;
Denys Vlasenko510f56a2010-01-03 12:00:26 +0100876 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100877 return (a->metric > b->metric);
878}
879static int
880fit(peer_t *p, double rd)
881{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100882 if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
883 /* One or zero bits in reachable_bits */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100884 VERB3 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
885 return 0;
886 }
Denys Vlasenkofb132e42010-10-29 11:46:52 +0200887#if 0 /* we filter out such packets earlier */
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100888 if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100889 || p->lastpkt_stratum >= MAXSTRAT
890 ) {
891 VERB3 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
892 return 0;
893 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100894#endif
Denys Vlasenko0b002812010-01-03 08:59:59 +0100895 /* rd is root_distance(p) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100896 if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
897 VERB3 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
898 return 0;
899 }
900//TODO
901// /* Do we have a loop? */
902// if (p->refid == p->dstaddr || p->refid == s.refid)
903// return 0;
Denys Vlasenkob7c9fb22011-02-03 00:05:48 +0100904 return 1;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100905}
906static peer_t*
Denys Vlasenko0b002812010-01-03 08:59:59 +0100907select_and_cluster(void)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100908{
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100909 peer_t *p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100910 llist_t *item;
911 int i, j;
912 int size = 3 * G.peer_cnt;
913 /* for selection algorithm */
914 point_t point[size];
915 unsigned num_points, num_candidates;
916 double low, high;
917 unsigned num_falsetickers;
918 /* for cluster algorithm */
919 survivor_t survivor[size];
920 unsigned num_survivors;
921
922 /* Selection */
923
924 num_points = 0;
925 item = G.ntp_peers;
Denys Vlasenko0b002812010-01-03 08:59:59 +0100926 if (G.initial_poll_complete) while (item != NULL) {
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100927 double rd, offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100928
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100929 p = (peer_t *) item->data;
930 rd = root_distance(p);
931 offset = p->filter_offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100932 if (!fit(p, rd)) {
933 item = item->link;
934 continue;
935 }
936
937 VERB4 bb_error_msg("interval: [%f %f %f] %s",
938 offset - rd,
939 offset,
940 offset + rd,
941 p->p_dotted
942 );
943 point[num_points].p = p;
944 point[num_points].type = -1;
945 point[num_points].edge = offset - rd;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100946 point[num_points].opt_rd = rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100947 num_points++;
948 point[num_points].p = p;
949 point[num_points].type = 0;
950 point[num_points].edge = offset;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100951 point[num_points].opt_rd = rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100952 num_points++;
953 point[num_points].p = p;
954 point[num_points].type = 1;
955 point[num_points].edge = offset + rd;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100956 point[num_points].opt_rd = rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100957 num_points++;
958 item = item->link;
959 }
960 num_candidates = num_points / 3;
961 if (num_candidates == 0) {
962 VERB3 bb_error_msg("no valid datapoints, no peer selected");
Denys Vlasenko0b002812010-01-03 08:59:59 +0100963 return NULL;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100964 }
965//TODO: sorting does not seem to be done in reference code
966 qsort(point, num_points, sizeof(point[0]), compare_point_edge);
967
968 /* Start with the assumption that there are no falsetickers.
969 * Attempt to find a nonempty intersection interval containing
970 * the midpoints of all truechimers.
971 * If a nonempty interval cannot be found, increase the number
972 * of assumed falsetickers by one and try again.
973 * If a nonempty interval is found and the number of falsetickers
974 * is less than the number of truechimers, a majority has been found
975 * and the midpoint of each truechimer represents
976 * the candidates available to the cluster algorithm.
977 */
978 num_falsetickers = 0;
979 while (1) {
980 int c;
981 unsigned num_midpoints = 0;
982
983 low = 1 << 9;
984 high = - (1 << 9);
985 c = 0;
986 for (i = 0; i < num_points; i++) {
987 /* We want to do:
988 * if (point[i].type == -1) c++;
989 * if (point[i].type == 1) c--;
990 * and it's simpler to do it this way:
991 */
992 c -= point[i].type;
993 if (c >= num_candidates - num_falsetickers) {
994 /* If it was c++ and it got big enough... */
995 low = point[i].edge;
996 break;
997 }
998 if (point[i].type == 0)
999 num_midpoints++;
1000 }
1001 c = 0;
1002 for (i = num_points-1; i >= 0; i--) {
1003 c += point[i].type;
1004 if (c >= num_candidates - num_falsetickers) {
1005 high = point[i].edge;
1006 break;
1007 }
1008 if (point[i].type == 0)
1009 num_midpoints++;
1010 }
1011 /* If the number of midpoints is greater than the number
1012 * of allowed falsetickers, the intersection contains at
1013 * least one truechimer with no midpoint - bad.
1014 * Also, interval should be nonempty.
1015 */
1016 if (num_midpoints <= num_falsetickers && low < high)
1017 break;
1018 num_falsetickers++;
1019 if (num_falsetickers * 2 >= num_candidates) {
1020 VERB3 bb_error_msg("too many falsetickers:%d (candidates:%d), no peer selected",
1021 num_falsetickers, num_candidates);
1022 return NULL;
1023 }
1024 }
1025 VERB3 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1026 low, high, num_candidates, num_falsetickers);
1027
1028 /* Clustering */
1029
1030 /* Construct a list of survivors (p, metric)
1031 * from the chime list, where metric is dominated
1032 * first by stratum and then by root distance.
1033 * All other things being equal, this is the order of preference.
1034 */
1035 num_survivors = 0;
1036 for (i = 0; i < num_points; i++) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001037 if (point[i].edge < low || point[i].edge > high)
1038 continue;
1039 p = point[i].p;
1040 survivor[num_survivors].p = p;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001041 /* x.opt_rd == root_distance(p); */
1042 survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001043 VERB4 bb_error_msg("survivor[%d] metric:%f peer:%s",
1044 num_survivors, survivor[num_survivors].metric, p->p_dotted);
1045 num_survivors++;
1046 }
1047 /* There must be at least MIN_SELECTED survivors to satisfy the
1048 * correctness assertions. Ordinarily, the Byzantine criteria
1049 * require four survivors, but for the demonstration here, one
1050 * is acceptable.
1051 */
1052 if (num_survivors < MIN_SELECTED) {
1053 VERB3 bb_error_msg("num_survivors %d < %d, no peer selected",
1054 num_survivors, MIN_SELECTED);
1055 return NULL;
1056 }
1057
1058//looks like this is ONLY used by the fact that later we pick survivor[0].
1059//we can avoid sorting then, just find the minimum once!
1060 qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1061
1062 /* For each association p in turn, calculate the selection
1063 * jitter p->sjitter as the square root of the sum of squares
1064 * (p->offset - q->offset) over all q associations. The idea is
1065 * to repeatedly discard the survivor with maximum selection
1066 * jitter until a termination condition is met.
1067 */
1068 while (1) {
1069 unsigned max_idx = max_idx;
1070 double max_selection_jitter = max_selection_jitter;
1071 double min_jitter = min_jitter;
1072
1073 if (num_survivors <= MIN_CLUSTERED) {
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001074 VERB3 bb_error_msg("num_survivors %d <= %d, not discarding more",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001075 num_survivors, MIN_CLUSTERED);
1076 break;
1077 }
1078
1079 /* To make sure a few survivors are left
1080 * for the clustering algorithm to chew on,
1081 * we stop if the number of survivors
1082 * is less than or equal to MIN_CLUSTERED (3).
1083 */
1084 for (i = 0; i < num_survivors; i++) {
1085 double selection_jitter_sq;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001086
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001087 p = survivor[i].p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001088 if (i == 0 || p->filter_jitter < min_jitter)
1089 min_jitter = p->filter_jitter;
1090
1091 selection_jitter_sq = 0;
1092 for (j = 0; j < num_survivors; j++) {
1093 peer_t *q = survivor[j].p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001094 selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1095 }
1096 if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1097 max_selection_jitter = selection_jitter_sq;
1098 max_idx = i;
1099 }
1100 VERB5 bb_error_msg("survivor %d selection_jitter^2:%f",
1101 i, selection_jitter_sq);
1102 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001103 max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001104 VERB4 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1105 max_idx, max_selection_jitter, min_jitter);
1106
1107 /* If the maximum selection jitter is less than the
1108 * minimum peer jitter, then tossing out more survivors
1109 * will not lower the minimum peer jitter, so we might
1110 * as well stop.
1111 */
1112 if (max_selection_jitter < min_jitter) {
1113 VERB3 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1114 max_selection_jitter, min_jitter, num_survivors);
1115 break;
1116 }
1117
1118 /* Delete survivor[max_idx] from the list
1119 * and go around again.
1120 */
1121 VERB5 bb_error_msg("dropping survivor %d", max_idx);
1122 num_survivors--;
1123 while (max_idx < num_survivors) {
1124 survivor[max_idx] = survivor[max_idx + 1];
1125 max_idx++;
1126 }
1127 }
1128
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001129 if (0) {
1130 /* Combine the offsets of the clustering algorithm survivors
1131 * using a weighted average with weight determined by the root
1132 * distance. Compute the selection jitter as the weighted RMS
1133 * difference between the first survivor and the remaining
1134 * survivors. In some cases the inherent clock jitter can be
1135 * reduced by not using this algorithm, especially when frequent
1136 * clockhopping is involved. bbox: thus we don't do it.
1137 */
1138 double x, y, z, w;
1139 y = z = w = 0;
1140 for (i = 0; i < num_survivors; i++) {
1141 p = survivor[i].p;
1142 x = root_distance(p);
1143 y += 1 / x;
1144 z += p->filter_offset / x;
1145 w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1146 }
1147 //G.cluster_offset = z / y;
1148 //G.cluster_jitter = SQRT(w / y);
1149 }
1150
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001151 /* Pick the best clock. If the old system peer is on the list
1152 * and at the same stratum as the first survivor on the list,
1153 * then don't do a clock hop. Otherwise, select the first
1154 * survivor on the list as the new system peer.
1155 */
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001156 p = survivor[0].p;
1157 if (G.last_update_peer
1158 && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1159 ) {
1160 /* Starting from 1 is ok here */
1161 for (i = 1; i < num_survivors; i++) {
1162 if (G.last_update_peer == survivor[i].p) {
1163 VERB4 bb_error_msg("keeping old synced peer");
1164 p = G.last_update_peer;
1165 goto keep_old;
1166 }
1167 }
1168 }
1169 G.last_update_peer = p;
1170 keep_old:
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001171 VERB3 bb_error_msg("selected peer %s filter_offset:%f age:%f",
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001172 p->p_dotted,
1173 p->filter_offset,
1174 G.cur_time - p->lastpkt_recv_time
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001175 );
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001176 return p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001177}
1178
1179
1180/*
1181 * Local clock discipline and its helpers
1182 */
1183static void
1184set_new_values(int disc_state, double offset, double recv_time)
1185{
1186 /* Enter new state and set state variables. Note we use the time
1187 * of the last clock filter sample, which must be earlier than
1188 * the current time.
1189 */
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001190 VERB3 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001191 disc_state, offset, recv_time);
1192 G.discipline_state = disc_state;
1193 G.last_update_offset = offset;
1194 G.last_update_recv_time = recv_time;
1195}
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001196/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
Denys Vlasenko0b002812010-01-03 08:59:59 +01001197static NOINLINE int
1198update_local_clock(peer_t *p)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001199{
1200 int rc;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001201 struct timex tmx;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001202 /* Note: can use G.cluster_offset instead: */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001203 double offset = p->filter_offset;
1204 double recv_time = p->lastpkt_recv_time;
1205 double abs_offset;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001206#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001207 double freq_drift;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001208#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001209 double since_last_update;
1210 double etemp, dtemp;
1211
1212 abs_offset = fabs(offset);
1213
Denys Vlasenko12628b72010-01-11 01:31:59 +01001214#if 0
Denys Vlasenko24928ff2010-01-25 19:30:16 +01001215 /* If needed, -S script can do it by looking at $offset
1216 * env var and killing parent */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001217 /* If the offset is too large, give up and go home */
1218 if (abs_offset > PANIC_THRESHOLD) {
1219 bb_error_msg_and_die("offset %f far too big, exiting", offset);
1220 }
Denys Vlasenko12628b72010-01-11 01:31:59 +01001221#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001222
1223 /* If this is an old update, for instance as the result
1224 * of a system peer change, avoid it. We never use
1225 * an old sample or the same sample twice.
1226 */
1227 if (recv_time <= G.last_update_recv_time) {
1228 VERB3 bb_error_msg("same or older datapoint: %f >= %f, not using it",
1229 G.last_update_recv_time, recv_time);
1230 return 0; /* "leave poll interval as is" */
1231 }
1232
1233 /* Clock state machine transition function. This is where the
1234 * action is and defines how the system reacts to large time
1235 * and frequency errors.
1236 */
1237 since_last_update = recv_time - G.reftime;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001238#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001239 freq_drift = 0;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001240#endif
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001241#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001242 if (G.discipline_state == STATE_FREQ) {
1243 /* Ignore updates until the stepout threshold */
1244 if (since_last_update < WATCH_THRESHOLD) {
1245 VERB3 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1246 WATCH_THRESHOLD - since_last_update);
1247 return 0; /* "leave poll interval as is" */
1248 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001249# if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001250 freq_drift = (offset - G.last_update_offset) / since_last_update;
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001251# endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001252 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001253#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001254
1255 /* There are two main regimes: when the
1256 * offset exceeds the step threshold and when it does not.
1257 */
1258 if (abs_offset > STEP_THRESHOLD) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001259 switch (G.discipline_state) {
1260 case STATE_SYNC:
1261 /* The first outlyer: ignore it, switch to SPIK state */
1262 VERB3 bb_error_msg("offset:%f - spike detected", offset);
1263 G.discipline_state = STATE_SPIK;
1264 return -1; /* "decrease poll interval" */
1265
1266 case STATE_SPIK:
1267 /* Ignore succeeding outlyers until either an inlyer
1268 * is found or the stepout threshold is exceeded.
1269 */
1270 if (since_last_update < WATCH_THRESHOLD) {
1271 VERB3 bb_error_msg("spike detected, datapoint ignored, %f sec remains",
1272 WATCH_THRESHOLD - since_last_update);
1273 return -1; /* "decrease poll interval" */
1274 }
1275 /* fall through: we need to step */
1276 } /* switch */
1277
1278 /* Step the time and clamp down the poll interval.
1279 *
1280 * In NSET state an initial frequency correction is
1281 * not available, usually because the frequency file has
1282 * not yet been written. Since the time is outside the
1283 * capture range, the clock is stepped. The frequency
1284 * will be set directly following the stepout interval.
1285 *
1286 * In FSET state the initial frequency has been set
1287 * from the frequency file. Since the time is outside
1288 * the capture range, the clock is stepped immediately,
1289 * rather than after the stepout interval. Guys get
1290 * nervous if it takes 17 minutes to set the clock for
1291 * the first time.
1292 *
1293 * In SPIK state the stepout threshold has expired and
1294 * the phase is still above the step threshold. Note
1295 * that a single spike greater than the step threshold
1296 * is always suppressed, even at the longer poll
1297 * intervals.
1298 */
1299 VERB3 bb_error_msg("stepping time by %f; poll_exp=MINPOLL", offset);
1300 step_time(offset);
1301 if (option_mask32 & OPT_q) {
1302 /* We were only asked to set time once. Done. */
1303 exit(0);
1304 }
1305
1306 G.polladj_count = 0;
1307 G.poll_exp = MINPOLL;
1308 G.stratum = MAXSTRAT;
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001309
Denys Vlasenko12628b72010-01-11 01:31:59 +01001310 run_script("step", offset);
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001311
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001312#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001313 if (G.discipline_state == STATE_NSET) {
1314 set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1315 return 1; /* "ok to increase poll interval" */
1316 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001317#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001318 set_new_values(STATE_SYNC, /*offset:*/ 0, recv_time);
1319
1320 } else { /* abs_offset <= STEP_THRESHOLD */
1321
Denys Vlasenko0b002812010-01-03 08:59:59 +01001322 if (G.poll_exp < MINPOLL && G.initial_poll_complete) {
1323 VERB3 bb_error_msg("small offset:%f, disabling burst mode", offset);
1324 G.polladj_count = 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001325 G.poll_exp = MINPOLL;
1326 }
1327
1328 /* Compute the clock jitter as the RMS of exponentially
1329 * weighted offset differences. Used by the poll adjust code.
1330 */
1331 etemp = SQUARE(G.discipline_jitter);
1332 dtemp = SQUARE(MAXD(fabs(offset - G.last_update_offset), G_precision_sec));
1333 G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1334 VERB3 bb_error_msg("discipline jitter=%f", G.discipline_jitter);
1335
1336 switch (G.discipline_state) {
1337 case STATE_NSET:
1338 if (option_mask32 & OPT_q) {
1339 /* We were only asked to set time once.
1340 * The clock is precise enough, no need to step.
1341 */
1342 exit(0);
1343 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001344#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001345 /* This is the first update received and the frequency
1346 * has not been initialized. The first thing to do
1347 * is directly measure the oscillator frequency.
1348 */
1349 set_new_values(STATE_FREQ, offset, recv_time);
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001350#else
1351 set_new_values(STATE_SYNC, offset, recv_time);
1352#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001353 VERB3 bb_error_msg("transitioning to FREQ, datapoint ignored");
Denys Vlasenko0b002812010-01-03 08:59:59 +01001354 return 0; /* "leave poll interval as is" */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001355
1356#if 0 /* this is dead code for now */
1357 case STATE_FSET:
1358 /* This is the first update and the frequency
1359 * has been initialized. Adjust the phase, but
1360 * don't adjust the frequency until the next update.
1361 */
1362 set_new_values(STATE_SYNC, offset, recv_time);
1363 /* freq_drift remains 0 */
1364 break;
1365#endif
1366
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001367#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001368 case STATE_FREQ:
1369 /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1370 * Correct the phase and frequency and switch to SYNC state.
1371 * freq_drift was already estimated (see code above)
1372 */
1373 set_new_values(STATE_SYNC, offset, recv_time);
1374 break;
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001375#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001376
1377 default:
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001378#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001379 /* Compute freq_drift due to PLL and FLL contributions.
1380 *
1381 * The FLL and PLL frequency gain constants
1382 * depend on the poll interval and Allan
1383 * intercept. The FLL is not used below one-half
1384 * the Allan intercept. Above that the loop gain
1385 * increases in steps to 1 / AVG.
1386 */
1387 if ((1 << G.poll_exp) > ALLAN / 2) {
1388 etemp = FLL - G.poll_exp;
1389 if (etemp < AVG)
1390 etemp = AVG;
1391 freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1392 }
1393 /* For the PLL the integration interval
1394 * (numerator) is the minimum of the update
1395 * interval and poll interval. This allows
1396 * oversampling, but not undersampling.
1397 */
1398 etemp = MIND(since_last_update, (1 << G.poll_exp));
1399 dtemp = (4 * PLL) << G.poll_exp;
1400 freq_drift += offset * etemp / SQUARE(dtemp);
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001401#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001402 set_new_values(STATE_SYNC, offset, recv_time);
1403 break;
1404 }
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001405 if (G.stratum != p->lastpkt_stratum + 1) {
1406 G.stratum = p->lastpkt_stratum + 1;
Denys Vlasenko12628b72010-01-11 01:31:59 +01001407 run_script("stratum", offset);
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001408 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001409 }
1410
Denys Vlasenko0b002812010-01-03 08:59:59 +01001411 G.reftime = G.cur_time;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001412 G.ntp_status = p->lastpkt_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001413 G.refid = p->lastpkt_refid;
1414 G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001415 dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
Denys Vlasenko0b002812010-01-03 08:59:59 +01001416 dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001417 G.rootdisp = p->lastpkt_rootdisp + dtemp;
1418 VERB3 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1419
1420 /* We are in STATE_SYNC now, but did not do adjtimex yet.
1421 * (Any other state does not reach this, they all return earlier)
1422 * By this time, freq_drift and G.last_update_offset are set
1423 * to values suitable for adjtimex.
Denys Vlasenko61313112010-01-01 19:56:16 +01001424 */
1425#if !USING_KERNEL_PLL_LOOP
1426 /* Calculate the new frequency drift and frequency stability (wander).
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001427 * Compute the clock wander as the RMS of exponentially weighted
1428 * frequency differences. This is not used directly, but can,
1429 * along with the jitter, be a highly useful monitoring and
1430 * debugging tool.
1431 */
1432 dtemp = G.discipline_freq_drift + freq_drift;
Denys Vlasenko61313112010-01-01 19:56:16 +01001433 G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001434 etemp = SQUARE(G.discipline_wander);
1435 dtemp = SQUARE(dtemp);
1436 G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1437
Denys Vlasenko61313112010-01-01 19:56:16 +01001438 VERB3 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1439 G.discipline_freq_drift,
1440 (long)(G.discipline_freq_drift * 65536e6),
1441 freq_drift,
1442 G.discipline_wander);
1443#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001444 VERB3 {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001445 memset(&tmx, 0, sizeof(tmx));
1446 if (adjtimex(&tmx) < 0)
1447 bb_perror_msg_and_die("adjtimex");
1448 VERB3 bb_error_msg("p adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1449 tmx.freq, tmx.offset, tmx.constant, tmx.status);
1450 }
1451
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001452 memset(&tmx, 0, sizeof(tmx));
1453#if 0
Denys Vlasenko61313112010-01-01 19:56:16 +01001454//doesn't work, offset remains 0 (!) in kernel:
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001455//ntpd: set adjtimex freq:1786097 tmx.offset:77487
1456//ntpd: prev adjtimex freq:1786097 tmx.offset:0
1457//ntpd: cur adjtimex freq:1786097 tmx.offset:0
1458 tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1459 /* 65536 is one ppm */
1460 tmx.freq = G.discipline_freq_drift * 65536e6;
1461 tmx.offset = G.last_update_offset * 1000000; /* usec */
1462#endif
1463 tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
Denys Vlasenko57f46c12010-01-17 03:01:15 +01001464 tmx.offset = (G.last_update_offset * 1000000); /* usec */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001465 /* + (G.last_update_offset < 0 ? -0.5 : 0.5) - too small to bother */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001466 tmx.status = STA_PLL;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001467 if (G.ntp_status & LI_PLUSSEC)
1468 tmx.status |= STA_INS;
1469 if (G.ntp_status & LI_MINUSSEC)
1470 tmx.status |= STA_DEL;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001471 tmx.constant = G.poll_exp - 4;
1472 //tmx.esterror = (u_int32)(clock_jitter * 1e6);
1473 //tmx.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001474 rc = adjtimex(&tmx);
1475 if (rc < 0)
1476 bb_perror_msg_and_die("adjtimex");
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001477 /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1478 * Not sure why. Perhaps it is normal.
1479 */
1480 VERB3 bb_error_msg("adjtimex:%d freq:%ld offset:%ld constant:%ld status:0x%x",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001481 rc, tmx.freq, tmx.offset, tmx.constant, tmx.status);
Denys Vlasenko61313112010-01-01 19:56:16 +01001482#if 0
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001483 VERB3 {
Denys Vlasenko61313112010-01-01 19:56:16 +01001484 /* always gives the same output as above msg */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001485 memset(&tmx, 0, sizeof(tmx));
1486 if (adjtimex(&tmx) < 0)
1487 bb_perror_msg_and_die("adjtimex");
1488 VERB3 bb_error_msg("c adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1489 tmx.freq, tmx.offset, tmx.constant, tmx.status);
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001490 }
Denys Vlasenko61313112010-01-01 19:56:16 +01001491#endif
Denys Vlasenko12628b72010-01-11 01:31:59 +01001492 G.kernel_freq_drift = tmx.freq / 65536;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001493 VERB2 bb_error_msg("update peer:%s, offset:%f, clock drift:%ld ppm",
1494 p->p_dotted, G.last_update_offset, G.kernel_freq_drift);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001495
1496 return 1; /* "ok to increase poll interval" */
1497}
1498
1499
1500/*
1501 * We've got a new reply packet from a peer, process it
1502 * (helpers first)
1503 */
1504static unsigned
1505retry_interval(void)
1506{
1507 /* Local problem, want to retry soon */
1508 unsigned interval, r;
1509 interval = RETRY_INTERVAL;
1510 r = random();
1511 interval += r % (unsigned)(RETRY_INTERVAL / 4);
1512 VERB3 bb_error_msg("chose retry interval:%u", interval);
1513 return interval;
1514}
1515static unsigned
Denys Vlasenko0b002812010-01-03 08:59:59 +01001516poll_interval(int exponent)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001517{
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001518 unsigned interval, r;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001519 exponent = G.poll_exp + exponent;
1520 if (exponent < 0)
1521 exponent = 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001522 interval = 1 << exponent;
1523 r = random();
1524 interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */
1525 VERB3 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent);
1526 return interval;
1527}
Denys Vlasenko0b002812010-01-03 08:59:59 +01001528static NOINLINE void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001529recv_and_process_peer_pkt(peer_t *p)
1530{
1531 int rc;
1532 ssize_t size;
1533 msg_t msg;
1534 double T1, T2, T3, T4;
1535 unsigned interval;
1536 datapoint_t *datapoint;
1537 peer_t *q;
1538
1539 /* We can recvfrom here and check from.IP, but some multihomed
1540 * ntp servers reply from their *other IP*.
1541 * TODO: maybe we should check at least what we can: from.port == 123?
1542 */
1543 size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1544 if (size == -1) {
1545 bb_perror_msg("recv(%s) error", p->p_dotted);
1546 if (errno == EHOSTUNREACH || errno == EHOSTDOWN
1547 || errno == ENETUNREACH || errno == ENETDOWN
1548 || errno == ECONNREFUSED || errno == EADDRNOTAVAIL
1549 || errno == EAGAIN
1550 ) {
1551//TODO: always do this?
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001552 interval = retry_interval();
1553 goto set_next_and_close_sock;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001554 }
1555 xfunc_die();
1556 }
1557
1558 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1559 bb_error_msg("malformed packet received from %s", p->p_dotted);
1560 goto bail;
1561 }
1562
1563 if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1564 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1565 ) {
1566 goto bail;
1567 }
1568
1569 if ((msg.m_status & LI_ALARM) == LI_ALARM
1570 || msg.m_stratum == 0
1571 || msg.m_stratum > NTP_MAXSTRATUM
1572 ) {
1573// TODO: stratum 0 responses may have commands in 32-bit m_refid field:
1574// "DENY", "RSTR" - peer does not like us at all
1575// "RATE" - peer is overloaded, reduce polling freq
1576 interval = poll_interval(0);
1577 bb_error_msg("reply from %s: not synced, next query in %us", p->p_dotted, interval);
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001578 goto set_next_and_close_sock;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001579 }
1580
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001581// /* Verify valid root distance */
1582// if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1583// return; /* invalid header values */
1584
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001585 p->lastpkt_status = msg.m_status;
1586 p->lastpkt_stratum = msg.m_stratum;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001587 p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1588 p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1589 p->lastpkt_refid = msg.m_refid;
1590
1591 /*
1592 * From RFC 2030 (with a correction to the delay math):
1593 *
1594 * Timestamp Name ID When Generated
1595 * ------------------------------------------------------------
1596 * Originate Timestamp T1 time request sent by client
1597 * Receive Timestamp T2 time request received by server
1598 * Transmit Timestamp T3 time reply sent by server
1599 * Destination Timestamp T4 time reply received by client
1600 *
1601 * The roundtrip delay and local clock offset are defined as
1602 *
1603 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1604 */
1605 T1 = p->p_xmttime;
1606 T2 = lfp_to_d(msg.m_rectime);
1607 T3 = lfp_to_d(msg.m_xmttime);
Denys Vlasenko0b002812010-01-03 08:59:59 +01001608 T4 = G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001609
1610 p->lastpkt_recv_time = T4;
1611
1612 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
Denys Vlasenko0b002812010-01-03 08:59:59 +01001613 p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001614 datapoint = &p->filter_datapoint[p->datapoint_idx];
1615 datapoint->d_recv_time = T4;
1616 datapoint->d_offset = ((T2 - T1) + (T3 - T4)) / 2;
1617 /* The delay calculation is a special case. In cases where the
1618 * server and client clocks are running at different rates and
1619 * with very fast networks, the delay can appear negative. In
1620 * order to avoid violating the Principle of Least Astonishment,
1621 * the delay is clamped not less than the system precision.
1622 */
1623 p->lastpkt_delay = (T4 - T1) - (T3 - T2);
Denys Vlasenkoa9aaeda2010-01-01 22:23:27 +01001624 if (p->lastpkt_delay < G_precision_sec)
1625 p->lastpkt_delay = G_precision_sec;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001626 datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001627 if (!p->reachable_bits) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001628 /* 1st datapoint ever - replicate offset in every element */
1629 int i;
1630 for (i = 1; i < NUM_DATAPOINTS; i++) {
1631 p->filter_datapoint[i].d_offset = datapoint->d_offset;
1632 }
1633 }
1634
Denys Vlasenko0b002812010-01-03 08:59:59 +01001635 p->reachable_bits |= 1;
Denys Vlasenko074e8dc2010-01-04 23:58:13 +01001636 if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001637 bb_error_msg("reply from %s: reach 0x%02x offset %f delay %f status 0x%02x strat %d refid 0x%08x rootdelay %f",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001638 p->p_dotted,
Denys Vlasenko0b002812010-01-03 08:59:59 +01001639 p->reachable_bits,
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001640 datapoint->d_offset,
1641 p->lastpkt_delay,
1642 p->lastpkt_status,
1643 p->lastpkt_stratum,
1644 p->lastpkt_refid,
1645 p->lastpkt_rootdelay
1646 /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1647 * m_reftime, m_orgtime, m_rectime, m_xmttime
1648 */
1649 );
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001650 }
1651
1652 /* Muck with statictics and update the clock */
Denys Vlasenko0b002812010-01-03 08:59:59 +01001653 filter_datapoints(p);
1654 q = select_and_cluster();
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001655 rc = -1;
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001656 if (q) {
1657 rc = 0;
Denys Vlasenko12628b72010-01-11 01:31:59 +01001658 if (!(option_mask32 & OPT_w)) {
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001659 rc = update_local_clock(q);
Denys Vlasenko12628b72010-01-11 01:31:59 +01001660 /* If drift is dangerously large, immediately
1661 * drop poll interval one step down.
1662 */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001663 if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
Denys Vlasenko65d722b2010-01-11 02:14:04 +01001664 VERB3 bb_error_msg("offset:%f > POLLDOWN_OFFSET", q->filter_offset);
Denys Vlasenko12628b72010-01-11 01:31:59 +01001665 goto poll_down;
1666 }
1667 }
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001668 }
Denys Vlasenko12628b72010-01-11 01:31:59 +01001669 /* else: no peer selected, rc = -1: we want to poll more often */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001670
1671 if (rc != 0) {
1672 /* Adjust the poll interval by comparing the current offset
1673 * with the clock jitter. If the offset is less than
1674 * the clock jitter times a constant, then the averaging interval
1675 * is increased, otherwise it is decreased. A bit of hysteresis
1676 * helps calm the dance. Works best using burst mode.
1677 */
1678 VERB4 if (rc > 0) {
1679 bb_error_msg("offset:%f POLLADJ_GATE*discipline_jitter:%f poll:%s",
1680 q->filter_offset, POLLADJ_GATE * G.discipline_jitter,
1681 fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter
1682 ? "grows" : "falls"
1683 );
1684 }
1685 if (rc > 0 && fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter) {
Denys Vlasenkobfc2a322010-01-01 18:12:06 +01001686 /* was += G.poll_exp but it is a bit
1687 * too optimistic for my taste at high poll_exp's */
1688 G.polladj_count += MINPOLL;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001689 if (G.polladj_count > POLLADJ_LIMIT) {
1690 G.polladj_count = 0;
1691 if (G.poll_exp < MAXPOLL) {
1692 G.poll_exp++;
1693 VERB3 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1694 G.discipline_jitter, G.poll_exp);
1695 }
1696 } else {
1697 VERB3 bb_error_msg("polladj: incr:%d", G.polladj_count);
1698 }
1699 } else {
1700 G.polladj_count -= G.poll_exp * 2;
Denys Vlasenko12628b72010-01-11 01:31:59 +01001701 if (G.polladj_count < -POLLADJ_LIMIT || G.poll_exp >= BIGPOLL) {
1702 poll_down:
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001703 G.polladj_count = 0;
1704 if (G.poll_exp > MINPOLL) {
Denys Vlasenko2e36eb82010-01-02 01:50:16 +01001705 llist_t *item;
1706
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001707 G.poll_exp--;
Denys Vlasenko2e36eb82010-01-02 01:50:16 +01001708 /* Correct p->next_action_time in each peer
1709 * which waits for sending, so that they send earlier.
1710 * Old pp->next_action_time are on the order
1711 * of t + (1 << old_poll_exp) + small_random,
1712 * we simply need to subtract ~half of that.
1713 */
1714 for (item = G.ntp_peers; item != NULL; item = item->link) {
1715 peer_t *pp = (peer_t *) item->data;
1716 if (pp->p_fd < 0)
1717 pp->next_action_time -= (1 << G.poll_exp);
1718 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001719 VERB3 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1720 G.discipline_jitter, G.poll_exp);
1721 }
1722 } else {
1723 VERB3 bb_error_msg("polladj: decr:%d", G.polladj_count);
1724 }
1725 }
1726 }
1727
1728 /* Decide when to send new query for this peer */
1729 interval = poll_interval(0);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001730
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001731 set_next_and_close_sock:
1732 set_next(p, interval);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001733 /* We do not expect any more packets from this peer for now.
1734 * Closing the socket informs kernel about it.
1735 * We open a new socket when we send a new query.
1736 */
1737 close(p->p_fd);
1738 p->p_fd = -1;
1739 bail:
1740 return;
1741}
1742
1743#if ENABLE_FEATURE_NTPD_SERVER
Denys Vlasenko0b002812010-01-03 08:59:59 +01001744static NOINLINE void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001745recv_and_process_client_pkt(void /*int fd*/)
1746{
1747 ssize_t size;
1748 uint8_t version;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001749 len_and_sockaddr *to;
1750 struct sockaddr *from;
1751 msg_t msg;
1752 uint8_t query_status;
1753 l_fixedpt_t query_xmttime;
1754
1755 to = get_sock_lsa(G.listen_fd);
1756 from = xzalloc(to->len);
1757
1758 size = recv_from_to(G.listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
1759 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1760 char *addr;
1761 if (size < 0) {
1762 if (errno == EAGAIN)
1763 goto bail;
1764 bb_perror_msg_and_die("recv");
1765 }
1766 addr = xmalloc_sockaddr2dotted_noport(from);
1767 bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
1768 free(addr);
1769 goto bail;
1770 }
1771
1772 query_status = msg.m_status;
1773 query_xmttime = msg.m_xmttime;
1774
1775 /* Build a reply packet */
1776 memset(&msg, 0, sizeof(msg));
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001777 msg.m_status = G.stratum < MAXSTRAT ? G.ntp_status : LI_ALARM;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001778 msg.m_status |= (query_status & VERSION_MASK);
1779 msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
1780 MODE_SERVER : MODE_SYM_PAS;
1781 msg.m_stratum = G.stratum;
1782 msg.m_ppoll = G.poll_exp;
1783 msg.m_precision_exp = G_precision_exp;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001784 /* this time was obtained between poll() and recv() */
1785 msg.m_rectime = d_to_lfp(G.cur_time);
1786 msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
Denys Vlasenkod6782572010-10-04 01:20:44 +02001787 if (G.peer_cnt == 0) {
1788 /* we have no peers: "stratum 1 server" mode. reftime = our own time */
1789 G.reftime = G.cur_time;
1790 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001791 msg.m_reftime = d_to_lfp(G.reftime);
1792 msg.m_orgtime = query_xmttime;
1793 msg.m_rootdelay = d_to_sfp(G.rootdelay);
1794//simple code does not do this, fix simple code!
1795 msg.m_rootdisp = d_to_sfp(G.rootdisp);
1796 version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
1797 msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
1798
1799 /* We reply from the local address packet was sent to,
1800 * this makes to/from look swapped here: */
1801 do_sendto(G.listen_fd,
1802 /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
1803 &msg, size);
1804
1805 bail:
1806 free(to);
1807 free(from);
1808}
1809#endif
1810
1811/* Upstream ntpd's options:
1812 *
1813 * -4 Force DNS resolution of host names to the IPv4 namespace.
1814 * -6 Force DNS resolution of host names to the IPv6 namespace.
1815 * -a Require cryptographic authentication for broadcast client,
1816 * multicast client and symmetric passive associations.
1817 * This is the default.
1818 * -A Do not require cryptographic authentication for broadcast client,
1819 * multicast client and symmetric passive associations.
1820 * This is almost never a good idea.
1821 * -b Enable the client to synchronize to broadcast servers.
1822 * -c conffile
1823 * Specify the name and path of the configuration file,
1824 * default /etc/ntp.conf
1825 * -d Specify debugging mode. This option may occur more than once,
1826 * with each occurrence indicating greater detail of display.
1827 * -D level
1828 * Specify debugging level directly.
1829 * -f driftfile
1830 * Specify the name and path of the frequency file.
1831 * This is the same operation as the "driftfile FILE"
1832 * configuration command.
1833 * -g Normally, ntpd exits with a message to the system log
1834 * if the offset exceeds the panic threshold, which is 1000 s
1835 * by default. This option allows the time to be set to any value
1836 * without restriction; however, this can happen only once.
1837 * If the threshold is exceeded after that, ntpd will exit
1838 * with a message to the system log. This option can be used
1839 * with the -q and -x options. See the tinker command for other options.
1840 * -i jaildir
1841 * Chroot the server to the directory jaildir. This option also implies
1842 * that the server attempts to drop root privileges at startup
1843 * (otherwise, chroot gives very little additional security).
1844 * You may need to also specify a -u option.
1845 * -k keyfile
1846 * Specify the name and path of the symmetric key file,
1847 * default /etc/ntp/keys. This is the same operation
1848 * as the "keys FILE" configuration command.
1849 * -l logfile
1850 * Specify the name and path of the log file. The default
1851 * is the system log file. This is the same operation as
1852 * the "logfile FILE" configuration command.
1853 * -L Do not listen to virtual IPs. The default is to listen.
1854 * -n Don't fork.
1855 * -N To the extent permitted by the operating system,
1856 * run the ntpd at the highest priority.
1857 * -p pidfile
1858 * Specify the name and path of the file used to record the ntpd
1859 * process ID. This is the same operation as the "pidfile FILE"
1860 * configuration command.
1861 * -P priority
1862 * To the extent permitted by the operating system,
1863 * run the ntpd at the specified priority.
1864 * -q Exit the ntpd just after the first time the clock is set.
1865 * This behavior mimics that of the ntpdate program, which is
1866 * to be retired. The -g and -x options can be used with this option.
1867 * Note: The kernel time discipline is disabled with this option.
1868 * -r broadcastdelay
1869 * Specify the default propagation delay from the broadcast/multicast
1870 * server to this client. This is necessary only if the delay
1871 * cannot be computed automatically by the protocol.
1872 * -s statsdir
1873 * Specify the directory path for files created by the statistics
1874 * facility. This is the same operation as the "statsdir DIR"
1875 * configuration command.
1876 * -t key
1877 * Add a key number to the trusted key list. This option can occur
1878 * more than once.
1879 * -u user[:group]
1880 * Specify a user, and optionally a group, to switch to.
1881 * -v variable
1882 * -V variable
1883 * Add a system variable listed by default.
1884 * -x Normally, the time is slewed if the offset is less than the step
1885 * threshold, which is 128 ms by default, and stepped if above
1886 * the threshold. This option sets the threshold to 600 s, which is
1887 * well within the accuracy window to set the clock manually.
1888 * Note: since the slew rate of typical Unix kernels is limited
1889 * to 0.5 ms/s, each second of adjustment requires an amortization
1890 * interval of 2000 s. Thus, an adjustment as much as 600 s
1891 * will take almost 14 days to complete. This option can be used
1892 * with the -g and -q options. See the tinker command for other options.
1893 * Note: The kernel time discipline is disabled with this option.
1894 */
1895
1896/* By doing init in a separate function we decrease stack usage
1897 * in main loop.
1898 */
1899static NOINLINE void ntp_init(char **argv)
1900{
1901 unsigned opts;
1902 llist_t *peers;
1903
1904 srandom(getpid());
1905
1906 if (getuid())
1907 bb_error_msg_and_die(bb_msg_you_must_be_root);
1908
1909 /* Set some globals */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001910 G.stratum = MAXSTRAT;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001911 if (BURSTPOLL != 0)
1912 G.poll_exp = BURSTPOLL; /* speeds up initial sync */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001913 G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001914
1915 /* Parse options */
1916 peers = NULL;
Denys Vlasenko074e8dc2010-01-04 23:58:13 +01001917 opt_complementary = "dd:p::wn"; /* d: counter; p: list; -w implies -n */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001918 opts = getopt32(argv,
1919 "nqNx" /* compat */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001920 "wp:S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001921 "d" /* compat */
1922 "46aAbgL", /* compat, ignored */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001923 &peers, &G.script_name, &G.verbose);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001924 if (!(opts & (OPT_p|OPT_l)))
1925 bb_show_usage();
1926// if (opts & OPT_x) /* disable stepping, only slew is allowed */
1927// G.time_was_stepped = 1;
Denys Vlasenkod6782572010-10-04 01:20:44 +02001928 if (peers) {
1929 while (peers)
1930 add_peers(llist_pop(&peers));
1931 } else {
1932 /* -l but no peers: "stratum 1 server" mode */
1933 G.stratum = 1;
1934 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001935 if (!(opts & OPT_n)) {
1936 bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
1937 logmode = LOGMODE_NONE;
1938 }
1939#if ENABLE_FEATURE_NTPD_SERVER
1940 G.listen_fd = -1;
1941 if (opts & OPT_l) {
1942 G.listen_fd = create_and_bind_dgram_or_die(NULL, 123);
1943 socket_want_pktinfo(G.listen_fd);
1944 setsockopt(G.listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
1945 }
1946#endif
1947 /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
1948 if (opts & OPT_N)
1949 setpriority(PRIO_PROCESS, 0, -15);
1950
Denys Vlasenko74c992a2010-08-27 02:15:01 +02001951 /* If network is up, syncronization occurs in ~10 seconds.
Denys Vlasenko8e23faf2011-04-07 01:45:20 +02001952 * We give "ntpd -q" 10 seconds to get first reply,
1953 * then another 50 seconds to finish syncing.
Denys Vlasenko74c992a2010-08-27 02:15:01 +02001954 *
1955 * I tested ntpd 4.2.6p1 and apparently it never exits
1956 * (will try forever), but it does not feel right.
1957 * The goal of -q is to act like ntpdate: set time
1958 * after a reasonably small period of polling, or fail.
1959 */
Denys Vlasenko8e23faf2011-04-07 01:45:20 +02001960 if (opts & OPT_q) {
1961 option_mask32 |= OPT_qq;
1962 alarm(10);
1963 }
Denys Vlasenko74c992a2010-08-27 02:15:01 +02001964
1965 bb_signals(0
1966 | (1 << SIGTERM)
1967 | (1 << SIGINT)
1968 | (1 << SIGALRM)
1969 , record_signo
1970 );
1971 bb_signals(0
1972 | (1 << SIGPIPE)
1973 | (1 << SIGCHLD)
1974 , SIG_IGN
1975 );
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001976}
1977
1978int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
1979int ntpd_main(int argc UNUSED_PARAM, char **argv)
1980{
Denys Vlasenko0b002812010-01-03 08:59:59 +01001981#undef G
1982 struct globals G;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001983 struct pollfd *pfd;
1984 peer_t **idx2peer;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001985 unsigned cnt;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001986
Denys Vlasenko0b002812010-01-03 08:59:59 +01001987 memset(&G, 0, sizeof(G));
1988 SET_PTR_TO_GLOBALS(&G);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001989
1990 ntp_init(argv);
1991
Denys Vlasenko0b002812010-01-03 08:59:59 +01001992 /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
1993 cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
1994 idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
1995 pfd = xzalloc(sizeof(pfd[0]) * cnt);
1996
Leonid Lisovskiy894ef602010-10-20 22:36:51 +02001997 /* Countdown: we never sync before we sent INITIAL_SAMPLES+1
Denys Vlasenko65d722b2010-01-11 02:14:04 +01001998 * packets to each peer.
Denys Vlasenko0b002812010-01-03 08:59:59 +01001999 * NB: if some peer is not responding, we may end up sending
2000 * fewer packets to it and more to other peers.
Leonid Lisovskiy894ef602010-10-20 22:36:51 +02002001 * NB2: sync usually happens using INITIAL_SAMPLES packets,
Denys Vlasenko65d722b2010-01-11 02:14:04 +01002002 * since last reply does not come back instantaneously.
Denys Vlasenko0b002812010-01-03 08:59:59 +01002003 */
Leonid Lisovskiy894ef602010-10-20 22:36:51 +02002004 cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002005
2006 while (!bb_got_signal) {
2007 llist_t *item;
2008 unsigned i, j;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002009 int nfds, timeout;
Denys Vlasenko0b002812010-01-03 08:59:59 +01002010 double nextaction;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002011
2012 /* Nothing between here and poll() blocks for any significant time */
2013
Denys Vlasenko0b002812010-01-03 08:59:59 +01002014 nextaction = G.cur_time + 3600;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002015
2016 i = 0;
2017#if ENABLE_FEATURE_NTPD_SERVER
Denys Vlasenko0b002812010-01-03 08:59:59 +01002018 if (G.listen_fd != -1) {
2019 pfd[0].fd = G.listen_fd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002020 pfd[0].events = POLLIN;
2021 i++;
2022 }
2023#endif
2024 /* Pass over peer list, send requests, time out on receives */
Denys Vlasenko0b002812010-01-03 08:59:59 +01002025 for (item = G.ntp_peers; item != NULL; item = item->link) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002026 peer_t *p = (peer_t *) item->data;
2027
Denys Vlasenko0b002812010-01-03 08:59:59 +01002028 if (p->next_action_time <= G.cur_time) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002029 if (p->p_fd == -1) {
2030 /* Time to send new req */
Denys Vlasenko0b002812010-01-03 08:59:59 +01002031 if (--cnt == 0) {
2032 G.initial_poll_complete = 1;
2033 }
2034 send_query_to_peer(p);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002035 } else {
2036 /* Timed out waiting for reply */
2037 close(p->p_fd);
2038 p->p_fd = -1;
Denys Vlasenko0b002812010-01-03 08:59:59 +01002039 timeout = poll_interval(-2); /* -2: try a bit sooner */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002040 bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
Denys Vlasenko0b002812010-01-03 08:59:59 +01002041 p->p_dotted, p->reachable_bits, timeout);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002042 set_next(p, timeout);
2043 }
2044 }
2045
2046 if (p->next_action_time < nextaction)
2047 nextaction = p->next_action_time;
2048
2049 if (p->p_fd >= 0) {
2050 /* Wait for reply from this peer */
2051 pfd[i].fd = p->p_fd;
2052 pfd[i].events = POLLIN;
2053 idx2peer[i] = p;
2054 i++;
2055 }
2056 }
2057
Denys Vlasenko0b002812010-01-03 08:59:59 +01002058 timeout = nextaction - G.cur_time;
2059 if (timeout < 0)
2060 timeout = 0;
2061 timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002062
2063 /* Here we may block */
Denys Vlasenkoae473352010-01-07 11:51:13 +01002064 VERB2 bb_error_msg("poll %us, sockets:%u, poll interval:%us", timeout, i, 1 << G.poll_exp);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002065 nfds = poll(pfd, i, timeout * 1000);
Denys Vlasenko0b002812010-01-03 08:59:59 +01002066 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002067 if (nfds <= 0) {
Denys Vlasenko24928ff2010-01-25 19:30:16 +01002068 if (G.script_name && G.cur_time - G.last_script_run > 11*60) {
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002069 /* Useful for updating battery-backed RTC and such */
Denys Vlasenko12628b72010-01-11 01:31:59 +01002070 run_script("periodic", G.last_update_offset);
Denys Vlasenko06667f22010-01-06 13:05:08 +01002071 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002072 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002073 continue;
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002074 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002075
2076 /* Process any received packets */
2077 j = 0;
2078#if ENABLE_FEATURE_NTPD_SERVER
Denys Vlasenko0b002812010-01-03 08:59:59 +01002079 if (G.listen_fd != -1) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002080 if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2081 nfds--;
Denys Vlasenko0b002812010-01-03 08:59:59 +01002082 recv_and_process_client_pkt(/*G.listen_fd*/);
2083 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002084 }
2085 j = 1;
2086 }
2087#endif
2088 for (; nfds != 0 && j < i; j++) {
2089 if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
Denys Vlasenko8e23faf2011-04-07 01:45:20 +02002090 /*
2091 * At init, alarm was set to 10 sec.
2092 * Now we did get a reply.
2093 * Increase timeout to 50 seconds to finish syncing.
2094 */
2095 if (option_mask32 & OPT_qq) {
2096 option_mask32 &= ~OPT_qq;
2097 alarm(50);
2098 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002099 nfds--;
2100 recv_and_process_peer_pkt(idx2peer[j]);
Denys Vlasenko0b002812010-01-03 08:59:59 +01002101 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002102 }
2103 }
2104 } /* while (!bb_got_signal) */
2105
2106 kill_myself_with_sig(bb_got_signal);
2107}
2108
2109
2110
2111
2112
2113
2114/*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2115
2116/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2117
2118#if 0
2119static double
2120direct_freq(double fp_offset)
2121{
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002122#ifdef KERNEL_PLL
2123 /*
2124 * If the kernel is enabled, we need the residual offset to
2125 * calculate the frequency correction.
2126 */
2127 if (pll_control && kern_enable) {
2128 memset(&ntv, 0, sizeof(ntv));
2129 ntp_adjtime(&ntv);
2130#ifdef STA_NANO
2131 clock_offset = ntv.offset / 1e9;
2132#else /* STA_NANO */
2133 clock_offset = ntv.offset / 1e6;
2134#endif /* STA_NANO */
2135 drift_comp = FREQTOD(ntv.freq);
2136 }
2137#endif /* KERNEL_PLL */
2138 set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2139 wander_resid = 0;
2140 return drift_comp;
2141}
2142
2143static void
Denys Vlasenkofb132e42010-10-29 11:46:52 +02002144set_freq(double freq) /* frequency update */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002145{
2146 char tbuf[80];
2147
2148 drift_comp = freq;
2149
2150#ifdef KERNEL_PLL
2151 /*
2152 * If the kernel is enabled, update the kernel frequency.
2153 */
2154 if (pll_control && kern_enable) {
2155 memset(&ntv, 0, sizeof(ntv));
2156 ntv.modes = MOD_FREQUENCY;
2157 ntv.freq = DTOFREQ(drift_comp);
2158 ntp_adjtime(&ntv);
2159 snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2160 report_event(EVNT_FSET, NULL, tbuf);
2161 } else {
2162 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2163 report_event(EVNT_FSET, NULL, tbuf);
2164 }
2165#else /* KERNEL_PLL */
2166 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2167 report_event(EVNT_FSET, NULL, tbuf);
2168#endif /* KERNEL_PLL */
2169}
2170
2171...
2172...
2173...
2174
2175#ifdef KERNEL_PLL
2176 /*
2177 * This code segment works when clock adjustments are made using
2178 * precision time kernel support and the ntp_adjtime() system
2179 * call. This support is available in Solaris 2.6 and later,
2180 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2181 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2182 * DECstation 5000/240 and Alpha AXP, additional kernel
2183 * modifications provide a true microsecond clock and nanosecond
2184 * clock, respectively.
2185 *
2186 * Important note: The kernel discipline is used only if the
2187 * step threshold is less than 0.5 s, as anything higher can
2188 * lead to overflow problems. This might occur if some misguided
2189 * lad set the step threshold to something ridiculous.
2190 */
2191 if (pll_control && kern_enable) {
2192
2193#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2194
2195 /*
2196 * We initialize the structure for the ntp_adjtime()
2197 * system call. We have to convert everything to
2198 * microseconds or nanoseconds first. Do not update the
2199 * system variables if the ext_enable flag is set. In
2200 * this case, the external clock driver will update the
2201 * variables, which will be read later by the local
2202 * clock driver. Afterwards, remember the time and
2203 * frequency offsets for jitter and stability values and
2204 * to update the frequency file.
2205 */
2206 memset(&ntv, 0, sizeof(ntv));
2207 if (ext_enable) {
2208 ntv.modes = MOD_STATUS;
2209 } else {
2210#ifdef STA_NANO
2211 ntv.modes = MOD_BITS | MOD_NANO;
2212#else /* STA_NANO */
2213 ntv.modes = MOD_BITS;
2214#endif /* STA_NANO */
2215 if (clock_offset < 0)
2216 dtemp = -.5;
2217 else
2218 dtemp = .5;
2219#ifdef STA_NANO
2220 ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2221 ntv.constant = sys_poll;
2222#else /* STA_NANO */
2223 ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2224 ntv.constant = sys_poll - 4;
2225#endif /* STA_NANO */
2226 ntv.esterror = (u_int32)(clock_jitter * 1e6);
2227 ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2228 ntv.status = STA_PLL;
2229
2230 /*
2231 * Enable/disable the PPS if requested.
2232 */
2233 if (pps_enable) {
2234 if (!(pll_status & STA_PPSTIME))
2235 report_event(EVNT_KERN,
2236 NULL, "PPS enabled");
2237 ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2238 } else {
2239 if (pll_status & STA_PPSTIME)
2240 report_event(EVNT_KERN,
2241 NULL, "PPS disabled");
2242 ntv.status &= ~(STA_PPSTIME |
2243 STA_PPSFREQ);
2244 }
2245 if (sys_leap == LEAP_ADDSECOND)
2246 ntv.status |= STA_INS;
2247 else if (sys_leap == LEAP_DELSECOND)
2248 ntv.status |= STA_DEL;
2249 }
2250
2251 /*
2252 * Pass the stuff to the kernel. If it squeals, turn off
2253 * the pps. In any case, fetch the kernel offset,
2254 * frequency and jitter.
2255 */
2256 if (ntp_adjtime(&ntv) == TIME_ERROR) {
2257 if (!(ntv.status & STA_PPSSIGNAL))
2258 report_event(EVNT_KERN, NULL,
2259 "PPS no signal");
2260 }
2261 pll_status = ntv.status;
2262#ifdef STA_NANO
2263 clock_offset = ntv.offset / 1e9;
2264#else /* STA_NANO */
2265 clock_offset = ntv.offset / 1e6;
2266#endif /* STA_NANO */
2267 clock_frequency = FREQTOD(ntv.freq);
2268
2269 /*
2270 * If the kernel PPS is lit, monitor its performance.
2271 */
2272 if (ntv.status & STA_PPSTIME) {
2273#ifdef STA_NANO
2274 clock_jitter = ntv.jitter / 1e9;
2275#else /* STA_NANO */
2276 clock_jitter = ntv.jitter / 1e6;
2277#endif /* STA_NANO */
2278 }
2279
2280#if defined(STA_NANO) && NTP_API == 4
2281 /*
2282 * If the TAI changes, update the kernel TAI.
2283 */
2284 if (loop_tai != sys_tai) {
2285 loop_tai = sys_tai;
2286 ntv.modes = MOD_TAI;
2287 ntv.constant = sys_tai;
2288 ntp_adjtime(&ntv);
2289 }
2290#endif /* STA_NANO */
2291 }
2292#endif /* KERNEL_PLL */
2293#endif