blob: 72e9d0be2161646ba5d6bfd7ff7570b7b219b619 [file] [log] [blame]
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001/*
2 * NTP client/server, based on OpenNTPD 3.9p1
3 *
4 * Author: Adam Tkac <vonsch@gmail.com>
5 *
Denys Vlasenko0ef64bd2010-08-16 20:14:46 +02006 * Licensed under GPLv2, see file LICENSE in this source tree.
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01007 *
8 * Parts of OpenNTPD clock syncronization code is replaced by
Denys Vlasenkobfc2a322010-01-01 18:12:06 +01009 * code which is based on ntp-4.2.6, whuch carries the following
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010010 * copyright notice:
11 *
12 ***********************************************************************
13 * *
14 * Copyright (c) University of Delaware 1992-2009 *
15 * *
16 * Permission to use, copy, modify, and distribute this software and *
17 * its documentation for any purpose with or without fee is hereby *
18 * granted, provided that the above copyright notice appears in all *
19 * copies and that both the copyright notice and this permission *
20 * notice appear in supporting documentation, and that the name *
21 * University of Delaware not be used in advertising or publicity *
22 * pertaining to distribution of the software without specific, *
23 * written prior permission. The University of Delaware makes no *
24 * representations about the suitability this software for any *
25 * purpose. It is provided "as is" without express or implied *
26 * warranty. *
27 * *
28 ***********************************************************************
29 */
Pere Orga5bc8c002011-04-11 03:29:49 +020030
31//usage:#define ntpd_trivial_usage
32//usage: "[-dnqNw"IF_FEATURE_NTPD_SERVER("l")"] [-S PROG] [-p PEER]..."
33//usage:#define ntpd_full_usage "\n\n"
34//usage: "NTP client/server\n"
Pere Orga5bc8c002011-04-11 03:29:49 +020035//usage: "\n -d Verbose"
36//usage: "\n -n Do not daemonize"
37//usage: "\n -q Quit after clock is set"
38//usage: "\n -N Run at high priority"
39//usage: "\n -w Do not set time (only query peers), implies -n"
40//usage: IF_FEATURE_NTPD_SERVER(
41//usage: "\n -l Run as server on port 123"
42//usage: )
43//usage: "\n -S PROG Run PROG after stepping time, stratum change, and every 11 mins"
44//usage: "\n -p PEER Obtain time from PEER (may be repeated)"
45
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010046#include "libbb.h"
47#include <math.h>
48#include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
49#include <sys/timex.h>
50#ifndef IPTOS_LOWDELAY
51# define IPTOS_LOWDELAY 0x10
52#endif
53#ifndef IP_PKTINFO
54# error "Sorry, your kernel has to support IP_PKTINFO"
55#endif
56
57
Denys Vlasenkobfc2a322010-01-01 18:12:06 +010058/* Verbosity control (max level of -dddd options accepted).
59 * max 5 is very talkative (and bloated). 2 is non-bloated,
60 * production level setting.
61 */
Denys Vlasenko61313112010-01-01 19:56:16 +010062#define MAX_VERBOSE 2
Denys Vlasenkobfc2a322010-01-01 18:12:06 +010063
64
Denys Vlasenko65d722b2010-01-11 02:14:04 +010065/* High-level description of the algorithm:
66 *
67 * We start running with very small poll_exp, BURSTPOLL,
Leonid Lisovskiy894ef602010-10-20 22:36:51 +020068 * in order to quickly accumulate INITIAL_SAMPLES datapoints
Denys Vlasenko65d722b2010-01-11 02:14:04 +010069 * for each peer. Then, time is stepped if the offset is larger
70 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
71 * poll_exp to MINPOLL and enter frequency measurement step:
72 * we collect new datapoints but ignore them for WATCH_THRESHOLD
73 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
74 * offset and estimate frequency drift.
75 *
Denys Vlasenko5b9a9102010-01-17 01:05:58 +010076 * (frequency measurement step seems to not be strictly needed,
77 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
78 * define set to 0)
79 *
Denys Vlasenko65d722b2010-01-11 02:14:04 +010080 * After this, we enter "steady state": we collect a datapoint,
81 * we select the best peer, if this datapoint is not a new one
82 * (IOW: if this datapoint isn't for selected peer), sleep
83 * and collect another one; otherwise, use its offset to update
84 * frequency drift, if offset is somewhat large, reduce poll_exp,
85 * otherwise increase poll_exp.
86 *
87 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
88 * happen, we assume that something "bad" happened (computer
89 * was hibernated, someone set totally wrong date, etc),
90 * then the time is stepped, all datapoints are discarded,
91 * and we go back to steady state.
92 */
93
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010094#define RETRY_INTERVAL 5 /* on error, retry in N secs */
Denys Vlasenko0b002812010-01-03 08:59:59 +010095#define RESPONSE_INTERVAL 15 /* wait for reply up to N secs */
Leonid Lisovskiy894ef602010-10-20 22:36:51 +020096#define INITIAL_SAMPLES 4 /* how many samples do we want for init */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010097
Denys Vlasenkodd6673b2010-01-01 16:46:17 +010098/* Clock discipline parameters and constants */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +010099
100/* Step threshold (sec). std ntpd uses 0.128.
101 * Using exact power of 2 (1/8) results in smaller code */
102#define STEP_THRESHOLD 0.125
103#define WATCH_THRESHOLD 128 /* stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100104/* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100105//UNUSED: #define PANIC_THRESHOLD 1000 /* panic threshold (sec) */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100106
107#define FREQ_TOLERANCE 0.000015 /* frequency tolerance (15 PPM) */
Denys Vlasenkofb132e42010-10-29 11:46:52 +0200108#define BURSTPOLL 0 /* initial poll */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100109#define MINPOLL 5 /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
Denys Vlasenkoe8ce2852012-03-03 12:15:46 +0100110/* If offset > discipline_jitter * POLLADJ_GATE, and poll interval is >= 2^BIGPOLL,
111 * then it is decreased _at once_. (If < 2^BIGPOLL, it will be decreased _eventually_).
112 */
113#define BIGPOLL 10 /* 2^10 sec ~= 17 min */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100114#define MAXPOLL 12 /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
115/* Actively lower poll when we see such big offsets.
116 * With STEP_THRESHOLD = 0.125, it means we try to sync more aggressively
Denys Vlasenkofc4ebd02012-02-28 02:45:00 +0100117 * if offset increases over ~0.04 sec */
118#define POLLDOWN_OFFSET (STEP_THRESHOLD / 3)
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100119#define MINDISP 0.01 /* minimum dispersion (sec) */
120#define MAXDISP 16 /* maximum dispersion (sec) */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100121#define MAXSTRAT 16 /* maximum stratum (infinity metric) */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100122#define MAXDIST 1 /* distance threshold (sec) */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100123#define MIN_SELECTED 1 /* minimum intersection survivors */
124#define MIN_CLUSTERED 3 /* minimum cluster survivors */
125
126#define MAXDRIFT 0.000500 /* frequency drift we can correct (500 PPM) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100127
128/* Poll-adjust threshold.
129 * When we see that offset is small enough compared to discipline jitter,
Denys Vlasenkoe8ce2852012-03-03 12:15:46 +0100130 * we grow a counter: += MINPOLL. When counter goes over POLLADJ_LIMIT,
Denys Vlasenko61313112010-01-01 19:56:16 +0100131 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
Denys Vlasenkoe8ce2852012-03-03 12:15:46 +0100132 * and when it goes below -POLLADJ_LIMIT, we poll_exp--.
133 * (Bumped from 30 to 40 since otherwise I often see poll_exp going *2* steps down)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100134 */
Denys Vlasenkofc4ebd02012-02-28 02:45:00 +0100135#define POLLADJ_LIMIT 40
Denys Vlasenkoe8ce2852012-03-03 12:15:46 +0100136/* If offset < discipline_jitter * POLLADJ_GATE, then we decide to increase
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100137 * poll interval (we think we can't improve timekeeping
138 * by staying at smaller poll).
139 */
Denys Vlasenko61313112010-01-01 19:56:16 +0100140#define POLLADJ_GATE 4
Denys Vlasenko132b0442012-03-05 00:51:48 +0100141#define TIMECONST_HACK_GATE 2
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100142/* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
Denys Vlasenko61313112010-01-01 19:56:16 +0100143#define ALLAN 512
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100144/* PLL loop gain */
Denys Vlasenko61313112010-01-01 19:56:16 +0100145#define PLL 65536
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100146/* FLL loop gain [why it depends on MAXPOLL??] */
Denys Vlasenko61313112010-01-01 19:56:16 +0100147#define FLL (MAXPOLL + 1)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100148/* Parameter averaging constant */
Denys Vlasenko61313112010-01-01 19:56:16 +0100149#define AVG 4
150
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100151
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100152enum {
153 NTP_VERSION = 4,
154 NTP_MAXSTRATUM = 15,
155
156 NTP_DIGESTSIZE = 16,
157 NTP_MSGSIZE_NOAUTH = 48,
158 NTP_MSGSIZE = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
159
160 /* Status Masks */
161 MODE_MASK = (7 << 0),
162 VERSION_MASK = (7 << 3),
163 VERSION_SHIFT = 3,
164 LI_MASK = (3 << 6),
165
166 /* Leap Second Codes (high order two bits of m_status) */
167 LI_NOWARNING = (0 << 6), /* no warning */
168 LI_PLUSSEC = (1 << 6), /* add a second (61 seconds) */
169 LI_MINUSSEC = (2 << 6), /* minus a second (59 seconds) */
170 LI_ALARM = (3 << 6), /* alarm condition */
171
172 /* Mode values */
173 MODE_RES0 = 0, /* reserved */
174 MODE_SYM_ACT = 1, /* symmetric active */
175 MODE_SYM_PAS = 2, /* symmetric passive */
176 MODE_CLIENT = 3, /* client */
177 MODE_SERVER = 4, /* server */
178 MODE_BROADCAST = 5, /* broadcast */
179 MODE_RES1 = 6, /* reserved for NTP control message */
180 MODE_RES2 = 7, /* reserved for private use */
181};
182
183//TODO: better base selection
184#define OFFSET_1900_1970 2208988800UL /* 1970 - 1900 in seconds */
185
186#define NUM_DATAPOINTS 8
187
188typedef struct {
189 uint32_t int_partl;
190 uint32_t fractionl;
191} l_fixedpt_t;
192
193typedef struct {
194 uint16_t int_parts;
195 uint16_t fractions;
196} s_fixedpt_t;
197
198typedef struct {
199 uint8_t m_status; /* status of local clock and leap info */
200 uint8_t m_stratum;
201 uint8_t m_ppoll; /* poll value */
202 int8_t m_precision_exp;
203 s_fixedpt_t m_rootdelay;
204 s_fixedpt_t m_rootdisp;
205 uint32_t m_refid;
206 l_fixedpt_t m_reftime;
207 l_fixedpt_t m_orgtime;
208 l_fixedpt_t m_rectime;
209 l_fixedpt_t m_xmttime;
210 uint32_t m_keyid;
211 uint8_t m_digest[NTP_DIGESTSIZE];
212} msg_t;
213
214typedef struct {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100215 double d_offset;
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100216 double d_recv_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100217 double d_dispersion;
218} datapoint_t;
219
220typedef struct {
221 len_and_sockaddr *p_lsa;
222 char *p_dotted;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100223 int p_fd;
224 int datapoint_idx;
225 uint32_t lastpkt_refid;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100226 uint8_t lastpkt_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100227 uint8_t lastpkt_stratum;
Denys Vlasenko0b002812010-01-03 08:59:59 +0100228 uint8_t reachable_bits;
Denys Vlasenko4125a6b2012-06-11 11:41:46 +0200229 /* when to send new query (if p_fd == -1)
230 * or when receive times out (if p_fd >= 0): */
Denys Vlasenko0b002812010-01-03 08:59:59 +0100231 double next_action_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100232 double p_xmttime;
233 double lastpkt_recv_time;
234 double lastpkt_delay;
235 double lastpkt_rootdelay;
236 double lastpkt_rootdisp;
237 /* produced by filter algorithm: */
238 double filter_offset;
239 double filter_dispersion;
240 double filter_jitter;
241 datapoint_t filter_datapoint[NUM_DATAPOINTS];
242 /* last sent packet: */
243 msg_t p_xmt_msg;
244} peer_t;
245
246
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100247#define USING_KERNEL_PLL_LOOP 1
248#define USING_INITIAL_FREQ_ESTIMATION 0
249
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100250enum {
251 OPT_n = (1 << 0),
252 OPT_q = (1 << 1),
253 OPT_N = (1 << 2),
254 OPT_x = (1 << 3),
255 /* Insert new options above this line. */
256 /* Non-compat options: */
Denys Vlasenko4168fdd2010-01-04 00:19:13 +0100257 OPT_w = (1 << 4),
258 OPT_p = (1 << 5),
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100259 OPT_S = (1 << 6),
260 OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
Denys Vlasenko8e23faf2011-04-07 01:45:20 +0200261 /* We hijack some bits for other purposes */
Denys Vlasenko16c52a52012-02-23 14:28:47 +0100262 OPT_qq = (1 << 31),
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100263};
264
265struct globals {
Denys Vlasenko0b002812010-01-03 08:59:59 +0100266 double cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100267 /* total round trip delay to currently selected reference clock */
268 double rootdelay;
269 /* reference timestamp: time when the system clock was last set or corrected */
270 double reftime;
271 /* total dispersion to currently selected reference clock */
272 double rootdisp;
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100273
274 double last_script_run;
275 char *script_name;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100276 llist_t *ntp_peers;
277#if ENABLE_FEATURE_NTPD_SERVER
278 int listen_fd;
Denys Vlasenko3e3a8d52012-04-01 16:31:04 +0200279# define G_listen_fd (G.listen_fd)
280#else
281# define G_listen_fd (-1)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100282#endif
283 unsigned verbose;
284 unsigned peer_cnt;
285 /* refid: 32-bit code identifying the particular server or reference clock
Denys Vlasenko74584b82012-03-02 01:22:40 +0100286 * in stratum 0 packets this is a four-character ASCII string,
287 * called the kiss code, used for debugging and monitoring
288 * in stratum 1 packets this is a four-character ASCII string
289 * assigned to the reference clock by IANA. Example: "GPS "
290 * in stratum 2+ packets, it's IPv4 address or 4 first bytes
291 * of MD5 hash of IPv6
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100292 */
293 uint32_t refid;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100294 uint8_t ntp_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100295 /* precision is defined as the larger of the resolution and time to
296 * read the clock, in log2 units. For instance, the precision of a
297 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
298 * system clock hardware representation is to the nanosecond.
299 *
Denys Vlasenko74584b82012-03-02 01:22:40 +0100300 * Delays, jitters of various kinds are clamped down to precision.
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100301 *
302 * If precision_sec is too large, discipline_jitter gets clamped to it
Denys Vlasenko74584b82012-03-02 01:22:40 +0100303 * and if offset is smaller than discipline_jitter * POLLADJ_GATE, poll
304 * interval grows even though we really can benefit from staying at
305 * smaller one, collecting non-lagged datapoits and correcting offset.
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100306 * (Lagged datapoits exist when poll_exp is large but we still have
307 * systematic offset error - the time distance between datapoints
Denys Vlasenko74584b82012-03-02 01:22:40 +0100308 * is significant and older datapoints have smaller offsets.
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100309 * This makes our offset estimation a bit smaller than reality)
310 * Due to this effect, setting G_precision_sec close to
311 * STEP_THRESHOLD isn't such a good idea - offsets may grow
312 * too big and we will step. I observed it with -6.
313 *
Denys Vlasenko74584b82012-03-02 01:22:40 +0100314 * OTOH, setting precision_sec far too small would result in futile
315 * attempts to syncronize to an unachievable precision.
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100316 *
317 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
Denys Vlasenko74584b82012-03-02 01:22:40 +0100318 * -8 is 1/256 ~= 0.003906 (worked well for me --vda)
319 * -9 is 1/512 ~= 0.001953 (let's try this for some time)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100320 */
Denys Vlasenko74584b82012-03-02 01:22:40 +0100321#define G_precision_exp -9
322 /*
323 * G_precision_exp is used only for construction outgoing packets.
324 * It's ok to set G_precision_sec to a slightly different value
325 * (One which is "nicer looking" in logs).
326 * Exact value would be (1.0 / (1 << (- G_precision_exp))):
327 */
328#define G_precision_sec 0.002
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100329 uint8_t stratum;
330 /* Bool. After set to 1, never goes back to 0: */
Denys Vlasenko0b002812010-01-03 08:59:59 +0100331 smallint initial_poll_complete;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100332
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100333#define STATE_NSET 0 /* initial state, "nothing is set" */
334//#define STATE_FSET 1 /* frequency set from file */
335#define STATE_SPIK 2 /* spike detected */
336//#define STATE_FREQ 3 /* initial frequency */
337#define STATE_SYNC 4 /* clock synchronized (normal operation) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100338 uint8_t discipline_state; // doc calls it c.state
339 uint8_t poll_exp; // s.poll
340 int polladj_count; // c.count
Denys Vlasenko61313112010-01-01 19:56:16 +0100341 long kernel_freq_drift;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100342 peer_t *last_update_peer;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100343 double last_update_offset; // c.last
Denys Vlasenko61313112010-01-01 19:56:16 +0100344 double last_update_recv_time; // s.t
345 double discipline_jitter; // c.jitter
Denys Vlasenko547ee792012-03-05 10:18:00 +0100346 /* Since we only compare it with ints, can simplify code
347 * by not making this variable floating point:
348 */
349 unsigned offset_to_jitter_ratio;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100350 //double cluster_offset; // s.offset
351 //double cluster_jitter; // s.jitter
Denys Vlasenko61313112010-01-01 19:56:16 +0100352#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100353 double discipline_freq_drift; // c.freq
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100354 /* Maybe conditionally calculate wander? it's used only for logging */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100355 double discipline_wander; // c.wander
Denys Vlasenko61313112010-01-01 19:56:16 +0100356#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100357};
358#define G (*ptr_to_globals)
359
360static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY;
361
362
Denys Vlasenkobfc2a322010-01-01 18:12:06 +0100363#define VERB1 if (MAX_VERBOSE && G.verbose)
364#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
365#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
366#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
367#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
368
369
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100370static double LOG2D(int a)
371{
372 if (a < 0)
373 return 1.0 / (1UL << -a);
374 return 1UL << a;
375}
376static ALWAYS_INLINE double SQUARE(double x)
377{
378 return x * x;
379}
380static ALWAYS_INLINE double MAXD(double a, double b)
381{
382 if (a > b)
383 return a;
384 return b;
385}
386static ALWAYS_INLINE double MIND(double a, double b)
387{
388 if (a < b)
389 return a;
390 return b;
391}
Denys Vlasenkod498ff02010-01-03 21:06:27 +0100392static NOINLINE double my_SQRT(double X)
393{
394 union {
395 float f;
396 int32_t i;
397 } v;
398 double invsqrt;
399 double Xhalf = X * 0.5;
400
401 /* Fast and good approximation to 1/sqrt(X), black magic */
402 v.f = X;
403 /*v.i = 0x5f3759df - (v.i >> 1);*/
404 v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
405 invsqrt = v.f; /* better than 0.2% accuracy */
406
407 /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
408 * f(x) = 1/(x*x) - X (f==0 when x = 1/sqrt(X))
409 * f'(x) = -2/(x*x*x)
410 * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
411 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
412 */
413 invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
414 /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
415 /* With 4 iterations, more than half results will be exact,
416 * at 6th iterations result stabilizes with about 72% results exact.
417 * We are well satisfied with 0.05% accuracy.
418 */
419
420 return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
421}
422static ALWAYS_INLINE double SQRT(double X)
423{
424 /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
425 if (sizeof(float) != 4)
426 return sqrt(X);
427
Denys Vlasenko2d3253d2010-01-03 21:52:46 +0100428 /* This avoids needing libm, saves about 0.5k on x86-32 */
Denys Vlasenkod498ff02010-01-03 21:06:27 +0100429 return my_SQRT(X);
430}
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100431
432static double
433gettime1900d(void)
434{
435 struct timeval tv;
436 gettimeofday(&tv, NULL); /* never fails */
Denys Vlasenko0b002812010-01-03 08:59:59 +0100437 G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
438 return G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100439}
440
441static void
442d_to_tv(double d, struct timeval *tv)
443{
444 tv->tv_sec = (long)d;
445 tv->tv_usec = (d - tv->tv_sec) * 1000000;
446}
447
448static double
449lfp_to_d(l_fixedpt_t lfp)
450{
451 double ret;
452 lfp.int_partl = ntohl(lfp.int_partl);
453 lfp.fractionl = ntohl(lfp.fractionl);
454 ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
455 return ret;
456}
457static double
458sfp_to_d(s_fixedpt_t sfp)
459{
460 double ret;
461 sfp.int_parts = ntohs(sfp.int_parts);
462 sfp.fractions = ntohs(sfp.fractions);
463 ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
464 return ret;
465}
466#if ENABLE_FEATURE_NTPD_SERVER
467static l_fixedpt_t
468d_to_lfp(double d)
469{
470 l_fixedpt_t lfp;
471 lfp.int_partl = (uint32_t)d;
472 lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
473 lfp.int_partl = htonl(lfp.int_partl);
474 lfp.fractionl = htonl(lfp.fractionl);
475 return lfp;
476}
477static s_fixedpt_t
478d_to_sfp(double d)
479{
480 s_fixedpt_t sfp;
481 sfp.int_parts = (uint16_t)d;
482 sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
483 sfp.int_parts = htons(sfp.int_parts);
484 sfp.fractions = htons(sfp.fractions);
485 return sfp;
486}
487#endif
488
489static double
Denys Vlasenko0b002812010-01-03 08:59:59 +0100490dispersion(const datapoint_t *dp)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100491{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100492 return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100493}
494
495static double
Denys Vlasenko0b002812010-01-03 08:59:59 +0100496root_distance(peer_t *p)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100497{
498 /* The root synchronization distance is the maximum error due to
499 * all causes of the local clock relative to the primary server.
500 * It is defined as half the total delay plus total dispersion
501 * plus peer jitter.
502 */
503 return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
504 + p->lastpkt_rootdisp
505 + p->filter_dispersion
Denys Vlasenko0b002812010-01-03 08:59:59 +0100506 + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100507 + p->filter_jitter;
508}
509
510static void
511set_next(peer_t *p, unsigned t)
512{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100513 p->next_action_time = G.cur_time + t;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100514}
515
516/*
517 * Peer clock filter and its helpers
518 */
519static void
Denys Vlasenko0b002812010-01-03 08:59:59 +0100520filter_datapoints(peer_t *p)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100521{
522 int i, idx;
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100523 double sum, wavg;
524 datapoint_t *fdp;
525
526#if 0
527/* Simulations have shown that use of *averaged* offset for p->filter_offset
528 * is in fact worse than simply using last received one: with large poll intervals
529 * (>= 2048) averaging code uses offset values which are outdated by hours,
530 * and time/frequency correction goes totally wrong when fed essentially bogus offsets.
531 */
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100532 int got_newest;
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100533 double minoff, maxoff, w;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100534 double x = x; /* for compiler */
535 double oldest_off = oldest_off;
536 double oldest_age = oldest_age;
537 double newest_off = newest_off;
538 double newest_age = newest_age;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100539
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100540 fdp = p->filter_datapoint;
541
542 minoff = maxoff = fdp[0].d_offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100543 for (i = 1; i < NUM_DATAPOINTS; i++) {
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100544 if (minoff > fdp[i].d_offset)
545 minoff = fdp[i].d_offset;
546 if (maxoff < fdp[i].d_offset)
547 maxoff = fdp[i].d_offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100548 }
549
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100550 idx = p->datapoint_idx; /* most recent datapoint's index */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100551 /* Average offset:
552 * Drop two outliers and take weighted average of the rest:
553 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
554 * we use older6/32, not older6/64 since sum of weights should be 1:
555 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
556 */
557 wavg = 0;
558 w = 0.5;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100559 /* n-1
560 * --- dispersion(i)
561 * filter_dispersion = \ -------------
562 * / (i+1)
563 * --- 2
564 * i=0
565 */
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100566 got_newest = 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100567 sum = 0;
568 for (i = 0; i < NUM_DATAPOINTS; i++) {
569 VERB4 {
570 bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
571 i,
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100572 fdp[idx].d_offset,
573 fdp[idx].d_dispersion, dispersion(&fdp[idx]),
574 G.cur_time - fdp[idx].d_recv_time,
575 (minoff == fdp[idx].d_offset || maxoff == fdp[idx].d_offset)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100576 ? " (outlier by offset)" : ""
577 );
578 }
579
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100580 sum += dispersion(&fdp[idx]) / (2 << i);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100581
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100582 if (minoff == fdp[idx].d_offset) {
Denys Vlasenkoe4844b82010-01-01 21:59:49 +0100583 minoff -= 1; /* so that we don't match it ever again */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100584 } else
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100585 if (maxoff == fdp[idx].d_offset) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100586 maxoff += 1;
587 } else {
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100588 oldest_off = fdp[idx].d_offset;
589 oldest_age = G.cur_time - fdp[idx].d_recv_time;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100590 if (!got_newest) {
591 got_newest = 1;
592 newest_off = oldest_off;
593 newest_age = oldest_age;
594 }
595 x = oldest_off * w;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100596 wavg += x;
597 w /= 2;
598 }
599
600 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
601 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100602 p->filter_dispersion = sum;
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100603 wavg += x; /* add another older6/64 to form older6/32 */
604 /* Fix systematic underestimation with large poll intervals.
605 * Imagine that we still have a bit of uncorrected drift,
606 * and poll interval is big (say, 100 sec). Offsets form a progression:
607 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
608 * The algorithm above drops 0.0 and 0.7 as outliers,
609 * and then we have this estimation, ~25% off from 0.7:
610 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
611 */
Denys Vlasenko0b002812010-01-03 08:59:59 +0100612 x = oldest_age - newest_age;
613 if (x != 0) {
614 x = newest_age / x; /* in above example, 100 / (600 - 100) */
615 if (x < 1) { /* paranoia check */
616 x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
617 wavg += x;
618 }
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100619 }
620 p->filter_offset = wavg;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100621
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100622#else
623
624 fdp = p->filter_datapoint;
625 idx = p->datapoint_idx; /* most recent datapoint's index */
626
627 /* filter_offset: simply use the most recent value */
628 p->filter_offset = fdp[idx].d_offset;
629
630 /* n-1
631 * --- dispersion(i)
632 * filter_dispersion = \ -------------
633 * / (i+1)
634 * --- 2
635 * i=0
636 */
637 wavg = 0;
638 sum = 0;
639 for (i = 0; i < NUM_DATAPOINTS; i++) {
640 sum += dispersion(&fdp[idx]) / (2 << i);
641 wavg += fdp[idx].d_offset;
642 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
643 }
644 wavg /= NUM_DATAPOINTS;
645 p->filter_dispersion = sum;
646#endif
647
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100648 /* +----- -----+ ^ 1/2
649 * | n-1 |
650 * | --- |
651 * | 1 \ 2 |
652 * filter_jitter = | --- * / (avg-offset_j) |
653 * | n --- |
654 * | j=0 |
655 * +----- -----+
656 * where n is the number of valid datapoints in the filter (n > 1);
657 * if filter_jitter < precision then filter_jitter = precision
658 */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100659 sum = 0;
660 for (i = 0; i < NUM_DATAPOINTS; i++) {
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100661 sum += SQUARE(wavg - fdp[i].d_offset);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100662 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100663 sum = SQRT(sum / NUM_DATAPOINTS);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100664 p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
665
Denys Vlasenkod98dc922012-03-08 03:27:49 +0100666 VERB3 bb_error_msg("filter offset:%+f disp:%f jitter:%f",
667 p->filter_offset,
Denys Vlasenkod9109e32010-01-02 00:36:43 +0100668 p->filter_dispersion,
669 p->filter_jitter);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100670}
671
672static void
Denys Vlasenko0b002812010-01-03 08:59:59 +0100673reset_peer_stats(peer_t *p, double offset)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100674{
675 int i;
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100676 bool small_ofs = fabs(offset) < 16 * STEP_THRESHOLD;
677
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100678 for (i = 0; i < NUM_DATAPOINTS; i++) {
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100679 if (small_ofs) {
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200680 p->filter_datapoint[i].d_recv_time += offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100681 if (p->filter_datapoint[i].d_offset != 0) {
Denys Vlasenkofc4ebd02012-02-28 02:45:00 +0100682 p->filter_datapoint[i].d_offset -= offset;
683 //bb_error_msg("p->filter_datapoint[%d].d_offset %f -> %f",
684 // i,
685 // p->filter_datapoint[i].d_offset + offset,
686 // p->filter_datapoint[i].d_offset);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100687 }
688 } else {
Denys Vlasenko0b002812010-01-03 08:59:59 +0100689 p->filter_datapoint[i].d_recv_time = G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100690 p->filter_datapoint[i].d_offset = 0;
691 p->filter_datapoint[i].d_dispersion = MAXDISP;
692 }
693 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +0100694 if (small_ofs) {
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200695 p->lastpkt_recv_time += offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100696 } else {
Denys Vlasenko0b002812010-01-03 08:59:59 +0100697 p->reachable_bits = 0;
698 p->lastpkt_recv_time = G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100699 }
Denys Vlasenko0b002812010-01-03 08:59:59 +0100700 filter_datapoints(p); /* recalc p->filter_xxx */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100701 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
702}
703
704static void
705add_peers(char *s)
706{
707 peer_t *p;
708
709 p = xzalloc(sizeof(*p));
710 p->p_lsa = xhost2sockaddr(s, 123);
711 p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa);
712 p->p_fd = -1;
713 p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
Denys Vlasenko0b002812010-01-03 08:59:59 +0100714 p->next_action_time = G.cur_time; /* = set_next(p, 0); */
715 reset_peer_stats(p, 16 * STEP_THRESHOLD);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100716
717 llist_add_to(&G.ntp_peers, p);
718 G.peer_cnt++;
719}
720
721static int
722do_sendto(int fd,
723 const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
724 msg_t *msg, ssize_t len)
725{
726 ssize_t ret;
727
728 errno = 0;
729 if (!from) {
730 ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
731 } else {
732 ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
733 }
734 if (ret != len) {
735 bb_perror_msg("send failed");
736 return -1;
737 }
738 return 0;
739}
740
Denys Vlasenko0b002812010-01-03 08:59:59 +0100741static void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100742send_query_to_peer(peer_t *p)
743{
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100744 /* Why do we need to bind()?
745 * See what happens when we don't bind:
746 *
747 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
748 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
749 * gettimeofday({1259071266, 327885}, NULL) = 0
750 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
751 * ^^^ we sent it from some source port picked by kernel.
752 * time(NULL) = 1259071266
753 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
754 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
755 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
756 * ^^^ this recv will receive packets to any local port!
757 *
758 * Uncomment this and use strace to see it in action:
759 */
760#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100761
762 if (p->p_fd == -1) {
763 int fd, family;
764 len_and_sockaddr *local_lsa;
765
766 family = p->p_lsa->u.sa.sa_family;
767 p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
768 /* local_lsa has "null" address and port 0 now.
769 * bind() ensures we have a *particular port* selected by kernel
770 * and remembered in p->p_fd, thus later recv(p->p_fd)
771 * receives only packets sent to this port.
772 */
773 PROBE_LOCAL_ADDR
774 xbind(fd, &local_lsa->u.sa, local_lsa->len);
775 PROBE_LOCAL_ADDR
776#if ENABLE_FEATURE_IPV6
777 if (family == AF_INET)
778#endif
779 setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
780 free(local_lsa);
781 }
782
Denys Vlasenkoe8ce2852012-03-03 12:15:46 +0100783 /* Emit message _before_ attempted send. Think of a very short
784 * roundtrip networks: we need to go back to recv loop ASAP,
785 * to reduce delay. Printing messages after send works against that.
786 */
787 VERB1 bb_error_msg("sending query to %s", p->p_dotted);
788
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100789 /*
790 * Send out a random 64-bit number as our transmit time. The NTP
791 * server will copy said number into the originate field on the
792 * response that it sends us. This is totally legal per the SNTP spec.
793 *
794 * The impact of this is two fold: we no longer send out the current
795 * system time for the world to see (which may aid an attacker), and
796 * it gives us a (not very secure) way of knowing that we're not
797 * getting spoofed by an attacker that can't capture our traffic
798 * but can spoof packets from the NTP server we're communicating with.
799 *
800 * Save the real transmit timestamp locally.
801 */
802 p->p_xmt_msg.m_xmttime.int_partl = random();
803 p->p_xmt_msg.m_xmttime.fractionl = random();
804 p->p_xmttime = gettime1900d();
805
806 if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
807 &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
808 ) {
809 close(p->p_fd);
810 p->p_fd = -1;
811 set_next(p, RETRY_INTERVAL);
Denys Vlasenko0b002812010-01-03 08:59:59 +0100812 return;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100813 }
814
Denys Vlasenko0b002812010-01-03 08:59:59 +0100815 p->reachable_bits <<= 1;
Denys Vlasenko0b002812010-01-03 08:59:59 +0100816 set_next(p, RESPONSE_INTERVAL);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100817}
818
819
Denys Vlasenko24928ff2010-01-25 19:30:16 +0100820/* Note that there is no provision to prevent several run_scripts
821 * to be done in quick succession. In fact, it happens rather often
822 * if initial syncronization results in a step.
823 * You will see "step" and then "stratum" script runs, sometimes
824 * as close as only 0.002 seconds apart.
825 * Script should be ready to deal with this.
826 */
Denys Vlasenko12628b72010-01-11 01:31:59 +0100827static void run_script(const char *action, double offset)
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100828{
829 char *argv[3];
Denys Vlasenko12628b72010-01-11 01:31:59 +0100830 char *env1, *env2, *env3, *env4;
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100831
832 if (!G.script_name)
833 return;
834
835 argv[0] = (char*) G.script_name;
836 argv[1] = (char*) action;
837 argv[2] = NULL;
838
839 VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
840
Denys Vlasenkoae473352010-01-07 11:51:13 +0100841 env1 = xasprintf("%s=%u", "stratum", G.stratum);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100842 putenv(env1);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100843 env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100844 putenv(env2);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100845 env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
846 putenv(env3);
Denys Vlasenko12628b72010-01-11 01:31:59 +0100847 env4 = xasprintf("%s=%f", "offset", offset);
848 putenv(env4);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100849 /* Other items of potential interest: selected peer,
Denys Vlasenkoae473352010-01-07 11:51:13 +0100850 * rootdelay, reftime, rootdisp, refid, ntp_status,
Denys Vlasenko12628b72010-01-11 01:31:59 +0100851 * last_update_offset, last_update_recv_time, discipline_jitter,
852 * how many peers have reachable_bits = 0?
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100853 */
854
Denys Vlasenko6959f6b2010-01-07 08:31:46 +0100855 /* Don't want to wait: it may run hwclock --systohc, and that
856 * may take some time (seconds): */
Denys Vlasenko8531d762010-03-18 22:44:00 +0100857 /*spawn_and_wait(argv);*/
Denys Vlasenko6959f6b2010-01-07 08:31:46 +0100858 spawn(argv);
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100859
860 unsetenv("stratum");
861 unsetenv("freq_drift_ppm");
Denys Vlasenkoae473352010-01-07 11:51:13 +0100862 unsetenv("poll_interval");
Denys Vlasenko12628b72010-01-11 01:31:59 +0100863 unsetenv("offset");
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100864 free(env1);
865 free(env2);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100866 free(env3);
Denys Vlasenko12628b72010-01-11 01:31:59 +0100867 free(env4);
Denys Vlasenkoae473352010-01-07 11:51:13 +0100868
869 G.last_script_run = G.cur_time;
Denys Vlasenkoede737b2010-01-06 12:27:47 +0100870}
871
Denys Vlasenko0b002812010-01-03 08:59:59 +0100872static NOINLINE void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100873step_time(double offset)
874{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100875 llist_t *item;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100876 double dtime;
Denys Vlasenkofc4ebd02012-02-28 02:45:00 +0100877 struct timeval tvc, tvn;
878 char buf[sizeof("yyyy-mm-dd hh:mm:ss") + /*paranoia:*/ 4];
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100879 time_t tval;
880
Denys Vlasenkofc4ebd02012-02-28 02:45:00 +0100881 gettimeofday(&tvc, NULL); /* never fails */
882 dtime = tvc.tv_sec + (1.0e-6 * tvc.tv_usec) + offset;
883 d_to_tv(dtime, &tvn);
884 if (settimeofday(&tvn, NULL) == -1)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100885 bb_perror_msg_and_die("settimeofday");
886
Denys Vlasenkofc4ebd02012-02-28 02:45:00 +0100887 VERB2 {
888 tval = tvc.tv_sec;
889 strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", localtime(&tval));
890 bb_error_msg("current time is %s.%06u", buf, (unsigned)tvc.tv_usec);
891 }
892 tval = tvn.tv_sec;
893 strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", localtime(&tval));
894 bb_error_msg("setting time to %s.%06u (offset %+fs)", buf, (unsigned)tvn.tv_usec, offset);
Denys Vlasenko0b002812010-01-03 08:59:59 +0100895
896 /* Correct various fields which contain time-relative values: */
897
Denys Vlasenko4125a6b2012-06-11 11:41:46 +0200898 /* Globals: */
899 G.cur_time += offset;
900 G.last_update_recv_time += offset;
901 G.last_script_run += offset;
902
Denys Vlasenko0b002812010-01-03 08:59:59 +0100903 /* p->lastpkt_recv_time, p->next_action_time and such: */
904 for (item = G.ntp_peers; item != NULL; item = item->link) {
905 peer_t *pp = (peer_t *) item->data;
906 reset_peer_stats(pp, offset);
Denys Vlasenko16c52a52012-02-23 14:28:47 +0100907 //bb_error_msg("offset:%+f pp->next_action_time:%f -> %f",
Denys Vlasenkoeff6d592010-06-24 20:23:40 +0200908 // offset, pp->next_action_time, pp->next_action_time + offset);
909 pp->next_action_time += offset;
Denys Vlasenko4125a6b2012-06-11 11:41:46 +0200910 if (pp->p_fd >= 0) {
911 /* We wait for reply from this peer too.
912 * But due to step we are doing, reply's data is no longer
913 * useful (in fact, it'll be bogus). Stop waiting for it.
914 */
915 close(pp->p_fd);
916 pp->p_fd = -1;
917 set_next(pp, RETRY_INTERVAL);
918 }
Denys Vlasenko0b002812010-01-03 08:59:59 +0100919 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100920}
921
922
923/*
924 * Selection and clustering, and their helpers
925 */
926typedef struct {
927 peer_t *p;
928 int type;
929 double edge;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100930 double opt_rd; /* optimization */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100931} point_t;
932static int
933compare_point_edge(const void *aa, const void *bb)
934{
935 const point_t *a = aa;
936 const point_t *b = bb;
937 if (a->edge < b->edge) {
938 return -1;
939 }
940 return (a->edge > b->edge);
941}
942typedef struct {
943 peer_t *p;
944 double metric;
945} survivor_t;
946static int
947compare_survivor_metric(const void *aa, const void *bb)
948{
949 const survivor_t *a = aa;
950 const survivor_t *b = bb;
Denys Vlasenko510f56a2010-01-03 12:00:26 +0100951 if (a->metric < b->metric) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100952 return -1;
Denys Vlasenko510f56a2010-01-03 12:00:26 +0100953 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100954 return (a->metric > b->metric);
955}
956static int
957fit(peer_t *p, double rd)
958{
Denys Vlasenko0b002812010-01-03 08:59:59 +0100959 if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
960 /* One or zero bits in reachable_bits */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100961 VERB3 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
962 return 0;
963 }
Denys Vlasenkofb132e42010-10-29 11:46:52 +0200964#if 0 /* we filter out such packets earlier */
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100965 if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100966 || p->lastpkt_stratum >= MAXSTRAT
967 ) {
968 VERB3 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
969 return 0;
970 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +0100971#endif
Denys Vlasenko0b002812010-01-03 08:59:59 +0100972 /* rd is root_distance(p) */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100973 if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
974 VERB3 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
975 return 0;
976 }
977//TODO
978// /* Do we have a loop? */
979// if (p->refid == p->dstaddr || p->refid == s.refid)
980// return 0;
Denys Vlasenkob7c9fb22011-02-03 00:05:48 +0100981 return 1;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100982}
983static peer_t*
Denys Vlasenko0b002812010-01-03 08:59:59 +0100984select_and_cluster(void)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100985{
Denys Vlasenko9b20adc2010-01-17 02:51:33 +0100986 peer_t *p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +0100987 llist_t *item;
988 int i, j;
989 int size = 3 * G.peer_cnt;
990 /* for selection algorithm */
991 point_t point[size];
992 unsigned num_points, num_candidates;
993 double low, high;
994 unsigned num_falsetickers;
995 /* for cluster algorithm */
996 survivor_t survivor[size];
997 unsigned num_survivors;
998
999 /* Selection */
1000
1001 num_points = 0;
1002 item = G.ntp_peers;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001003 if (G.initial_poll_complete) while (item != NULL) {
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001004 double rd, offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001005
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001006 p = (peer_t *) item->data;
1007 rd = root_distance(p);
1008 offset = p->filter_offset;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001009 if (!fit(p, rd)) {
1010 item = item->link;
1011 continue;
1012 }
1013
1014 VERB4 bb_error_msg("interval: [%f %f %f] %s",
1015 offset - rd,
1016 offset,
1017 offset + rd,
1018 p->p_dotted
1019 );
1020 point[num_points].p = p;
1021 point[num_points].type = -1;
1022 point[num_points].edge = offset - rd;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001023 point[num_points].opt_rd = rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001024 num_points++;
1025 point[num_points].p = p;
1026 point[num_points].type = 0;
1027 point[num_points].edge = offset;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001028 point[num_points].opt_rd = rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001029 num_points++;
1030 point[num_points].p = p;
1031 point[num_points].type = 1;
1032 point[num_points].edge = offset + rd;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001033 point[num_points].opt_rd = rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001034 num_points++;
1035 item = item->link;
1036 }
1037 num_candidates = num_points / 3;
1038 if (num_candidates == 0) {
1039 VERB3 bb_error_msg("no valid datapoints, no peer selected");
Denys Vlasenko0b002812010-01-03 08:59:59 +01001040 return NULL;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001041 }
1042//TODO: sorting does not seem to be done in reference code
1043 qsort(point, num_points, sizeof(point[0]), compare_point_edge);
1044
1045 /* Start with the assumption that there are no falsetickers.
1046 * Attempt to find a nonempty intersection interval containing
1047 * the midpoints of all truechimers.
1048 * If a nonempty interval cannot be found, increase the number
1049 * of assumed falsetickers by one and try again.
1050 * If a nonempty interval is found and the number of falsetickers
1051 * is less than the number of truechimers, a majority has been found
1052 * and the midpoint of each truechimer represents
1053 * the candidates available to the cluster algorithm.
1054 */
1055 num_falsetickers = 0;
1056 while (1) {
1057 int c;
1058 unsigned num_midpoints = 0;
1059
1060 low = 1 << 9;
1061 high = - (1 << 9);
1062 c = 0;
1063 for (i = 0; i < num_points; i++) {
1064 /* We want to do:
1065 * if (point[i].type == -1) c++;
1066 * if (point[i].type == 1) c--;
1067 * and it's simpler to do it this way:
1068 */
1069 c -= point[i].type;
1070 if (c >= num_candidates - num_falsetickers) {
1071 /* If it was c++ and it got big enough... */
1072 low = point[i].edge;
1073 break;
1074 }
1075 if (point[i].type == 0)
1076 num_midpoints++;
1077 }
1078 c = 0;
1079 for (i = num_points-1; i >= 0; i--) {
1080 c += point[i].type;
1081 if (c >= num_candidates - num_falsetickers) {
1082 high = point[i].edge;
1083 break;
1084 }
1085 if (point[i].type == 0)
1086 num_midpoints++;
1087 }
1088 /* If the number of midpoints is greater than the number
1089 * of allowed falsetickers, the intersection contains at
1090 * least one truechimer with no midpoint - bad.
1091 * Also, interval should be nonempty.
1092 */
1093 if (num_midpoints <= num_falsetickers && low < high)
1094 break;
1095 num_falsetickers++;
1096 if (num_falsetickers * 2 >= num_candidates) {
1097 VERB3 bb_error_msg("too many falsetickers:%d (candidates:%d), no peer selected",
1098 num_falsetickers, num_candidates);
1099 return NULL;
1100 }
1101 }
1102 VERB3 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1103 low, high, num_candidates, num_falsetickers);
1104
1105 /* Clustering */
1106
1107 /* Construct a list of survivors (p, metric)
1108 * from the chime list, where metric is dominated
1109 * first by stratum and then by root distance.
1110 * All other things being equal, this is the order of preference.
1111 */
1112 num_survivors = 0;
1113 for (i = 0; i < num_points; i++) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001114 if (point[i].edge < low || point[i].edge > high)
1115 continue;
1116 p = point[i].p;
1117 survivor[num_survivors].p = p;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001118 /* x.opt_rd == root_distance(p); */
1119 survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001120 VERB4 bb_error_msg("survivor[%d] metric:%f peer:%s",
1121 num_survivors, survivor[num_survivors].metric, p->p_dotted);
1122 num_survivors++;
1123 }
1124 /* There must be at least MIN_SELECTED survivors to satisfy the
1125 * correctness assertions. Ordinarily, the Byzantine criteria
1126 * require four survivors, but for the demonstration here, one
1127 * is acceptable.
1128 */
1129 if (num_survivors < MIN_SELECTED) {
1130 VERB3 bb_error_msg("num_survivors %d < %d, no peer selected",
1131 num_survivors, MIN_SELECTED);
1132 return NULL;
1133 }
1134
1135//looks like this is ONLY used by the fact that later we pick survivor[0].
1136//we can avoid sorting then, just find the minimum once!
1137 qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1138
1139 /* For each association p in turn, calculate the selection
1140 * jitter p->sjitter as the square root of the sum of squares
1141 * (p->offset - q->offset) over all q associations. The idea is
1142 * to repeatedly discard the survivor with maximum selection
1143 * jitter until a termination condition is met.
1144 */
1145 while (1) {
1146 unsigned max_idx = max_idx;
1147 double max_selection_jitter = max_selection_jitter;
1148 double min_jitter = min_jitter;
1149
1150 if (num_survivors <= MIN_CLUSTERED) {
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001151 VERB3 bb_error_msg("num_survivors %d <= %d, not discarding more",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001152 num_survivors, MIN_CLUSTERED);
1153 break;
1154 }
1155
1156 /* To make sure a few survivors are left
1157 * for the clustering algorithm to chew on,
1158 * we stop if the number of survivors
1159 * is less than or equal to MIN_CLUSTERED (3).
1160 */
1161 for (i = 0; i < num_survivors; i++) {
1162 double selection_jitter_sq;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001163
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001164 p = survivor[i].p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001165 if (i == 0 || p->filter_jitter < min_jitter)
1166 min_jitter = p->filter_jitter;
1167
1168 selection_jitter_sq = 0;
1169 for (j = 0; j < num_survivors; j++) {
1170 peer_t *q = survivor[j].p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001171 selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1172 }
1173 if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1174 max_selection_jitter = selection_jitter_sq;
1175 max_idx = i;
1176 }
1177 VERB5 bb_error_msg("survivor %d selection_jitter^2:%f",
1178 i, selection_jitter_sq);
1179 }
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001180 max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001181 VERB4 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1182 max_idx, max_selection_jitter, min_jitter);
1183
1184 /* If the maximum selection jitter is less than the
1185 * minimum peer jitter, then tossing out more survivors
1186 * will not lower the minimum peer jitter, so we might
1187 * as well stop.
1188 */
1189 if (max_selection_jitter < min_jitter) {
1190 VERB3 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1191 max_selection_jitter, min_jitter, num_survivors);
1192 break;
1193 }
1194
1195 /* Delete survivor[max_idx] from the list
1196 * and go around again.
1197 */
1198 VERB5 bb_error_msg("dropping survivor %d", max_idx);
1199 num_survivors--;
1200 while (max_idx < num_survivors) {
1201 survivor[max_idx] = survivor[max_idx + 1];
1202 max_idx++;
1203 }
1204 }
1205
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001206 if (0) {
1207 /* Combine the offsets of the clustering algorithm survivors
1208 * using a weighted average with weight determined by the root
1209 * distance. Compute the selection jitter as the weighted RMS
1210 * difference between the first survivor and the remaining
1211 * survivors. In some cases the inherent clock jitter can be
1212 * reduced by not using this algorithm, especially when frequent
1213 * clockhopping is involved. bbox: thus we don't do it.
1214 */
1215 double x, y, z, w;
1216 y = z = w = 0;
1217 for (i = 0; i < num_survivors; i++) {
1218 p = survivor[i].p;
1219 x = root_distance(p);
1220 y += 1 / x;
1221 z += p->filter_offset / x;
1222 w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1223 }
1224 //G.cluster_offset = z / y;
1225 //G.cluster_jitter = SQRT(w / y);
1226 }
1227
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001228 /* Pick the best clock. If the old system peer is on the list
1229 * and at the same stratum as the first survivor on the list,
1230 * then don't do a clock hop. Otherwise, select the first
1231 * survivor on the list as the new system peer.
1232 */
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001233 p = survivor[0].p;
1234 if (G.last_update_peer
1235 && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1236 ) {
1237 /* Starting from 1 is ok here */
1238 for (i = 1; i < num_survivors; i++) {
1239 if (G.last_update_peer == survivor[i].p) {
1240 VERB4 bb_error_msg("keeping old synced peer");
1241 p = G.last_update_peer;
1242 goto keep_old;
1243 }
1244 }
1245 }
1246 G.last_update_peer = p;
1247 keep_old:
Denys Vlasenko16c52a52012-02-23 14:28:47 +01001248 VERB3 bb_error_msg("selected peer %s filter_offset:%+f age:%f",
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001249 p->p_dotted,
1250 p->filter_offset,
1251 G.cur_time - p->lastpkt_recv_time
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001252 );
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001253 return p;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001254}
1255
1256
1257/*
1258 * Local clock discipline and its helpers
1259 */
1260static void
1261set_new_values(int disc_state, double offset, double recv_time)
1262{
1263 /* Enter new state and set state variables. Note we use the time
1264 * of the last clock filter sample, which must be earlier than
1265 * the current time.
1266 */
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001267 VERB3 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001268 disc_state, offset, recv_time);
1269 G.discipline_state = disc_state;
1270 G.last_update_offset = offset;
1271 G.last_update_recv_time = recv_time;
1272}
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001273/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
Denys Vlasenko0b002812010-01-03 08:59:59 +01001274static NOINLINE int
1275update_local_clock(peer_t *p)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001276{
1277 int rc;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001278 struct timex tmx;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001279 /* Note: can use G.cluster_offset instead: */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001280 double offset = p->filter_offset;
1281 double recv_time = p->lastpkt_recv_time;
1282 double abs_offset;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001283#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001284 double freq_drift;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001285#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001286 double since_last_update;
1287 double etemp, dtemp;
1288
1289 abs_offset = fabs(offset);
1290
Denys Vlasenko12628b72010-01-11 01:31:59 +01001291#if 0
Denys Vlasenko24928ff2010-01-25 19:30:16 +01001292 /* If needed, -S script can do it by looking at $offset
1293 * env var and killing parent */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001294 /* If the offset is too large, give up and go home */
1295 if (abs_offset > PANIC_THRESHOLD) {
1296 bb_error_msg_and_die("offset %f far too big, exiting", offset);
1297 }
Denys Vlasenko12628b72010-01-11 01:31:59 +01001298#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001299
1300 /* If this is an old update, for instance as the result
1301 * of a system peer change, avoid it. We never use
1302 * an old sample or the same sample twice.
1303 */
1304 if (recv_time <= G.last_update_recv_time) {
1305 VERB3 bb_error_msg("same or older datapoint: %f >= %f, not using it",
1306 G.last_update_recv_time, recv_time);
1307 return 0; /* "leave poll interval as is" */
1308 }
1309
1310 /* Clock state machine transition function. This is where the
1311 * action is and defines how the system reacts to large time
1312 * and frequency errors.
1313 */
1314 since_last_update = recv_time - G.reftime;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001315#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001316 freq_drift = 0;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001317#endif
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001318#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001319 if (G.discipline_state == STATE_FREQ) {
1320 /* Ignore updates until the stepout threshold */
1321 if (since_last_update < WATCH_THRESHOLD) {
1322 VERB3 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1323 WATCH_THRESHOLD - since_last_update);
1324 return 0; /* "leave poll interval as is" */
1325 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001326# if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001327 freq_drift = (offset - G.last_update_offset) / since_last_update;
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001328# endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001329 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001330#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001331
1332 /* There are two main regimes: when the
1333 * offset exceeds the step threshold and when it does not.
1334 */
1335 if (abs_offset > STEP_THRESHOLD) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001336 switch (G.discipline_state) {
1337 case STATE_SYNC:
1338 /* The first outlyer: ignore it, switch to SPIK state */
Denys Vlasenko16c52a52012-02-23 14:28:47 +01001339 VERB3 bb_error_msg("offset:%+f - spike detected", offset);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001340 G.discipline_state = STATE_SPIK;
1341 return -1; /* "decrease poll interval" */
1342
1343 case STATE_SPIK:
1344 /* Ignore succeeding outlyers until either an inlyer
1345 * is found or the stepout threshold is exceeded.
1346 */
1347 if (since_last_update < WATCH_THRESHOLD) {
1348 VERB3 bb_error_msg("spike detected, datapoint ignored, %f sec remains",
1349 WATCH_THRESHOLD - since_last_update);
1350 return -1; /* "decrease poll interval" */
1351 }
1352 /* fall through: we need to step */
1353 } /* switch */
1354
1355 /* Step the time and clamp down the poll interval.
1356 *
1357 * In NSET state an initial frequency correction is
1358 * not available, usually because the frequency file has
1359 * not yet been written. Since the time is outside the
1360 * capture range, the clock is stepped. The frequency
1361 * will be set directly following the stepout interval.
1362 *
1363 * In FSET state the initial frequency has been set
1364 * from the frequency file. Since the time is outside
1365 * the capture range, the clock is stepped immediately,
1366 * rather than after the stepout interval. Guys get
1367 * nervous if it takes 17 minutes to set the clock for
1368 * the first time.
1369 *
1370 * In SPIK state the stepout threshold has expired and
1371 * the phase is still above the step threshold. Note
1372 * that a single spike greater than the step threshold
1373 * is always suppressed, even at the longer poll
1374 * intervals.
1375 */
Denys Vlasenko16c52a52012-02-23 14:28:47 +01001376 VERB3 bb_error_msg("stepping time by %+f; poll_exp=MINPOLL", offset);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001377 step_time(offset);
1378 if (option_mask32 & OPT_q) {
1379 /* We were only asked to set time once. Done. */
1380 exit(0);
1381 }
1382
1383 G.polladj_count = 0;
1384 G.poll_exp = MINPOLL;
1385 G.stratum = MAXSTRAT;
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001386
Denys Vlasenko12628b72010-01-11 01:31:59 +01001387 run_script("step", offset);
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001388
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001389#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001390 if (G.discipline_state == STATE_NSET) {
1391 set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1392 return 1; /* "ok to increase poll interval" */
1393 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001394#endif
Denys Vlasenko547ee792012-03-05 10:18:00 +01001395 abs_offset = offset = 0;
Denys Vlasenko132b0442012-03-05 00:51:48 +01001396 set_new_values(STATE_SYNC, offset, recv_time);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001397
1398 } else { /* abs_offset <= STEP_THRESHOLD */
1399
Denys Vlasenko0b002812010-01-03 08:59:59 +01001400 if (G.poll_exp < MINPOLL && G.initial_poll_complete) {
Denys Vlasenko16c52a52012-02-23 14:28:47 +01001401 VERB3 bb_error_msg("small offset:%+f, disabling burst mode", offset);
Denys Vlasenko0b002812010-01-03 08:59:59 +01001402 G.polladj_count = 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001403 G.poll_exp = MINPOLL;
1404 }
1405
1406 /* Compute the clock jitter as the RMS of exponentially
1407 * weighted offset differences. Used by the poll adjust code.
1408 */
1409 etemp = SQUARE(G.discipline_jitter);
Denys Vlasenko74584b82012-03-02 01:22:40 +01001410 dtemp = SQUARE(offset - G.last_update_offset);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001411 G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001412
1413 switch (G.discipline_state) {
1414 case STATE_NSET:
1415 if (option_mask32 & OPT_q) {
1416 /* We were only asked to set time once.
1417 * The clock is precise enough, no need to step.
1418 */
1419 exit(0);
1420 }
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001421#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001422 /* This is the first update received and the frequency
1423 * has not been initialized. The first thing to do
1424 * is directly measure the oscillator frequency.
1425 */
1426 set_new_values(STATE_FREQ, offset, recv_time);
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001427#else
1428 set_new_values(STATE_SYNC, offset, recv_time);
1429#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001430 VERB3 bb_error_msg("transitioning to FREQ, datapoint ignored");
Denys Vlasenko0b002812010-01-03 08:59:59 +01001431 return 0; /* "leave poll interval as is" */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001432
1433#if 0 /* this is dead code for now */
1434 case STATE_FSET:
1435 /* This is the first update and the frequency
1436 * has been initialized. Adjust the phase, but
1437 * don't adjust the frequency until the next update.
1438 */
1439 set_new_values(STATE_SYNC, offset, recv_time);
1440 /* freq_drift remains 0 */
1441 break;
1442#endif
1443
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001444#if USING_INITIAL_FREQ_ESTIMATION
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001445 case STATE_FREQ:
1446 /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1447 * Correct the phase and frequency and switch to SYNC state.
1448 * freq_drift was already estimated (see code above)
1449 */
1450 set_new_values(STATE_SYNC, offset, recv_time);
1451 break;
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001452#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001453
1454 default:
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001455#if !USING_KERNEL_PLL_LOOP
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001456 /* Compute freq_drift due to PLL and FLL contributions.
1457 *
1458 * The FLL and PLL frequency gain constants
1459 * depend on the poll interval and Allan
1460 * intercept. The FLL is not used below one-half
1461 * the Allan intercept. Above that the loop gain
1462 * increases in steps to 1 / AVG.
1463 */
1464 if ((1 << G.poll_exp) > ALLAN / 2) {
1465 etemp = FLL - G.poll_exp;
1466 if (etemp < AVG)
1467 etemp = AVG;
1468 freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1469 }
1470 /* For the PLL the integration interval
1471 * (numerator) is the minimum of the update
1472 * interval and poll interval. This allows
1473 * oversampling, but not undersampling.
1474 */
1475 etemp = MIND(since_last_update, (1 << G.poll_exp));
1476 dtemp = (4 * PLL) << G.poll_exp;
1477 freq_drift += offset * etemp / SQUARE(dtemp);
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001478#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001479 set_new_values(STATE_SYNC, offset, recv_time);
1480 break;
1481 }
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001482 if (G.stratum != p->lastpkt_stratum + 1) {
1483 G.stratum = p->lastpkt_stratum + 1;
Denys Vlasenko12628b72010-01-11 01:31:59 +01001484 run_script("stratum", offset);
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001485 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001486 }
1487
Denys Vlasenko547ee792012-03-05 10:18:00 +01001488 if (G.discipline_jitter < G_precision_sec)
1489 G.discipline_jitter = G_precision_sec;
1490 G.offset_to_jitter_ratio = abs_offset / G.discipline_jitter;
1491
Denys Vlasenko0b002812010-01-03 08:59:59 +01001492 G.reftime = G.cur_time;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001493 G.ntp_status = p->lastpkt_status;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001494 G.refid = p->lastpkt_refid;
1495 G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
Denys Vlasenko9b20adc2010-01-17 02:51:33 +01001496 dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
Denys Vlasenko0b002812010-01-03 08:59:59 +01001497 dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001498 G.rootdisp = p->lastpkt_rootdisp + dtemp;
1499 VERB3 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1500
1501 /* We are in STATE_SYNC now, but did not do adjtimex yet.
1502 * (Any other state does not reach this, they all return earlier)
Denys Vlasenko132b0442012-03-05 00:51:48 +01001503 * By this time, freq_drift and offset are set
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001504 * to values suitable for adjtimex.
Denys Vlasenko61313112010-01-01 19:56:16 +01001505 */
1506#if !USING_KERNEL_PLL_LOOP
1507 /* Calculate the new frequency drift and frequency stability (wander).
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001508 * Compute the clock wander as the RMS of exponentially weighted
1509 * frequency differences. This is not used directly, but can,
1510 * along with the jitter, be a highly useful monitoring and
1511 * debugging tool.
1512 */
1513 dtemp = G.discipline_freq_drift + freq_drift;
Denys Vlasenko61313112010-01-01 19:56:16 +01001514 G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001515 etemp = SQUARE(G.discipline_wander);
1516 dtemp = SQUARE(dtemp);
1517 G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1518
Denys Vlasenko61313112010-01-01 19:56:16 +01001519 VERB3 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1520 G.discipline_freq_drift,
1521 (long)(G.discipline_freq_drift * 65536e6),
1522 freq_drift,
1523 G.discipline_wander);
1524#endif
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001525 VERB3 {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001526 memset(&tmx, 0, sizeof(tmx));
1527 if (adjtimex(&tmx) < 0)
1528 bb_perror_msg_and_die("adjtimex");
Denys Vlasenko8be49c32012-03-06 19:16:50 +01001529 bb_error_msg("p adjtimex freq:%ld offset:%+ld status:0x%x tc:%ld",
1530 tmx.freq, tmx.offset, tmx.status, tmx.constant);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001531 }
1532
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001533 memset(&tmx, 0, sizeof(tmx));
1534#if 0
Denys Vlasenko61313112010-01-01 19:56:16 +01001535//doesn't work, offset remains 0 (!) in kernel:
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001536//ntpd: set adjtimex freq:1786097 tmx.offset:77487
1537//ntpd: prev adjtimex freq:1786097 tmx.offset:0
1538//ntpd: cur adjtimex freq:1786097 tmx.offset:0
1539 tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1540 /* 65536 is one ppm */
1541 tmx.freq = G.discipline_freq_drift * 65536e6;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001542#endif
1543 tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
Denys Vlasenko132b0442012-03-05 00:51:48 +01001544 tmx.offset = (offset * 1000000); /* usec */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001545 tmx.status = STA_PLL;
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001546 if (G.ntp_status & LI_PLUSSEC)
1547 tmx.status |= STA_INS;
1548 if (G.ntp_status & LI_MINUSSEC)
1549 tmx.status |= STA_DEL;
Denys Vlasenko132b0442012-03-05 00:51:48 +01001550
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001551 tmx.constant = G.poll_exp - 4;
Denys Vlasenko132b0442012-03-05 00:51:48 +01001552 /* EXPERIMENTAL.
1553 * The below if statement should be unnecessary, but...
1554 * It looks like Linux kernel's PLL is far too gentle in changing
1555 * tmx.freq in response to clock offset. Offset keeps growing
1556 * and eventually we fall back to smaller poll intervals.
1557 * We can make correction more agressive (about x2) by supplying
1558 * PLL time constant which is one less than the real one.
1559 * To be on a safe side, let's do it only if offset is significantly
1560 * larger than jitter.
1561 */
Denys Vlasenko547ee792012-03-05 10:18:00 +01001562 if (tmx.constant > 0 && G.offset_to_jitter_ratio >= TIMECONST_HACK_GATE)
Denys Vlasenko132b0442012-03-05 00:51:48 +01001563 tmx.constant--;
1564
1565 //tmx.esterror = (uint32_t)(clock_jitter * 1e6);
1566 //tmx.maxerror = (uint32_t)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001567 rc = adjtimex(&tmx);
1568 if (rc < 0)
1569 bb_perror_msg_and_die("adjtimex");
Denys Vlasenkod9109e32010-01-02 00:36:43 +01001570 /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1571 * Not sure why. Perhaps it is normal.
1572 */
Denys Vlasenko132b0442012-03-05 00:51:48 +01001573 VERB3 bb_error_msg("adjtimex:%d freq:%ld offset:%+ld status:0x%x",
1574 rc, tmx.freq, tmx.offset, tmx.status);
Denys Vlasenko12628b72010-01-11 01:31:59 +01001575 G.kernel_freq_drift = tmx.freq / 65536;
Denys Vlasenko547ee792012-03-05 10:18:00 +01001576 VERB2 bb_error_msg("update from:%s offset:%+f jitter:%f clock drift:%+.3fppm tc:%d",
Denys Vlasenko132b0442012-03-05 00:51:48 +01001577 p->p_dotted, offset, G.discipline_jitter, (double)tmx.freq / 65536, (int)tmx.constant);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001578
1579 return 1; /* "ok to increase poll interval" */
1580}
1581
1582
1583/*
1584 * We've got a new reply packet from a peer, process it
1585 * (helpers first)
1586 */
1587static unsigned
1588retry_interval(void)
1589{
1590 /* Local problem, want to retry soon */
1591 unsigned interval, r;
1592 interval = RETRY_INTERVAL;
1593 r = random();
1594 interval += r % (unsigned)(RETRY_INTERVAL / 4);
1595 VERB3 bb_error_msg("chose retry interval:%u", interval);
1596 return interval;
1597}
1598static unsigned
Denys Vlasenko0b002812010-01-03 08:59:59 +01001599poll_interval(int exponent)
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001600{
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001601 unsigned interval, r;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001602 exponent = G.poll_exp + exponent;
1603 if (exponent < 0)
1604 exponent = 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001605 interval = 1 << exponent;
1606 r = random();
1607 interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */
1608 VERB3 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent);
1609 return interval;
1610}
Denys Vlasenko0b002812010-01-03 08:59:59 +01001611static NOINLINE void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001612recv_and_process_peer_pkt(peer_t *p)
1613{
1614 int rc;
1615 ssize_t size;
1616 msg_t msg;
1617 double T1, T2, T3, T4;
1618 unsigned interval;
1619 datapoint_t *datapoint;
1620 peer_t *q;
1621
1622 /* We can recvfrom here and check from.IP, but some multihomed
1623 * ntp servers reply from their *other IP*.
1624 * TODO: maybe we should check at least what we can: from.port == 123?
1625 */
1626 size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1627 if (size == -1) {
1628 bb_perror_msg("recv(%s) error", p->p_dotted);
1629 if (errno == EHOSTUNREACH || errno == EHOSTDOWN
1630 || errno == ENETUNREACH || errno == ENETDOWN
1631 || errno == ECONNREFUSED || errno == EADDRNOTAVAIL
1632 || errno == EAGAIN
1633 ) {
1634//TODO: always do this?
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001635 interval = retry_interval();
Denys Vlasenko4125a6b2012-06-11 11:41:46 +02001636 goto set_next_and_ret;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001637 }
1638 xfunc_die();
1639 }
1640
1641 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1642 bb_error_msg("malformed packet received from %s", p->p_dotted);
Denys Vlasenko4125a6b2012-06-11 11:41:46 +02001643 return;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001644 }
1645
1646 if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1647 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1648 ) {
Denys Vlasenko4125a6b2012-06-11 11:41:46 +02001649 /* Somebody else's packet */
1650 return;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001651 }
1652
Denys Vlasenko4125a6b2012-06-11 11:41:46 +02001653 /* We do not expect any more packets from this peer for now.
1654 * Closing the socket informs kernel about it.
1655 * We open a new socket when we send a new query.
1656 */
1657 close(p->p_fd);
1658 p->p_fd = -1;
1659
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001660 if ((msg.m_status & LI_ALARM) == LI_ALARM
1661 || msg.m_stratum == 0
1662 || msg.m_stratum > NTP_MAXSTRATUM
1663 ) {
1664// TODO: stratum 0 responses may have commands in 32-bit m_refid field:
1665// "DENY", "RSTR" - peer does not like us at all
1666// "RATE" - peer is overloaded, reduce polling freq
1667 interval = poll_interval(0);
Denys Vlasenko4125a6b2012-06-11 11:41:46 +02001668 bb_error_msg("reply from %s: peer is unsynced, next query in %us", p->p_dotted, interval);
1669 goto set_next_and_ret;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001670 }
1671
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001672// /* Verify valid root distance */
1673// if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1674// return; /* invalid header values */
1675
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001676 p->lastpkt_status = msg.m_status;
1677 p->lastpkt_stratum = msg.m_stratum;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001678 p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1679 p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1680 p->lastpkt_refid = msg.m_refid;
1681
1682 /*
1683 * From RFC 2030 (with a correction to the delay math):
1684 *
1685 * Timestamp Name ID When Generated
1686 * ------------------------------------------------------------
1687 * Originate Timestamp T1 time request sent by client
1688 * Receive Timestamp T2 time request received by server
1689 * Transmit Timestamp T3 time reply sent by server
1690 * Destination Timestamp T4 time reply received by client
1691 *
1692 * The roundtrip delay and local clock offset are defined as
1693 *
1694 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1695 */
1696 T1 = p->p_xmttime;
1697 T2 = lfp_to_d(msg.m_rectime);
1698 T3 = lfp_to_d(msg.m_xmttime);
Denys Vlasenko0b002812010-01-03 08:59:59 +01001699 T4 = G.cur_time;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001700
1701 p->lastpkt_recv_time = T4;
1702
1703 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
Denys Vlasenko0b002812010-01-03 08:59:59 +01001704 p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001705 datapoint = &p->filter_datapoint[p->datapoint_idx];
1706 datapoint->d_recv_time = T4;
1707 datapoint->d_offset = ((T2 - T1) + (T3 - T4)) / 2;
1708 /* The delay calculation is a special case. In cases where the
1709 * server and client clocks are running at different rates and
1710 * with very fast networks, the delay can appear negative. In
1711 * order to avoid violating the Principle of Least Astonishment,
1712 * the delay is clamped not less than the system precision.
1713 */
1714 p->lastpkt_delay = (T4 - T1) - (T3 - T2);
Denys Vlasenkoa9aaeda2010-01-01 22:23:27 +01001715 if (p->lastpkt_delay < G_precision_sec)
1716 p->lastpkt_delay = G_precision_sec;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001717 datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001718 if (!p->reachable_bits) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001719 /* 1st datapoint ever - replicate offset in every element */
1720 int i;
Denys Vlasenko132b0442012-03-05 00:51:48 +01001721 for (i = 0; i < NUM_DATAPOINTS; i++) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001722 p->filter_datapoint[i].d_offset = datapoint->d_offset;
1723 }
1724 }
1725
Denys Vlasenko0b002812010-01-03 08:59:59 +01001726 p->reachable_bits |= 1;
Denys Vlasenko074e8dc2010-01-04 23:58:13 +01001727 if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
Denys Vlasenko79bec062012-03-08 13:02:52 +01001728 bb_error_msg("reply from %s: offset:%+f delay:%f status:0x%02x strat:%d refid:0x%08x rootdelay:%f reach:0x%02x",
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001729 p->p_dotted,
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001730 datapoint->d_offset,
1731 p->lastpkt_delay,
1732 p->lastpkt_status,
1733 p->lastpkt_stratum,
1734 p->lastpkt_refid,
Denys Vlasenkod98dc922012-03-08 03:27:49 +01001735 p->lastpkt_rootdelay,
1736 p->reachable_bits
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001737 /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1738 * m_reftime, m_orgtime, m_rectime, m_xmttime
1739 */
1740 );
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001741 }
1742
1743 /* Muck with statictics and update the clock */
Denys Vlasenko0b002812010-01-03 08:59:59 +01001744 filter_datapoints(p);
1745 q = select_and_cluster();
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001746 rc = -1;
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001747 if (q) {
1748 rc = 0;
Denys Vlasenko12628b72010-01-11 01:31:59 +01001749 if (!(option_mask32 & OPT_w)) {
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001750 rc = update_local_clock(q);
Denys Vlasenko12628b72010-01-11 01:31:59 +01001751 /* If drift is dangerously large, immediately
1752 * drop poll interval one step down.
1753 */
Denys Vlasenko5b9a9102010-01-17 01:05:58 +01001754 if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
Denys Vlasenko16c52a52012-02-23 14:28:47 +01001755 VERB3 bb_error_msg("offset:%+f > POLLDOWN_OFFSET", q->filter_offset);
Denys Vlasenko12628b72010-01-11 01:31:59 +01001756 goto poll_down;
1757 }
1758 }
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001759 }
Denys Vlasenko12628b72010-01-11 01:31:59 +01001760 /* else: no peer selected, rc = -1: we want to poll more often */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001761
1762 if (rc != 0) {
1763 /* Adjust the poll interval by comparing the current offset
1764 * with the clock jitter. If the offset is less than
1765 * the clock jitter times a constant, then the averaging interval
1766 * is increased, otherwise it is decreased. A bit of hysteresis
1767 * helps calm the dance. Works best using burst mode.
1768 */
Denys Vlasenko547ee792012-03-05 10:18:00 +01001769 if (rc > 0 && G.offset_to_jitter_ratio <= POLLADJ_GATE) {
Denys Vlasenkobfc2a322010-01-01 18:12:06 +01001770 /* was += G.poll_exp but it is a bit
1771 * too optimistic for my taste at high poll_exp's */
1772 G.polladj_count += MINPOLL;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001773 if (G.polladj_count > POLLADJ_LIMIT) {
1774 G.polladj_count = 0;
1775 if (G.poll_exp < MAXPOLL) {
1776 G.poll_exp++;
1777 VERB3 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1778 G.discipline_jitter, G.poll_exp);
1779 }
1780 } else {
1781 VERB3 bb_error_msg("polladj: incr:%d", G.polladj_count);
1782 }
1783 } else {
1784 G.polladj_count -= G.poll_exp * 2;
Denys Vlasenko12628b72010-01-11 01:31:59 +01001785 if (G.polladj_count < -POLLADJ_LIMIT || G.poll_exp >= BIGPOLL) {
1786 poll_down:
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001787 G.polladj_count = 0;
1788 if (G.poll_exp > MINPOLL) {
Denys Vlasenko2e36eb82010-01-02 01:50:16 +01001789 llist_t *item;
1790
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001791 G.poll_exp--;
Denys Vlasenko2e36eb82010-01-02 01:50:16 +01001792 /* Correct p->next_action_time in each peer
1793 * which waits for sending, so that they send earlier.
1794 * Old pp->next_action_time are on the order
1795 * of t + (1 << old_poll_exp) + small_random,
1796 * we simply need to subtract ~half of that.
1797 */
1798 for (item = G.ntp_peers; item != NULL; item = item->link) {
1799 peer_t *pp = (peer_t *) item->data;
1800 if (pp->p_fd < 0)
1801 pp->next_action_time -= (1 << G.poll_exp);
1802 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001803 VERB3 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1804 G.discipline_jitter, G.poll_exp);
1805 }
1806 } else {
1807 VERB3 bb_error_msg("polladj: decr:%d", G.polladj_count);
1808 }
1809 }
1810 }
1811
1812 /* Decide when to send new query for this peer */
1813 interval = poll_interval(0);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001814
Denys Vlasenko4125a6b2012-06-11 11:41:46 +02001815 set_next_and_ret:
Denys Vlasenko4168fdd2010-01-04 00:19:13 +01001816 set_next(p, interval);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001817}
1818
1819#if ENABLE_FEATURE_NTPD_SERVER
Denys Vlasenko0b002812010-01-03 08:59:59 +01001820static NOINLINE void
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001821recv_and_process_client_pkt(void /*int fd*/)
1822{
1823 ssize_t size;
Cristian Ionescu-Idbohrn662972a2011-05-16 03:53:00 +02001824 //uint8_t version;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001825 len_and_sockaddr *to;
1826 struct sockaddr *from;
1827 msg_t msg;
1828 uint8_t query_status;
1829 l_fixedpt_t query_xmttime;
1830
Denys Vlasenko3e3a8d52012-04-01 16:31:04 +02001831 to = get_sock_lsa(G_listen_fd);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001832 from = xzalloc(to->len);
1833
Denys Vlasenko3e3a8d52012-04-01 16:31:04 +02001834 size = recv_from_to(G_listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001835 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1836 char *addr;
1837 if (size < 0) {
1838 if (errno == EAGAIN)
1839 goto bail;
1840 bb_perror_msg_and_die("recv");
1841 }
1842 addr = xmalloc_sockaddr2dotted_noport(from);
1843 bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
1844 free(addr);
1845 goto bail;
1846 }
1847
1848 query_status = msg.m_status;
1849 query_xmttime = msg.m_xmttime;
1850
1851 /* Build a reply packet */
1852 memset(&msg, 0, sizeof(msg));
Denys Vlasenko1ee5afd2010-01-02 15:57:07 +01001853 msg.m_status = G.stratum < MAXSTRAT ? G.ntp_status : LI_ALARM;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001854 msg.m_status |= (query_status & VERSION_MASK);
1855 msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
1856 MODE_SERVER : MODE_SYM_PAS;
1857 msg.m_stratum = G.stratum;
1858 msg.m_ppoll = G.poll_exp;
1859 msg.m_precision_exp = G_precision_exp;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001860 /* this time was obtained between poll() and recv() */
1861 msg.m_rectime = d_to_lfp(G.cur_time);
1862 msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
Denys Vlasenkod6782572010-10-04 01:20:44 +02001863 if (G.peer_cnt == 0) {
1864 /* we have no peers: "stratum 1 server" mode. reftime = our own time */
1865 G.reftime = G.cur_time;
1866 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001867 msg.m_reftime = d_to_lfp(G.reftime);
1868 msg.m_orgtime = query_xmttime;
1869 msg.m_rootdelay = d_to_sfp(G.rootdelay);
1870//simple code does not do this, fix simple code!
1871 msg.m_rootdisp = d_to_sfp(G.rootdisp);
Cristian Ionescu-Idbohrn662972a2011-05-16 03:53:00 +02001872 //version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001873 msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
1874
1875 /* We reply from the local address packet was sent to,
1876 * this makes to/from look swapped here: */
Denys Vlasenko3e3a8d52012-04-01 16:31:04 +02001877 do_sendto(G_listen_fd,
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001878 /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
1879 &msg, size);
1880
1881 bail:
1882 free(to);
1883 free(from);
1884}
1885#endif
1886
1887/* Upstream ntpd's options:
1888 *
1889 * -4 Force DNS resolution of host names to the IPv4 namespace.
1890 * -6 Force DNS resolution of host names to the IPv6 namespace.
1891 * -a Require cryptographic authentication for broadcast client,
1892 * multicast client and symmetric passive associations.
1893 * This is the default.
1894 * -A Do not require cryptographic authentication for broadcast client,
1895 * multicast client and symmetric passive associations.
1896 * This is almost never a good idea.
1897 * -b Enable the client to synchronize to broadcast servers.
1898 * -c conffile
1899 * Specify the name and path of the configuration file,
1900 * default /etc/ntp.conf
1901 * -d Specify debugging mode. This option may occur more than once,
1902 * with each occurrence indicating greater detail of display.
1903 * -D level
1904 * Specify debugging level directly.
1905 * -f driftfile
1906 * Specify the name and path of the frequency file.
1907 * This is the same operation as the "driftfile FILE"
1908 * configuration command.
1909 * -g Normally, ntpd exits with a message to the system log
1910 * if the offset exceeds the panic threshold, which is 1000 s
1911 * by default. This option allows the time to be set to any value
1912 * without restriction; however, this can happen only once.
1913 * If the threshold is exceeded after that, ntpd will exit
1914 * with a message to the system log. This option can be used
1915 * with the -q and -x options. See the tinker command for other options.
1916 * -i jaildir
1917 * Chroot the server to the directory jaildir. This option also implies
1918 * that the server attempts to drop root privileges at startup
1919 * (otherwise, chroot gives very little additional security).
1920 * You may need to also specify a -u option.
1921 * -k keyfile
1922 * Specify the name and path of the symmetric key file,
1923 * default /etc/ntp/keys. This is the same operation
1924 * as the "keys FILE" configuration command.
1925 * -l logfile
1926 * Specify the name and path of the log file. The default
1927 * is the system log file. This is the same operation as
1928 * the "logfile FILE" configuration command.
1929 * -L Do not listen to virtual IPs. The default is to listen.
1930 * -n Don't fork.
1931 * -N To the extent permitted by the operating system,
1932 * run the ntpd at the highest priority.
1933 * -p pidfile
1934 * Specify the name and path of the file used to record the ntpd
1935 * process ID. This is the same operation as the "pidfile FILE"
1936 * configuration command.
1937 * -P priority
1938 * To the extent permitted by the operating system,
1939 * run the ntpd at the specified priority.
1940 * -q Exit the ntpd just after the first time the clock is set.
1941 * This behavior mimics that of the ntpdate program, which is
1942 * to be retired. The -g and -x options can be used with this option.
1943 * Note: The kernel time discipline is disabled with this option.
1944 * -r broadcastdelay
1945 * Specify the default propagation delay from the broadcast/multicast
1946 * server to this client. This is necessary only if the delay
1947 * cannot be computed automatically by the protocol.
1948 * -s statsdir
1949 * Specify the directory path for files created by the statistics
1950 * facility. This is the same operation as the "statsdir DIR"
1951 * configuration command.
1952 * -t key
1953 * Add a key number to the trusted key list. This option can occur
1954 * more than once.
1955 * -u user[:group]
1956 * Specify a user, and optionally a group, to switch to.
1957 * -v variable
1958 * -V variable
1959 * Add a system variable listed by default.
1960 * -x Normally, the time is slewed if the offset is less than the step
1961 * threshold, which is 128 ms by default, and stepped if above
1962 * the threshold. This option sets the threshold to 600 s, which is
1963 * well within the accuracy window to set the clock manually.
1964 * Note: since the slew rate of typical Unix kernels is limited
1965 * to 0.5 ms/s, each second of adjustment requires an amortization
1966 * interval of 2000 s. Thus, an adjustment as much as 600 s
1967 * will take almost 14 days to complete. This option can be used
1968 * with the -g and -q options. See the tinker command for other options.
1969 * Note: The kernel time discipline is disabled with this option.
1970 */
1971
1972/* By doing init in a separate function we decrease stack usage
1973 * in main loop.
1974 */
1975static NOINLINE void ntp_init(char **argv)
1976{
1977 unsigned opts;
1978 llist_t *peers;
1979
1980 srandom(getpid());
1981
1982 if (getuid())
1983 bb_error_msg_and_die(bb_msg_you_must_be_root);
1984
1985 /* Set some globals */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001986 G.stratum = MAXSTRAT;
Denys Vlasenko0b002812010-01-03 08:59:59 +01001987 if (BURSTPOLL != 0)
1988 G.poll_exp = BURSTPOLL; /* speeds up initial sync */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001989 G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001990
1991 /* Parse options */
1992 peers = NULL;
Denys Vlasenko074e8dc2010-01-04 23:58:13 +01001993 opt_complementary = "dd:p::wn"; /* d: counter; p: list; -w implies -n */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001994 opts = getopt32(argv,
1995 "nqNx" /* compat */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001996 "wp:S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01001997 "d" /* compat */
1998 "46aAbgL", /* compat, ignored */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01001999 &peers, &G.script_name, &G.verbose);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002000 if (!(opts & (OPT_p|OPT_l)))
2001 bb_show_usage();
2002// if (opts & OPT_x) /* disable stepping, only slew is allowed */
2003// G.time_was_stepped = 1;
Denys Vlasenkod6782572010-10-04 01:20:44 +02002004 if (peers) {
2005 while (peers)
2006 add_peers(llist_pop(&peers));
2007 } else {
2008 /* -l but no peers: "stratum 1 server" mode */
2009 G.stratum = 1;
2010 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002011 if (!(opts & OPT_n)) {
2012 bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
2013 logmode = LOGMODE_NONE;
2014 }
2015#if ENABLE_FEATURE_NTPD_SERVER
Denys Vlasenko3e3a8d52012-04-01 16:31:04 +02002016 G_listen_fd = -1;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002017 if (opts & OPT_l) {
Denys Vlasenko3e3a8d52012-04-01 16:31:04 +02002018 G_listen_fd = create_and_bind_dgram_or_die(NULL, 123);
2019 socket_want_pktinfo(G_listen_fd);
2020 setsockopt(G_listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002021 }
2022#endif
2023 /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
2024 if (opts & OPT_N)
2025 setpriority(PRIO_PROCESS, 0, -15);
2026
Denys Vlasenko74c992a2010-08-27 02:15:01 +02002027 /* If network is up, syncronization occurs in ~10 seconds.
Denys Vlasenko8e23faf2011-04-07 01:45:20 +02002028 * We give "ntpd -q" 10 seconds to get first reply,
2029 * then another 50 seconds to finish syncing.
Denys Vlasenko74c992a2010-08-27 02:15:01 +02002030 *
2031 * I tested ntpd 4.2.6p1 and apparently it never exits
2032 * (will try forever), but it does not feel right.
2033 * The goal of -q is to act like ntpdate: set time
2034 * after a reasonably small period of polling, or fail.
2035 */
Denys Vlasenko8e23faf2011-04-07 01:45:20 +02002036 if (opts & OPT_q) {
2037 option_mask32 |= OPT_qq;
2038 alarm(10);
2039 }
Denys Vlasenko74c992a2010-08-27 02:15:01 +02002040
2041 bb_signals(0
2042 | (1 << SIGTERM)
2043 | (1 << SIGINT)
2044 | (1 << SIGALRM)
2045 , record_signo
2046 );
2047 bb_signals(0
2048 | (1 << SIGPIPE)
2049 | (1 << SIGCHLD)
2050 , SIG_IGN
2051 );
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002052}
2053
2054int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
2055int ntpd_main(int argc UNUSED_PARAM, char **argv)
2056{
Denys Vlasenko0b002812010-01-03 08:59:59 +01002057#undef G
2058 struct globals G;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002059 struct pollfd *pfd;
2060 peer_t **idx2peer;
Denys Vlasenko0b002812010-01-03 08:59:59 +01002061 unsigned cnt;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002062
Denys Vlasenko0b002812010-01-03 08:59:59 +01002063 memset(&G, 0, sizeof(G));
2064 SET_PTR_TO_GLOBALS(&G);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002065
2066 ntp_init(argv);
2067
Denys Vlasenko0b002812010-01-03 08:59:59 +01002068 /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
2069 cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
2070 idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
2071 pfd = xzalloc(sizeof(pfd[0]) * cnt);
2072
Leonid Lisovskiy894ef602010-10-20 22:36:51 +02002073 /* Countdown: we never sync before we sent INITIAL_SAMPLES+1
Denys Vlasenko65d722b2010-01-11 02:14:04 +01002074 * packets to each peer.
Denys Vlasenko0b002812010-01-03 08:59:59 +01002075 * NB: if some peer is not responding, we may end up sending
2076 * fewer packets to it and more to other peers.
Leonid Lisovskiy894ef602010-10-20 22:36:51 +02002077 * NB2: sync usually happens using INITIAL_SAMPLES packets,
Denys Vlasenko65d722b2010-01-11 02:14:04 +01002078 * since last reply does not come back instantaneously.
Denys Vlasenko0b002812010-01-03 08:59:59 +01002079 */
Leonid Lisovskiy894ef602010-10-20 22:36:51 +02002080 cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002081
2082 while (!bb_got_signal) {
2083 llist_t *item;
2084 unsigned i, j;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002085 int nfds, timeout;
Denys Vlasenko0b002812010-01-03 08:59:59 +01002086 double nextaction;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002087
2088 /* Nothing between here and poll() blocks for any significant time */
2089
Denys Vlasenko0b002812010-01-03 08:59:59 +01002090 nextaction = G.cur_time + 3600;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002091
2092 i = 0;
2093#if ENABLE_FEATURE_NTPD_SERVER
Denys Vlasenko3e3a8d52012-04-01 16:31:04 +02002094 if (G_listen_fd != -1) {
2095 pfd[0].fd = G_listen_fd;
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002096 pfd[0].events = POLLIN;
2097 i++;
2098 }
2099#endif
2100 /* Pass over peer list, send requests, time out on receives */
Denys Vlasenko0b002812010-01-03 08:59:59 +01002101 for (item = G.ntp_peers; item != NULL; item = item->link) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002102 peer_t *p = (peer_t *) item->data;
2103
Denys Vlasenko0b002812010-01-03 08:59:59 +01002104 if (p->next_action_time <= G.cur_time) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002105 if (p->p_fd == -1) {
2106 /* Time to send new req */
Denys Vlasenko0b002812010-01-03 08:59:59 +01002107 if (--cnt == 0) {
2108 G.initial_poll_complete = 1;
2109 }
2110 send_query_to_peer(p);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002111 } else {
2112 /* Timed out waiting for reply */
2113 close(p->p_fd);
2114 p->p_fd = -1;
Denys Vlasenko0b002812010-01-03 08:59:59 +01002115 timeout = poll_interval(-2); /* -2: try a bit sooner */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002116 bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
Denys Vlasenko0b002812010-01-03 08:59:59 +01002117 p->p_dotted, p->reachable_bits, timeout);
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002118 set_next(p, timeout);
2119 }
2120 }
2121
2122 if (p->next_action_time < nextaction)
2123 nextaction = p->next_action_time;
2124
2125 if (p->p_fd >= 0) {
2126 /* Wait for reply from this peer */
2127 pfd[i].fd = p->p_fd;
2128 pfd[i].events = POLLIN;
2129 idx2peer[i] = p;
2130 i++;
2131 }
2132 }
2133
Denys Vlasenko0b002812010-01-03 08:59:59 +01002134 timeout = nextaction - G.cur_time;
2135 if (timeout < 0)
2136 timeout = 0;
2137 timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002138
2139 /* Here we may block */
Denys Vlasenkoe8ce2852012-03-03 12:15:46 +01002140 VERB2 {
Denys Vlasenko3e3a8d52012-04-01 16:31:04 +02002141 if (i > (ENABLE_FEATURE_NTPD_SERVER && G_listen_fd != -1)) {
Denys Vlasenkoe8ce2852012-03-03 12:15:46 +01002142 /* We wait for at least one reply.
2143 * Poll for it, without wasting time for message.
2144 * Since replies often come under 1 second, this also
2145 * reduces clutter in logs.
2146 */
2147 nfds = poll(pfd, i, 1000);
2148 if (nfds != 0)
2149 goto did_poll;
2150 if (--timeout <= 0)
2151 goto did_poll;
2152 }
Denys Vlasenko8be49c32012-03-06 19:16:50 +01002153 bb_error_msg("poll:%us sockets:%u interval:%us", timeout, i, 1 << G.poll_exp);
Denys Vlasenkoe8ce2852012-03-03 12:15:46 +01002154 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002155 nfds = poll(pfd, i, timeout * 1000);
Denys Vlasenkoe8ce2852012-03-03 12:15:46 +01002156 did_poll:
Denys Vlasenko0b002812010-01-03 08:59:59 +01002157 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002158 if (nfds <= 0) {
Denys Vlasenko24928ff2010-01-25 19:30:16 +01002159 if (G.script_name && G.cur_time - G.last_script_run > 11*60) {
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002160 /* Useful for updating battery-backed RTC and such */
Denys Vlasenko12628b72010-01-11 01:31:59 +01002161 run_script("periodic", G.last_update_offset);
Denys Vlasenko06667f22010-01-06 13:05:08 +01002162 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002163 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002164 continue;
Denys Vlasenkoede737b2010-01-06 12:27:47 +01002165 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002166
2167 /* Process any received packets */
2168 j = 0;
2169#if ENABLE_FEATURE_NTPD_SERVER
Denys Vlasenko0b002812010-01-03 08:59:59 +01002170 if (G.listen_fd != -1) {
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002171 if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2172 nfds--;
Denys Vlasenko0b002812010-01-03 08:59:59 +01002173 recv_and_process_client_pkt(/*G.listen_fd*/);
2174 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002175 }
2176 j = 1;
2177 }
2178#endif
2179 for (; nfds != 0 && j < i; j++) {
2180 if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
Denys Vlasenko8e23faf2011-04-07 01:45:20 +02002181 /*
2182 * At init, alarm was set to 10 sec.
2183 * Now we did get a reply.
2184 * Increase timeout to 50 seconds to finish syncing.
2185 */
2186 if (option_mask32 & OPT_qq) {
2187 option_mask32 &= ~OPT_qq;
2188 alarm(50);
2189 }
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002190 nfds--;
2191 recv_and_process_peer_pkt(idx2peer[j]);
Denys Vlasenko0b002812010-01-03 08:59:59 +01002192 gettime1900d(); /* sets G.cur_time */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002193 }
2194 }
2195 } /* while (!bb_got_signal) */
2196
2197 kill_myself_with_sig(bb_got_signal);
2198}
2199
2200
2201
2202
2203
2204
2205/*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2206
2207/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2208
2209#if 0
2210static double
2211direct_freq(double fp_offset)
2212{
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002213#ifdef KERNEL_PLL
2214 /*
2215 * If the kernel is enabled, we need the residual offset to
2216 * calculate the frequency correction.
2217 */
2218 if (pll_control && kern_enable) {
2219 memset(&ntv, 0, sizeof(ntv));
2220 ntp_adjtime(&ntv);
2221#ifdef STA_NANO
2222 clock_offset = ntv.offset / 1e9;
2223#else /* STA_NANO */
2224 clock_offset = ntv.offset / 1e6;
2225#endif /* STA_NANO */
2226 drift_comp = FREQTOD(ntv.freq);
2227 }
2228#endif /* KERNEL_PLL */
2229 set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2230 wander_resid = 0;
2231 return drift_comp;
2232}
2233
2234static void
Denys Vlasenkofb132e42010-10-29 11:46:52 +02002235set_freq(double freq) /* frequency update */
Denys Vlasenkodd6673b2010-01-01 16:46:17 +01002236{
2237 char tbuf[80];
2238
2239 drift_comp = freq;
2240
2241#ifdef KERNEL_PLL
2242 /*
2243 * If the kernel is enabled, update the kernel frequency.
2244 */
2245 if (pll_control && kern_enable) {
2246 memset(&ntv, 0, sizeof(ntv));
2247 ntv.modes = MOD_FREQUENCY;
2248 ntv.freq = DTOFREQ(drift_comp);
2249 ntp_adjtime(&ntv);
2250 snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2251 report_event(EVNT_FSET, NULL, tbuf);
2252 } else {
2253 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2254 report_event(EVNT_FSET, NULL, tbuf);
2255 }
2256#else /* KERNEL_PLL */
2257 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2258 report_event(EVNT_FSET, NULL, tbuf);
2259#endif /* KERNEL_PLL */
2260}
2261
2262...
2263...
2264...
2265
2266#ifdef KERNEL_PLL
2267 /*
2268 * This code segment works when clock adjustments are made using
2269 * precision time kernel support and the ntp_adjtime() system
2270 * call. This support is available in Solaris 2.6 and later,
2271 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2272 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2273 * DECstation 5000/240 and Alpha AXP, additional kernel
2274 * modifications provide a true microsecond clock and nanosecond
2275 * clock, respectively.
2276 *
2277 * Important note: The kernel discipline is used only if the
2278 * step threshold is less than 0.5 s, as anything higher can
2279 * lead to overflow problems. This might occur if some misguided
2280 * lad set the step threshold to something ridiculous.
2281 */
2282 if (pll_control && kern_enable) {
2283
2284#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2285
2286 /*
2287 * We initialize the structure for the ntp_adjtime()
2288 * system call. We have to convert everything to
2289 * microseconds or nanoseconds first. Do not update the
2290 * system variables if the ext_enable flag is set. In
2291 * this case, the external clock driver will update the
2292 * variables, which will be read later by the local
2293 * clock driver. Afterwards, remember the time and
2294 * frequency offsets for jitter and stability values and
2295 * to update the frequency file.
2296 */
2297 memset(&ntv, 0, sizeof(ntv));
2298 if (ext_enable) {
2299 ntv.modes = MOD_STATUS;
2300 } else {
2301#ifdef STA_NANO
2302 ntv.modes = MOD_BITS | MOD_NANO;
2303#else /* STA_NANO */
2304 ntv.modes = MOD_BITS;
2305#endif /* STA_NANO */
2306 if (clock_offset < 0)
2307 dtemp = -.5;
2308 else
2309 dtemp = .5;
2310#ifdef STA_NANO
2311 ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2312 ntv.constant = sys_poll;
2313#else /* STA_NANO */
2314 ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2315 ntv.constant = sys_poll - 4;
2316#endif /* STA_NANO */
2317 ntv.esterror = (u_int32)(clock_jitter * 1e6);
2318 ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2319 ntv.status = STA_PLL;
2320
2321 /*
2322 * Enable/disable the PPS if requested.
2323 */
2324 if (pps_enable) {
2325 if (!(pll_status & STA_PPSTIME))
2326 report_event(EVNT_KERN,
2327 NULL, "PPS enabled");
2328 ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2329 } else {
2330 if (pll_status & STA_PPSTIME)
2331 report_event(EVNT_KERN,
2332 NULL, "PPS disabled");
2333 ntv.status &= ~(STA_PPSTIME |
2334 STA_PPSFREQ);
2335 }
2336 if (sys_leap == LEAP_ADDSECOND)
2337 ntv.status |= STA_INS;
2338 else if (sys_leap == LEAP_DELSECOND)
2339 ntv.status |= STA_DEL;
2340 }
2341
2342 /*
2343 * Pass the stuff to the kernel. If it squeals, turn off
2344 * the pps. In any case, fetch the kernel offset,
2345 * frequency and jitter.
2346 */
2347 if (ntp_adjtime(&ntv) == TIME_ERROR) {
2348 if (!(ntv.status & STA_PPSSIGNAL))
2349 report_event(EVNT_KERN, NULL,
2350 "PPS no signal");
2351 }
2352 pll_status = ntv.status;
2353#ifdef STA_NANO
2354 clock_offset = ntv.offset / 1e9;
2355#else /* STA_NANO */
2356 clock_offset = ntv.offset / 1e6;
2357#endif /* STA_NANO */
2358 clock_frequency = FREQTOD(ntv.freq);
2359
2360 /*
2361 * If the kernel PPS is lit, monitor its performance.
2362 */
2363 if (ntv.status & STA_PPSTIME) {
2364#ifdef STA_NANO
2365 clock_jitter = ntv.jitter / 1e9;
2366#else /* STA_NANO */
2367 clock_jitter = ntv.jitter / 1e6;
2368#endif /* STA_NANO */
2369 }
2370
2371#if defined(STA_NANO) && NTP_API == 4
2372 /*
2373 * If the TAI changes, update the kernel TAI.
2374 */
2375 if (loop_tai != sys_tai) {
2376 loop_tai = sys_tai;
2377 ntv.modes = MOD_TAI;
2378 ntv.constant = sys_tai;
2379 ntp_adjtime(&ntv);
2380 }
2381#endif /* STA_NANO */
2382 }
2383#endif /* KERNEL_PLL */
2384#endif