blob: 17f7bcff1e02bd6ff97c90943498557ea1a26c11 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/export.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
40#include <linux/kallsyms.h>
41#include <linux/interrupt.h>
42#include <linux/tick.h>
43#include <linux/seq_file.h>
44#include <linux/err.h>
45#include <linux/debugobjects.h>
46#include <linux/sched.h>
47#include <linux/sched/sysctl.h>
48#include <linux/sched/rt.h>
49#include <linux/sched/deadline.h>
50#include <linux/timer.h>
51#include <linux/freezer.h>
52
53#include <asm/uaccess.h>
54
55#include <trace/events/timer.h>
56
57#include "tick-internal.h"
58
59/*
60 * The timer bases:
61 *
62 * There are more clockids than hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68{
69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 }
94};
95
96static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 /* Make sure we catch unsupported clockids */
98 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
99
100 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
101 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
102 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
103 [CLOCK_TAI] = HRTIMER_BASE_TAI,
104};
105
106static inline int hrtimer_clockid_to_base(clockid_t clock_id)
107{
108 int base = hrtimer_clock_to_base_table[clock_id];
109 BUG_ON(base == HRTIMER_MAX_CLOCK_BASES);
110 return base;
111}
112
113/*
114 * Functions and macros which are different for UP/SMP systems are kept in a
115 * single place
116 */
117#ifdef CONFIG_SMP
118
119/*
120 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
121 * such that hrtimer_callback_running() can unconditionally dereference
122 * timer->base->cpu_base
123 */
124static struct hrtimer_cpu_base migration_cpu_base = {
125 .seq = SEQCNT_ZERO(migration_cpu_base),
126 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
127};
128
129#define migration_base migration_cpu_base.clock_base[0]
130
131/*
132 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
133 * means that all timers which are tied to this base via timer->base are
134 * locked, and the base itself is locked too.
135 *
136 * So __run_timers/migrate_timers can safely modify all timers which could
137 * be found on the lists/queues.
138 *
139 * When the timer's base is locked, and the timer removed from list, it is
140 * possible to set timer->base = &migration_base and drop the lock: the timer
141 * remains locked.
142 */
143static
144struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
145 unsigned long *flags)
146{
147 struct hrtimer_clock_base *base;
148
149 for (;;) {
150 base = timer->base;
151 if (likely(base != &migration_base)) {
152 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
153 if (likely(base == timer->base))
154 return base;
155 /* The timer has migrated to another CPU: */
156 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
157 }
158 cpu_relax();
159 }
160}
161
162/*
163 * With HIGHRES=y we do not migrate the timer when it is expiring
164 * before the next event on the target cpu because we cannot reprogram
165 * the target cpu hardware and we would cause it to fire late.
166 *
167 * Called with cpu_base->lock of target cpu held.
168 */
169static int
170hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
171{
172#ifdef CONFIG_HIGH_RES_TIMERS
173 ktime_t expires;
174
175 if (!new_base->cpu_base->hres_active)
176 return 0;
177
178 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
179 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
180#else
181 return 0;
182#endif
183}
184
185#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
186static inline
187struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
188 int pinned)
189{
190 if (pinned || !base->migration_enabled)
191 return base;
192 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
193}
194#else
195static inline
196struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
197 int pinned)
198{
199 return base;
200}
201#endif
202
203/*
204 * We switch the timer base to a power-optimized selected CPU target,
205 * if:
206 * - NO_HZ_COMMON is enabled
207 * - timer migration is enabled
208 * - the timer callback is not running
209 * - the timer is not the first expiring timer on the new target
210 *
211 * If one of the above requirements is not fulfilled we move the timer
212 * to the current CPU or leave it on the previously assigned CPU if
213 * the timer callback is currently running.
214 */
215static inline struct hrtimer_clock_base *
216switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 int pinned)
218{
219 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
220 struct hrtimer_clock_base *new_base;
221 int basenum = base->index;
222
223 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 new_cpu_base = get_target_base(this_cpu_base, pinned);
225again:
226 new_base = &new_cpu_base->clock_base[basenum];
227
228 if (base != new_base) {
229 /*
230 * We are trying to move timer to new_base.
231 * However we can't change timer's base while it is running,
232 * so we keep it on the same CPU. No hassle vs. reprogramming
233 * the event source in the high resolution case. The softirq
234 * code will take care of this when the timer function has
235 * completed. There is no conflict as we hold the lock until
236 * the timer is enqueued.
237 */
238 if (unlikely(hrtimer_callback_running(timer)))
239 return base;
240
241 /* See the comment in lock_hrtimer_base() */
242 timer->base = &migration_base;
243 raw_spin_unlock(&base->cpu_base->lock);
244 raw_spin_lock(&new_base->cpu_base->lock);
245
246 if (new_cpu_base != this_cpu_base &&
247 hrtimer_check_target(timer, new_base)) {
248 raw_spin_unlock(&new_base->cpu_base->lock);
249 raw_spin_lock(&base->cpu_base->lock);
250 new_cpu_base = this_cpu_base;
251 timer->base = base;
252 goto again;
253 }
254 timer->base = new_base;
255 } else {
256 if (new_cpu_base != this_cpu_base &&
257 hrtimer_check_target(timer, new_base)) {
258 new_cpu_base = this_cpu_base;
259 goto again;
260 }
261 }
262 return new_base;
263}
264
265#else /* CONFIG_SMP */
266
267static inline struct hrtimer_clock_base *
268lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269{
270 struct hrtimer_clock_base *base = timer->base;
271
272 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
273
274 return base;
275}
276
277# define switch_hrtimer_base(t, b, p) (b)
278
279#endif /* !CONFIG_SMP */
280
281/*
282 * Functions for the union type storage format of ktime_t which are
283 * too large for inlining:
284 */
285#if BITS_PER_LONG < 64
286/*
287 * Divide a ktime value by a nanosecond value
288 */
289s64 __ktime_divns(const ktime_t kt, s64 div)
290{
291 int sft = 0;
292 s64 dclc;
293 u64 tmp;
294
295 dclc = ktime_to_ns(kt);
296 tmp = dclc < 0 ? -dclc : dclc;
297
298 /* Make sure the divisor is less than 2^32: */
299 while (div >> 32) {
300 sft++;
301 div >>= 1;
302 }
303 tmp >>= sft;
304 do_div(tmp, (unsigned long) div);
305 return dclc < 0 ? -tmp : tmp;
306}
307EXPORT_SYMBOL_GPL(__ktime_divns);
308#endif /* BITS_PER_LONG >= 64 */
309
310/*
311 * Add two ktime values and do a safety check for overflow:
312 */
313ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314{
315 ktime_t res = ktime_add(lhs, rhs);
316
317 /*
318 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 * return to user space in a timespec:
320 */
321 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
322 res = ktime_set(KTIME_SEC_MAX, 0);
323
324 return res;
325}
326
327EXPORT_SYMBOL_GPL(ktime_add_safe);
328
329#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330
331static struct debug_obj_descr hrtimer_debug_descr;
332
333static void *hrtimer_debug_hint(void *addr)
334{
335 return ((struct hrtimer *) addr)->function;
336}
337
338/*
339 * fixup_init is called when:
340 * - an active object is initialized
341 */
342static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
343{
344 struct hrtimer *timer = addr;
345
346 switch (state) {
347 case ODEBUG_STATE_ACTIVE:
348 hrtimer_cancel(timer);
349 debug_object_init(timer, &hrtimer_debug_descr);
350 return 1;
351 default:
352 return 0;
353 }
354}
355
356/*
357 * fixup_activate is called when:
358 * - an active object is activated
359 * - an unknown object is activated (might be a statically initialized object)
360 */
361static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
362{
363 switch (state) {
364
365 case ODEBUG_STATE_NOTAVAILABLE:
366 WARN_ON_ONCE(1);
367 return 0;
368
369 case ODEBUG_STATE_ACTIVE:
370 WARN_ON(1);
371
372 default:
373 return 0;
374 }
375}
376
377/*
378 * fixup_free is called when:
379 * - an active object is freed
380 */
381static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
382{
383 struct hrtimer *timer = addr;
384
385 switch (state) {
386 case ODEBUG_STATE_ACTIVE:
387 hrtimer_cancel(timer);
388 debug_object_free(timer, &hrtimer_debug_descr);
389 return 1;
390 default:
391 return 0;
392 }
393}
394
395static struct debug_obj_descr hrtimer_debug_descr = {
396 .name = "hrtimer",
397 .debug_hint = hrtimer_debug_hint,
398 .fixup_init = hrtimer_fixup_init,
399 .fixup_activate = hrtimer_fixup_activate,
400 .fixup_free = hrtimer_fixup_free,
401};
402
403static inline void debug_hrtimer_init(struct hrtimer *timer)
404{
405 debug_object_init(timer, &hrtimer_debug_descr);
406}
407
408static inline void debug_hrtimer_activate(struct hrtimer *timer)
409{
410 debug_object_activate(timer, &hrtimer_debug_descr);
411}
412
413static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
414{
415 debug_object_deactivate(timer, &hrtimer_debug_descr);
416}
417
418static inline void debug_hrtimer_free(struct hrtimer *timer)
419{
420 debug_object_free(timer, &hrtimer_debug_descr);
421}
422
423static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
424 enum hrtimer_mode mode);
425
426void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
427 enum hrtimer_mode mode)
428{
429 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
430 __hrtimer_init(timer, clock_id, mode);
431}
432EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
433
434void destroy_hrtimer_on_stack(struct hrtimer *timer)
435{
436 debug_object_free(timer, &hrtimer_debug_descr);
437}
438
439#else
440static inline void debug_hrtimer_init(struct hrtimer *timer) { }
441static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
442static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
443#endif
444
445static inline void
446debug_init(struct hrtimer *timer, clockid_t clockid,
447 enum hrtimer_mode mode)
448{
449 debug_hrtimer_init(timer);
450 trace_hrtimer_init(timer, clockid, mode);
451}
452
453static inline void debug_activate(struct hrtimer *timer)
454{
455 debug_hrtimer_activate(timer);
456 trace_hrtimer_start(timer);
457}
458
459static inline void debug_deactivate(struct hrtimer *timer)
460{
461 debug_hrtimer_deactivate(timer);
462 trace_hrtimer_cancel(timer);
463}
464
465#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
466static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
467 struct hrtimer *timer)
468{
469#ifdef CONFIG_HIGH_RES_TIMERS
470 cpu_base->next_timer = timer;
471#endif
472}
473
474static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
475{
476 struct hrtimer_clock_base *base = cpu_base->clock_base;
477 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
478 unsigned int active = cpu_base->active_bases;
479
480 hrtimer_update_next_timer(cpu_base, NULL);
481 for (; active; base++, active >>= 1) {
482 struct timerqueue_node *next;
483 struct hrtimer *timer;
484
485 if (!(active & 0x01))
486 continue;
487
488 next = timerqueue_getnext(&base->active);
489 timer = container_of(next, struct hrtimer, node);
490 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
491 if (expires.tv64 < expires_next.tv64) {
492 expires_next = expires;
493 hrtimer_update_next_timer(cpu_base, timer);
494 }
495 }
496 /*
497 * clock_was_set() might have changed base->offset of any of
498 * the clock bases so the result might be negative. Fix it up
499 * to prevent a false positive in clockevents_program_event().
500 */
501 if (expires_next.tv64 < 0)
502 expires_next.tv64 = 0;
503 return expires_next;
504}
505#endif
506
507static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
508{
509 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
510 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
511 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
512
513 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
514 offs_real, offs_boot, offs_tai);
515}
516
517/* High resolution timer related functions */
518#ifdef CONFIG_HIGH_RES_TIMERS
519
520/*
521 * High resolution timer enabled ?
522 */
523static int hrtimer_hres_enabled __read_mostly = 1;
524unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
525EXPORT_SYMBOL_GPL(hrtimer_resolution);
526
527/*
528 * Enable / Disable high resolution mode
529 */
530static int __init setup_hrtimer_hres(char *str)
531{
532 if (!strcmp(str, "off"))
533 hrtimer_hres_enabled = 0;
534 else if (!strcmp(str, "on"))
535 hrtimer_hres_enabled = 1;
536 else
537 return 0;
538 return 1;
539}
540
541__setup("highres=", setup_hrtimer_hres);
542
543/*
544 * hrtimer_high_res_enabled - query, if the highres mode is enabled
545 */
546static inline int hrtimer_is_hres_enabled(void)
547{
548 return hrtimer_hres_enabled;
549}
550
551/*
552 * Is the high resolution mode active ?
553 */
554static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
555{
556 return cpu_base->hres_active;
557}
558
559static inline int hrtimer_hres_active(void)
560{
561 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
562}
563
564/*
565 * Reprogram the event source with checking both queues for the
566 * next event
567 * Called with interrupts disabled and base->lock held
568 */
569static void
570hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
571{
572 ktime_t expires_next;
573
574 if (!cpu_base->hres_active)
575 return;
576
577 expires_next = __hrtimer_get_next_event(cpu_base);
578
579 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
580 return;
581
582 cpu_base->expires_next.tv64 = expires_next.tv64;
583
584 /*
585 * If a hang was detected in the last timer interrupt then we
586 * leave the hang delay active in the hardware. We want the
587 * system to make progress. That also prevents the following
588 * scenario:
589 * T1 expires 50ms from now
590 * T2 expires 5s from now
591 *
592 * T1 is removed, so this code is called and would reprogram
593 * the hardware to 5s from now. Any hrtimer_start after that
594 * will not reprogram the hardware due to hang_detected being
595 * set. So we'd effectivly block all timers until the T2 event
596 * fires.
597 */
598 if (cpu_base->hang_detected)
599 return;
600
601 tick_program_event(cpu_base->expires_next, 1);
602}
603
604/*
605 * When a timer is enqueued and expires earlier than the already enqueued
606 * timers, we have to check, whether it expires earlier than the timer for
607 * which the clock event device was armed.
608 *
609 * Called with interrupts disabled and base->cpu_base.lock held
610 */
611static void hrtimer_reprogram(struct hrtimer *timer,
612 struct hrtimer_clock_base *base)
613{
614 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
615 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
616
617 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
618
619 /*
620 * If the timer is not on the current cpu, we cannot reprogram
621 * the other cpus clock event device.
622 */
623 if (base->cpu_base != cpu_base)
624 return;
625
626 /*
627 * If the hrtimer interrupt is running, then it will
628 * reevaluate the clock bases and reprogram the clock event
629 * device. The callbacks are always executed in hard interrupt
630 * context so we don't need an extra check for a running
631 * callback.
632 */
633 if (cpu_base->in_hrtirq)
634 return;
635
636 /*
637 * CLOCK_REALTIME timer might be requested with an absolute
638 * expiry time which is less than base->offset. Set it to 0.
639 */
640 if (expires.tv64 < 0)
641 expires.tv64 = 0;
642
643 if (expires.tv64 >= cpu_base->expires_next.tv64)
644 return;
645
646 /* Update the pointer to the next expiring timer */
647 cpu_base->next_timer = timer;
648
649 /*
650 * If a hang was detected in the last timer interrupt then we
651 * do not schedule a timer which is earlier than the expiry
652 * which we enforced in the hang detection. We want the system
653 * to make progress.
654 */
655 if (cpu_base->hang_detected)
656 return;
657
658 /*
659 * Program the timer hardware. We enforce the expiry for
660 * events which are already in the past.
661 */
662 cpu_base->expires_next = expires;
663 tick_program_event(expires, 1);
664}
665
666/*
667 * Initialize the high resolution related parts of cpu_base
668 */
669static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
670{
671 base->expires_next.tv64 = KTIME_MAX;
672 base->hres_active = 0;
673}
674
675/*
676 * Retrigger next event is called after clock was set
677 *
678 * Called with interrupts disabled via on_each_cpu()
679 */
680static void retrigger_next_event(void *arg)
681{
682 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
683
684 if (!base->hres_active)
685 return;
686
687 raw_spin_lock(&base->lock);
688 hrtimer_update_base(base);
689 hrtimer_force_reprogram(base, 0);
690 raw_spin_unlock(&base->lock);
691}
692
693/*
694 * Switch to high resolution mode
695 */
696static void hrtimer_switch_to_hres(void)
697{
698 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
699
700 if (tick_init_highres()) {
701 printk(KERN_WARNING "Could not switch to high resolution "
702 "mode on CPU %d\n", base->cpu);
703 return;
704 }
705 base->hres_active = 1;
706 hrtimer_resolution = HIGH_RES_NSEC;
707
708 tick_setup_sched_timer();
709 /* "Retrigger" the interrupt to get things going */
710 retrigger_next_event(NULL);
711}
712
713static void clock_was_set_work(struct work_struct *work)
714{
715 clock_was_set();
716}
717
718static DECLARE_WORK(hrtimer_work, clock_was_set_work);
719
720/*
721 * Called from timekeeping and resume code to reprogramm the hrtimer
722 * interrupt device on all cpus.
723 */
724void clock_was_set_delayed(void)
725{
726 schedule_work(&hrtimer_work);
727}
728
729#else
730
731static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
732static inline int hrtimer_hres_active(void) { return 0; }
733static inline int hrtimer_is_hres_enabled(void) { return 0; }
734static inline void hrtimer_switch_to_hres(void) { }
735static inline void
736hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
737static inline int hrtimer_reprogram(struct hrtimer *timer,
738 struct hrtimer_clock_base *base)
739{
740 return 0;
741}
742static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
743static inline void retrigger_next_event(void *arg) { }
744
745#endif /* CONFIG_HIGH_RES_TIMERS */
746
747/*
748 * Clock realtime was set
749 *
750 * Change the offset of the realtime clock vs. the monotonic
751 * clock.
752 *
753 * We might have to reprogram the high resolution timer interrupt. On
754 * SMP we call the architecture specific code to retrigger _all_ high
755 * resolution timer interrupts. On UP we just disable interrupts and
756 * call the high resolution interrupt code.
757 */
758void clock_was_set(void)
759{
760#ifdef CONFIG_HIGH_RES_TIMERS
761 /* Retrigger the CPU local events everywhere */
762 on_each_cpu(retrigger_next_event, NULL, 1);
763#endif
764 timerfd_clock_was_set();
765}
766
767/*
768 * During resume we might have to reprogram the high resolution timer
769 * interrupt on all online CPUs. However, all other CPUs will be
770 * stopped with IRQs interrupts disabled so the clock_was_set() call
771 * must be deferred.
772 */
773void hrtimers_resume(void)
774{
775 WARN_ONCE(!irqs_disabled(),
776 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
777
778 /* Retrigger on the local CPU */
779 retrigger_next_event(NULL);
780 /* And schedule a retrigger for all others */
781 clock_was_set_delayed();
782}
783
784static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
785{
786#ifdef CONFIG_TIMER_STATS
787 if (timer->start_site)
788 return;
789 timer->start_site = __builtin_return_address(0);
790 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
791 timer->start_pid = current->pid;
792#endif
793}
794
795static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
796{
797#ifdef CONFIG_TIMER_STATS
798 timer->start_site = NULL;
799#endif
800}
801
802static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
803{
804#ifdef CONFIG_TIMER_STATS
805 if (likely(!timer_stats_active))
806 return;
807 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
808 timer->function, timer->start_comm, 0);
809#endif
810}
811
812/*
813 * Counterpart to lock_hrtimer_base above:
814 */
815static inline
816void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
817{
818 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
819}
820
821/**
822 * hrtimer_forward - forward the timer expiry
823 * @timer: hrtimer to forward
824 * @now: forward past this time
825 * @interval: the interval to forward
826 *
827 * Forward the timer expiry so it will expire in the future.
828 * Returns the number of overruns.
829 *
830 * Can be safely called from the callback function of @timer. If
831 * called from other contexts @timer must neither be enqueued nor
832 * running the callback and the caller needs to take care of
833 * serialization.
834 *
835 * Note: This only updates the timer expiry value and does not requeue
836 * the timer.
837 */
838u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
839{
840 u64 orun = 1;
841 ktime_t delta;
842
843 delta = ktime_sub(now, hrtimer_get_expires(timer));
844
845 if (delta.tv64 < 0)
846 return 0;
847
848 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
849 return 0;
850
851 if (interval.tv64 < hrtimer_resolution)
852 interval.tv64 = hrtimer_resolution;
853
854 if (unlikely(delta.tv64 >= interval.tv64)) {
855 s64 incr = ktime_to_ns(interval);
856
857 orun = ktime_divns(delta, incr);
858 hrtimer_add_expires_ns(timer, incr * orun);
859 if (hrtimer_get_expires_tv64(timer) > now.tv64)
860 return orun;
861 /*
862 * This (and the ktime_add() below) is the
863 * correction for exact:
864 */
865 orun++;
866 }
867 hrtimer_add_expires(timer, interval);
868
869 return orun;
870}
871EXPORT_SYMBOL_GPL(hrtimer_forward);
872
873/*
874 * enqueue_hrtimer - internal function to (re)start a timer
875 *
876 * The timer is inserted in expiry order. Insertion into the
877 * red black tree is O(log(n)). Must hold the base lock.
878 *
879 * Returns 1 when the new timer is the leftmost timer in the tree.
880 */
881static int enqueue_hrtimer(struct hrtimer *timer,
882 struct hrtimer_clock_base *base)
883{
884 debug_activate(timer);
885
886 base->cpu_base->active_bases |= 1 << base->index;
887
888 timer->state = HRTIMER_STATE_ENQUEUED;
889
890 return timerqueue_add(&base->active, &timer->node);
891}
892
893/*
894 * __remove_hrtimer - internal function to remove a timer
895 *
896 * Caller must hold the base lock.
897 *
898 * High resolution timer mode reprograms the clock event device when the
899 * timer is the one which expires next. The caller can disable this by setting
900 * reprogram to zero. This is useful, when the context does a reprogramming
901 * anyway (e.g. timer interrupt)
902 */
903static void __remove_hrtimer(struct hrtimer *timer,
904 struct hrtimer_clock_base *base,
905 u8 newstate, int reprogram)
906{
907 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
908 u8 state = timer->state;
909
910 timer->state = newstate;
911 if (!(state & HRTIMER_STATE_ENQUEUED))
912 return;
913
914 if (!timerqueue_del(&base->active, &timer->node))
915 cpu_base->active_bases &= ~(1 << base->index);
916
917#ifdef CONFIG_HIGH_RES_TIMERS
918 /*
919 * Note: If reprogram is false we do not update
920 * cpu_base->next_timer. This happens when we remove the first
921 * timer on a remote cpu. No harm as we never dereference
922 * cpu_base->next_timer. So the worst thing what can happen is
923 * an superflous call to hrtimer_force_reprogram() on the
924 * remote cpu later on if the same timer gets enqueued again.
925 */
926 if (reprogram && timer == cpu_base->next_timer)
927 hrtimer_force_reprogram(cpu_base, 1);
928#endif
929}
930
931/*
932 * remove hrtimer, called with base lock held
933 */
934static inline int
935remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
936{
937 if (hrtimer_is_queued(timer)) {
938 u8 state = timer->state;
939 int reprogram;
940
941 /*
942 * Remove the timer and force reprogramming when high
943 * resolution mode is active and the timer is on the current
944 * CPU. If we remove a timer on another CPU, reprogramming is
945 * skipped. The interrupt event on this CPU is fired and
946 * reprogramming happens in the interrupt handler. This is a
947 * rare case and less expensive than a smp call.
948 */
949 debug_deactivate(timer);
950 timer_stats_hrtimer_clear_start_info(timer);
951 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
952
953 if (!restart)
954 state = HRTIMER_STATE_INACTIVE;
955
956 __remove_hrtimer(timer, base, state, reprogram);
957 return 1;
958 }
959 return 0;
960}
961
962static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
963 const enum hrtimer_mode mode)
964{
965#ifdef CONFIG_TIME_LOW_RES
966 /*
967 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
968 * granular time values. For relative timers we add hrtimer_resolution
969 * (i.e. one jiffie) to prevent short timeouts.
970 */
971 timer->is_rel = mode & HRTIMER_MODE_REL;
972 if (timer->is_rel)
973 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
974#endif
975 return tim;
976}
977
978/**
979 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
980 * @timer: the timer to be added
981 * @tim: expiry time
982 * @delta_ns: "slack" range for the timer
983 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
984 * relative (HRTIMER_MODE_REL)
985 */
986void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
987 unsigned long delta_ns, const enum hrtimer_mode mode)
988{
989 struct hrtimer_clock_base *base, *new_base;
990 unsigned long flags;
991 int leftmost;
992
993 base = lock_hrtimer_base(timer, &flags);
994
995 /* Remove an active timer from the queue: */
996 remove_hrtimer(timer, base, true);
997
998 if (mode & HRTIMER_MODE_REL)
999 tim = ktime_add_safe(tim, base->get_time());
1000
1001 tim = hrtimer_update_lowres(timer, tim, mode);
1002
1003 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1004
1005 /* Switch the timer base, if necessary: */
1006 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1007
1008 timer_stats_hrtimer_set_start_info(timer);
1009
1010 leftmost = enqueue_hrtimer(timer, new_base);
1011 if (!leftmost)
1012 goto unlock;
1013
1014 if (!hrtimer_is_hres_active(timer)) {
1015 /*
1016 * Kick to reschedule the next tick to handle the new timer
1017 * on dynticks target.
1018 */
1019 if (new_base->cpu_base->nohz_active)
1020 wake_up_nohz_cpu(new_base->cpu_base->cpu);
1021 } else {
1022 hrtimer_reprogram(timer, new_base);
1023 }
1024unlock:
1025 unlock_hrtimer_base(timer, &flags);
1026}
1027EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1028
1029/**
1030 * hrtimer_try_to_cancel - try to deactivate a timer
1031 * @timer: hrtimer to stop
1032 *
1033 * Returns:
1034 * 0 when the timer was not active
1035 * 1 when the timer was active
1036 * -1 when the timer is currently excuting the callback function and
1037 * cannot be stopped
1038 */
1039int hrtimer_try_to_cancel(struct hrtimer *timer)
1040{
1041 struct hrtimer_clock_base *base;
1042 unsigned long flags;
1043 int ret = -1;
1044
1045 /*
1046 * Check lockless first. If the timer is not active (neither
1047 * enqueued nor running the callback, nothing to do here. The
1048 * base lock does not serialize against a concurrent enqueue,
1049 * so we can avoid taking it.
1050 */
1051 if (!hrtimer_active(timer))
1052 return 0;
1053
1054 base = lock_hrtimer_base(timer, &flags);
1055
1056 if (!hrtimer_callback_running(timer))
1057 ret = remove_hrtimer(timer, base, false);
1058
1059 unlock_hrtimer_base(timer, &flags);
1060
1061 return ret;
1062
1063}
1064EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1065
1066/**
1067 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1068 * @timer: the timer to be cancelled
1069 *
1070 * Returns:
1071 * 0 when the timer was not active
1072 * 1 when the timer was active
1073 */
1074int hrtimer_cancel(struct hrtimer *timer)
1075{
1076 for (;;) {
1077 int ret = hrtimer_try_to_cancel(timer);
1078
1079 if (ret >= 0)
1080 return ret;
1081 cpu_relax();
1082 }
1083}
1084EXPORT_SYMBOL_GPL(hrtimer_cancel);
1085
1086/**
1087 * hrtimer_get_remaining - get remaining time for the timer
1088 * @timer: the timer to read
1089 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1090 */
1091ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1092{
1093 unsigned long flags;
1094 ktime_t rem;
1095
1096 lock_hrtimer_base(timer, &flags);
1097 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1098 rem = hrtimer_expires_remaining_adjusted(timer);
1099 else
1100 rem = hrtimer_expires_remaining(timer);
1101 unlock_hrtimer_base(timer, &flags);
1102
1103 return rem;
1104}
1105EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1106
1107#ifdef CONFIG_NO_HZ_COMMON
1108/**
1109 * hrtimer_get_next_event - get the time until next expiry event
1110 *
1111 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1112 */
1113u64 hrtimer_get_next_event(void)
1114{
1115 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1116 u64 expires = KTIME_MAX;
1117 unsigned long flags;
1118
1119 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1120
1121 if (!__hrtimer_hres_active(cpu_base))
1122 expires = __hrtimer_get_next_event(cpu_base).tv64;
1123
1124 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1125
1126 return expires;
1127}
1128#endif
1129
1130static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1131 enum hrtimer_mode mode)
1132{
1133 struct hrtimer_cpu_base *cpu_base;
1134 int base;
1135
1136 memset(timer, 0, sizeof(struct hrtimer));
1137
1138 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1139
1140 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1141 clock_id = CLOCK_MONOTONIC;
1142
1143 base = hrtimer_clockid_to_base(clock_id);
1144 timer->base = &cpu_base->clock_base[base];
1145 timerqueue_init(&timer->node);
1146
1147#ifdef CONFIG_TIMER_STATS
1148 timer->start_site = NULL;
1149 timer->start_pid = -1;
1150 memset(timer->start_comm, 0, TASK_COMM_LEN);
1151#endif
1152}
1153
1154/**
1155 * hrtimer_init - initialize a timer to the given clock
1156 * @timer: the timer to be initialized
1157 * @clock_id: the clock to be used
1158 * @mode: timer mode abs/rel
1159 */
1160void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1161 enum hrtimer_mode mode)
1162{
1163 debug_init(timer, clock_id, mode);
1164 __hrtimer_init(timer, clock_id, mode);
1165}
1166EXPORT_SYMBOL_GPL(hrtimer_init);
1167
1168/*
1169 * A timer is active, when it is enqueued into the rbtree or the
1170 * callback function is running or it's in the state of being migrated
1171 * to another cpu.
1172 *
1173 * It is important for this function to not return a false negative.
1174 */
1175bool hrtimer_active(const struct hrtimer *timer)
1176{
1177 struct hrtimer_cpu_base *cpu_base;
1178 unsigned int seq;
1179
1180 do {
1181 cpu_base = READ_ONCE(timer->base->cpu_base);
1182 seq = raw_read_seqcount_begin(&cpu_base->seq);
1183
1184 if (timer->state != HRTIMER_STATE_INACTIVE ||
1185 cpu_base->running == timer)
1186 return true;
1187
1188 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1189 cpu_base != READ_ONCE(timer->base->cpu_base));
1190
1191 return false;
1192}
1193EXPORT_SYMBOL_GPL(hrtimer_active);
1194
1195/*
1196 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1197 * distinct sections:
1198 *
1199 * - queued: the timer is queued
1200 * - callback: the timer is being ran
1201 * - post: the timer is inactive or (re)queued
1202 *
1203 * On the read side we ensure we observe timer->state and cpu_base->running
1204 * from the same section, if anything changed while we looked at it, we retry.
1205 * This includes timer->base changing because sequence numbers alone are
1206 * insufficient for that.
1207 *
1208 * The sequence numbers are required because otherwise we could still observe
1209 * a false negative if the read side got smeared over multiple consequtive
1210 * __run_hrtimer() invocations.
1211 */
1212
1213static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1214 struct hrtimer_clock_base *base,
1215 struct hrtimer *timer, ktime_t *now)
1216{
1217 enum hrtimer_restart (*fn)(struct hrtimer *);
1218 int restart;
1219
1220 lockdep_assert_held(&cpu_base->lock);
1221
1222 debug_deactivate(timer);
1223 cpu_base->running = timer;
1224
1225 /*
1226 * Separate the ->running assignment from the ->state assignment.
1227 *
1228 * As with a regular write barrier, this ensures the read side in
1229 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1230 * timer->state == INACTIVE.
1231 */
1232 raw_write_seqcount_barrier(&cpu_base->seq);
1233
1234 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1235 timer_stats_account_hrtimer(timer);
1236 fn = timer->function;
1237
1238 /*
1239 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1240 * timer is restarted with a period then it becomes an absolute
1241 * timer. If its not restarted it does not matter.
1242 */
1243 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1244 timer->is_rel = false;
1245
1246 /*
1247 * Because we run timers from hardirq context, there is no chance
1248 * they get migrated to another cpu, therefore its safe to unlock
1249 * the timer base.
1250 */
1251 raw_spin_unlock(&cpu_base->lock);
1252 trace_hrtimer_expire_entry(timer, now);
1253 restart = fn(timer);
1254 trace_hrtimer_expire_exit(timer);
1255 raw_spin_lock(&cpu_base->lock);
1256
1257 /*
1258 * Note: We clear the running state after enqueue_hrtimer and
1259 * we do not reprogramm the event hardware. Happens either in
1260 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1261 *
1262 * Note: Because we dropped the cpu_base->lock above,
1263 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1264 * for us already.
1265 */
1266 if (restart != HRTIMER_NORESTART &&
1267 !(timer->state & HRTIMER_STATE_ENQUEUED))
1268 enqueue_hrtimer(timer, base);
1269
1270 /*
1271 * Separate the ->running assignment from the ->state assignment.
1272 *
1273 * As with a regular write barrier, this ensures the read side in
1274 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1275 * timer->state == INACTIVE.
1276 */
1277 raw_write_seqcount_barrier(&cpu_base->seq);
1278
1279 WARN_ON_ONCE(cpu_base->running != timer);
1280 cpu_base->running = NULL;
1281}
1282
1283static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1284{
1285 struct hrtimer_clock_base *base = cpu_base->clock_base;
1286 unsigned int active = cpu_base->active_bases;
1287
1288 for (; active; base++, active >>= 1) {
1289 struct timerqueue_node *node;
1290 ktime_t basenow;
1291
1292 if (!(active & 0x01))
1293 continue;
1294
1295 basenow = ktime_add(now, base->offset);
1296
1297 while ((node = timerqueue_getnext(&base->active))) {
1298 struct hrtimer *timer;
1299
1300 timer = container_of(node, struct hrtimer, node);
1301
1302 /*
1303 * The immediate goal for using the softexpires is
1304 * minimizing wakeups, not running timers at the
1305 * earliest interrupt after their soft expiration.
1306 * This allows us to avoid using a Priority Search
1307 * Tree, which can answer a stabbing querry for
1308 * overlapping intervals and instead use the simple
1309 * BST we already have.
1310 * We don't add extra wakeups by delaying timers that
1311 * are right-of a not yet expired timer, because that
1312 * timer will have to trigger a wakeup anyway.
1313 */
1314 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1315 break;
1316
1317 __run_hrtimer(cpu_base, base, timer, &basenow);
1318 }
1319 }
1320}
1321
1322#ifdef CONFIG_HIGH_RES_TIMERS
1323
1324/*
1325 * High resolution timer interrupt
1326 * Called with interrupts disabled
1327 */
1328void hrtimer_interrupt(struct clock_event_device *dev)
1329{
1330 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1331 ktime_t expires_next, now, entry_time, delta;
1332 int retries = 0;
1333
1334 BUG_ON(!cpu_base->hres_active);
1335 cpu_base->nr_events++;
1336 dev->next_event.tv64 = KTIME_MAX;
1337
1338 raw_spin_lock(&cpu_base->lock);
1339 entry_time = now = hrtimer_update_base(cpu_base);
1340retry:
1341 cpu_base->in_hrtirq = 1;
1342 /*
1343 * We set expires_next to KTIME_MAX here with cpu_base->lock
1344 * held to prevent that a timer is enqueued in our queue via
1345 * the migration code. This does not affect enqueueing of
1346 * timers which run their callback and need to be requeued on
1347 * this CPU.
1348 */
1349 cpu_base->expires_next.tv64 = KTIME_MAX;
1350
1351 __hrtimer_run_queues(cpu_base, now);
1352
1353 /* Reevaluate the clock bases for the next expiry */
1354 expires_next = __hrtimer_get_next_event(cpu_base);
1355 /*
1356 * Store the new expiry value so the migration code can verify
1357 * against it.
1358 */
1359 cpu_base->expires_next = expires_next;
1360 cpu_base->in_hrtirq = 0;
1361 raw_spin_unlock(&cpu_base->lock);
1362
1363 /* Reprogramming necessary ? */
1364 if (!tick_program_event(expires_next, 0)) {
1365 cpu_base->hang_detected = 0;
1366 return;
1367 }
1368
1369 /*
1370 * The next timer was already expired due to:
1371 * - tracing
1372 * - long lasting callbacks
1373 * - being scheduled away when running in a VM
1374 *
1375 * We need to prevent that we loop forever in the hrtimer
1376 * interrupt routine. We give it 3 attempts to avoid
1377 * overreacting on some spurious event.
1378 *
1379 * Acquire base lock for updating the offsets and retrieving
1380 * the current time.
1381 */
1382 raw_spin_lock(&cpu_base->lock);
1383 now = hrtimer_update_base(cpu_base);
1384 cpu_base->nr_retries++;
1385 if (++retries < 3)
1386 goto retry;
1387 /*
1388 * Give the system a chance to do something else than looping
1389 * here. We stored the entry time, so we know exactly how long
1390 * we spent here. We schedule the next event this amount of
1391 * time away.
1392 */
1393 cpu_base->nr_hangs++;
1394 cpu_base->hang_detected = 1;
1395 raw_spin_unlock(&cpu_base->lock);
1396 delta = ktime_sub(now, entry_time);
1397 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1398 cpu_base->max_hang_time = (unsigned int) delta.tv64;
1399 /*
1400 * Limit it to a sensible value as we enforce a longer
1401 * delay. Give the CPU at least 100ms to catch up.
1402 */
1403 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1404 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1405 else
1406 expires_next = ktime_add(now, delta);
1407 tick_program_event(expires_next, 1);
1408 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1409 ktime_to_ns(delta));
1410}
1411
1412/*
1413 * local version of hrtimer_peek_ahead_timers() called with interrupts
1414 * disabled.
1415 */
1416static inline void __hrtimer_peek_ahead_timers(void)
1417{
1418 struct tick_device *td;
1419
1420 if (!hrtimer_hres_active())
1421 return;
1422
1423 td = this_cpu_ptr(&tick_cpu_device);
1424 if (td && td->evtdev)
1425 hrtimer_interrupt(td->evtdev);
1426}
1427
1428#else /* CONFIG_HIGH_RES_TIMERS */
1429
1430static inline void __hrtimer_peek_ahead_timers(void) { }
1431
1432#endif /* !CONFIG_HIGH_RES_TIMERS */
1433
1434/*
1435 * Called from run_local_timers in hardirq context every jiffy
1436 */
1437void hrtimer_run_queues(void)
1438{
1439 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1440 ktime_t now;
1441
1442 if (__hrtimer_hres_active(cpu_base))
1443 return;
1444
1445 /*
1446 * This _is_ ugly: We have to check periodically, whether we
1447 * can switch to highres and / or nohz mode. The clocksource
1448 * switch happens with xtime_lock held. Notification from
1449 * there only sets the check bit in the tick_oneshot code,
1450 * otherwise we might deadlock vs. xtime_lock.
1451 */
1452 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1453 hrtimer_switch_to_hres();
1454 return;
1455 }
1456
1457 raw_spin_lock(&cpu_base->lock);
1458 now = hrtimer_update_base(cpu_base);
1459 __hrtimer_run_queues(cpu_base, now);
1460 raw_spin_unlock(&cpu_base->lock);
1461}
1462
1463/*
1464 * Sleep related functions:
1465 */
1466static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1467{
1468 struct hrtimer_sleeper *t =
1469 container_of(timer, struct hrtimer_sleeper, timer);
1470 struct task_struct *task = t->task;
1471
1472 t->task = NULL;
1473 if (task)
1474 wake_up_process(task);
1475
1476 return HRTIMER_NORESTART;
1477}
1478
1479void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1480{
1481 sl->timer.function = hrtimer_wakeup;
1482 sl->task = task;
1483}
1484EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1485
1486static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1487{
1488 hrtimer_init_sleeper(t, current);
1489
1490 do {
1491 set_current_state(TASK_INTERRUPTIBLE);
1492 hrtimer_start_expires(&t->timer, mode);
1493
1494 if (likely(t->task))
1495 freezable_schedule();
1496
1497 hrtimer_cancel(&t->timer);
1498 mode = HRTIMER_MODE_ABS;
1499
1500 } while (t->task && !signal_pending(current));
1501
1502 __set_current_state(TASK_RUNNING);
1503
1504 return t->task == NULL;
1505}
1506
1507static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1508{
1509 struct timespec rmt;
1510 ktime_t rem;
1511
1512 rem = hrtimer_expires_remaining(timer);
1513 if (rem.tv64 <= 0)
1514 return 0;
1515 rmt = ktime_to_timespec(rem);
1516
1517 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1518 return -EFAULT;
1519
1520 return 1;
1521}
1522
1523long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1524{
1525 struct hrtimer_sleeper t;
1526 struct timespec __user *rmtp;
1527 int ret = 0;
1528
1529 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1530 HRTIMER_MODE_ABS);
1531 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1532
1533 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1534 goto out;
1535
1536 rmtp = restart->nanosleep.rmtp;
1537 if (rmtp) {
1538 ret = update_rmtp(&t.timer, rmtp);
1539 if (ret <= 0)
1540 goto out;
1541 }
1542
1543 /* The other values in restart are already filled in */
1544 ret = -ERESTART_RESTARTBLOCK;
1545out:
1546 destroy_hrtimer_on_stack(&t.timer);
1547 return ret;
1548}
1549
1550long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1551 const enum hrtimer_mode mode, const clockid_t clockid)
1552{
1553 struct restart_block *restart;
1554 struct hrtimer_sleeper t;
1555 int ret = 0;
1556 unsigned long slack;
1557
1558 slack = current->timer_slack_ns;
1559 if (dl_task(current) || rt_task(current))
1560 slack = 0;
1561
1562 hrtimer_init_on_stack(&t.timer, clockid, mode);
1563 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1564 if (do_nanosleep(&t, mode))
1565 goto out;
1566
1567 /* Absolute timers do not update the rmtp value and restart: */
1568 if (mode == HRTIMER_MODE_ABS) {
1569 ret = -ERESTARTNOHAND;
1570 goto out;
1571 }
1572
1573 if (rmtp) {
1574 ret = update_rmtp(&t.timer, rmtp);
1575 if (ret <= 0)
1576 goto out;
1577 }
1578
1579 restart = &current->restart_block;
1580 restart->fn = hrtimer_nanosleep_restart;
1581 restart->nanosleep.clockid = t.timer.base->clockid;
1582 restart->nanosleep.rmtp = rmtp;
1583 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1584
1585 ret = -ERESTART_RESTARTBLOCK;
1586out:
1587 destroy_hrtimer_on_stack(&t.timer);
1588 return ret;
1589}
1590
1591SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1592 struct timespec __user *, rmtp)
1593{
1594 struct timespec tu;
1595
1596 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1597 return -EFAULT;
1598
1599 if (!timespec_valid(&tu))
1600 return -EINVAL;
1601
1602 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1603}
1604
1605/*
1606 * Functions related to boot-time initialization:
1607 */
1608static void init_hrtimers_cpu(int cpu)
1609{
1610 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1611 int i;
1612
1613 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1614 cpu_base->clock_base[i].cpu_base = cpu_base;
1615 timerqueue_init_head(&cpu_base->clock_base[i].active);
1616 }
1617
1618 cpu_base->cpu = cpu;
1619 hrtimer_init_hres(cpu_base);
1620}
1621
1622#ifdef CONFIG_HOTPLUG_CPU
1623
1624static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1625 struct hrtimer_clock_base *new_base)
1626{
1627 struct hrtimer *timer;
1628 struct timerqueue_node *node;
1629
1630 while ((node = timerqueue_getnext(&old_base->active))) {
1631 timer = container_of(node, struct hrtimer, node);
1632 BUG_ON(hrtimer_callback_running(timer));
1633 debug_deactivate(timer);
1634
1635 /*
1636 * Mark it as ENQUEUED not INACTIVE otherwise the
1637 * timer could be seen as !active and just vanish away
1638 * under us on another CPU
1639 */
1640 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1641 timer->base = new_base;
1642 /*
1643 * Enqueue the timers on the new cpu. This does not
1644 * reprogram the event device in case the timer
1645 * expires before the earliest on this CPU, but we run
1646 * hrtimer_interrupt after we migrated everything to
1647 * sort out already expired timers and reprogram the
1648 * event device.
1649 */
1650 enqueue_hrtimer(timer, new_base);
1651 }
1652}
1653
1654static void migrate_hrtimers(int scpu)
1655{
1656 struct hrtimer_cpu_base *old_base, *new_base;
1657 int i;
1658
1659 BUG_ON(cpu_online(scpu));
1660 tick_cancel_sched_timer(scpu);
1661
1662 local_irq_disable();
1663 old_base = &per_cpu(hrtimer_bases, scpu);
1664 new_base = this_cpu_ptr(&hrtimer_bases);
1665 /*
1666 * The caller is globally serialized and nobody else
1667 * takes two locks at once, deadlock is not possible.
1668 */
1669 raw_spin_lock(&new_base->lock);
1670 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1671
1672 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1673 migrate_hrtimer_list(&old_base->clock_base[i],
1674 &new_base->clock_base[i]);
1675 }
1676
1677 raw_spin_unlock(&old_base->lock);
1678 raw_spin_unlock(&new_base->lock);
1679
1680 /* Check, if we got expired work to do */
1681 __hrtimer_peek_ahead_timers();
1682 local_irq_enable();
1683}
1684
1685#endif /* CONFIG_HOTPLUG_CPU */
1686
1687static int hrtimer_cpu_notify(struct notifier_block *self,
1688 unsigned long action, void *hcpu)
1689{
1690 int scpu = (long)hcpu;
1691
1692 switch (action) {
1693
1694 case CPU_UP_PREPARE:
1695 case CPU_UP_PREPARE_FROZEN:
1696 init_hrtimers_cpu(scpu);
1697 break;
1698
1699#ifdef CONFIG_HOTPLUG_CPU
1700 case CPU_DEAD:
1701 case CPU_DEAD_FROZEN:
1702 migrate_hrtimers(scpu);
1703 break;
1704#endif
1705
1706 default:
1707 break;
1708 }
1709
1710 return NOTIFY_OK;
1711}
1712
1713static struct notifier_block hrtimers_nb = {
1714 .notifier_call = hrtimer_cpu_notify,
1715};
1716
1717void __init hrtimers_init(void)
1718{
1719 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1720 (void *)(long)smp_processor_id());
1721 register_cpu_notifier(&hrtimers_nb);
1722}
1723
1724/**
1725 * schedule_hrtimeout_range_clock - sleep until timeout
1726 * @expires: timeout value (ktime_t)
1727 * @delta: slack in expires timeout (ktime_t)
1728 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1729 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1730 */
1731int __sched
1732schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1733 const enum hrtimer_mode mode, int clock)
1734{
1735 struct hrtimer_sleeper t;
1736
1737 /*
1738 * Optimize when a zero timeout value is given. It does not
1739 * matter whether this is an absolute or a relative time.
1740 */
1741 if (expires && !expires->tv64) {
1742 __set_current_state(TASK_RUNNING);
1743 return 0;
1744 }
1745
1746 /*
1747 * A NULL parameter means "infinite"
1748 */
1749 if (!expires) {
1750 schedule();
1751 return -EINTR;
1752 }
1753
1754 hrtimer_init_on_stack(&t.timer, clock, mode);
1755 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1756
1757 hrtimer_init_sleeper(&t, current);
1758
1759 hrtimer_start_expires(&t.timer, mode);
1760
1761 if (likely(t.task))
1762 schedule();
1763
1764 hrtimer_cancel(&t.timer);
1765 destroy_hrtimer_on_stack(&t.timer);
1766
1767 __set_current_state(TASK_RUNNING);
1768
1769 return !t.task ? 0 : -EINTR;
1770}
1771
1772/**
1773 * schedule_hrtimeout_range - sleep until timeout
1774 * @expires: timeout value (ktime_t)
1775 * @delta: slack in expires timeout (ktime_t)
1776 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1777 *
1778 * Make the current task sleep until the given expiry time has
1779 * elapsed. The routine will return immediately unless
1780 * the current task state has been set (see set_current_state()).
1781 *
1782 * The @delta argument gives the kernel the freedom to schedule the
1783 * actual wakeup to a time that is both power and performance friendly.
1784 * The kernel give the normal best effort behavior for "@expires+@delta",
1785 * but may decide to fire the timer earlier, but no earlier than @expires.
1786 *
1787 * You can set the task state as follows -
1788 *
1789 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1790 * pass before the routine returns.
1791 *
1792 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1793 * delivered to the current task.
1794 *
1795 * The current task state is guaranteed to be TASK_RUNNING when this
1796 * routine returns.
1797 *
1798 * Returns 0 when the timer has expired otherwise -EINTR
1799 */
1800int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1801 const enum hrtimer_mode mode)
1802{
1803 return schedule_hrtimeout_range_clock(expires, delta, mode,
1804 CLOCK_MONOTONIC);
1805}
1806EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1807
1808/**
1809 * schedule_hrtimeout - sleep until timeout
1810 * @expires: timeout value (ktime_t)
1811 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1812 *
1813 * Make the current task sleep until the given expiry time has
1814 * elapsed. The routine will return immediately unless
1815 * the current task state has been set (see set_current_state()).
1816 *
1817 * You can set the task state as follows -
1818 *
1819 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1820 * pass before the routine returns.
1821 *
1822 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1823 * delivered to the current task.
1824 *
1825 * The current task state is guaranteed to be TASK_RUNNING when this
1826 * routine returns.
1827 *
1828 * Returns 0 when the timer has expired otherwise -EINTR
1829 */
1830int __sched schedule_hrtimeout(ktime_t *expires,
1831 const enum hrtimer_mode mode)
1832{
1833 return schedule_hrtimeout_range(expires, 0, mode);
1834}
1835EXPORT_SYMBOL_GPL(schedule_hrtimeout);