Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * linux/kernel/hrtimer.c |
| 3 | * |
| 4 | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
| 5 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
| 6 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
| 7 | * |
| 8 | * High-resolution kernel timers |
| 9 | * |
| 10 | * In contrast to the low-resolution timeout API implemented in |
| 11 | * kernel/timer.c, hrtimers provide finer resolution and accuracy |
| 12 | * depending on system configuration and capabilities. |
| 13 | * |
| 14 | * These timers are currently used for: |
| 15 | * - itimers |
| 16 | * - POSIX timers |
| 17 | * - nanosleep |
| 18 | * - precise in-kernel timing |
| 19 | * |
| 20 | * Started by: Thomas Gleixner and Ingo Molnar |
| 21 | * |
| 22 | * Credits: |
| 23 | * based on kernel/timer.c |
| 24 | * |
| 25 | * Help, testing, suggestions, bugfixes, improvements were |
| 26 | * provided by: |
| 27 | * |
| 28 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel |
| 29 | * et. al. |
| 30 | * |
| 31 | * For licencing details see kernel-base/COPYING |
| 32 | */ |
| 33 | |
| 34 | #include <linux/cpu.h> |
| 35 | #include <linux/export.h> |
| 36 | #include <linux/percpu.h> |
| 37 | #include <linux/hrtimer.h> |
| 38 | #include <linux/notifier.h> |
| 39 | #include <linux/syscalls.h> |
| 40 | #include <linux/kallsyms.h> |
| 41 | #include <linux/interrupt.h> |
| 42 | #include <linux/tick.h> |
| 43 | #include <linux/seq_file.h> |
| 44 | #include <linux/err.h> |
| 45 | #include <linux/debugobjects.h> |
| 46 | #include <linux/sched.h> |
| 47 | #include <linux/sched/sysctl.h> |
| 48 | #include <linux/sched/rt.h> |
| 49 | #include <linux/sched/deadline.h> |
| 50 | #include <linux/timer.h> |
| 51 | #include <linux/freezer.h> |
| 52 | |
| 53 | #include <asm/uaccess.h> |
| 54 | |
| 55 | #include <trace/events/timer.h> |
| 56 | |
| 57 | #include "tick-internal.h" |
| 58 | |
| 59 | /* |
| 60 | * The timer bases: |
| 61 | * |
| 62 | * There are more clockids than hrtimer bases. Thus, we index |
| 63 | * into the timer bases by the hrtimer_base_type enum. When trying |
| 64 | * to reach a base using a clockid, hrtimer_clockid_to_base() |
| 65 | * is used to convert from clockid to the proper hrtimer_base_type. |
| 66 | */ |
| 67 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
| 68 | { |
| 69 | .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), |
| 70 | .seq = SEQCNT_ZERO(hrtimer_bases.seq), |
| 71 | .clock_base = |
| 72 | { |
| 73 | { |
| 74 | .index = HRTIMER_BASE_MONOTONIC, |
| 75 | .clockid = CLOCK_MONOTONIC, |
| 76 | .get_time = &ktime_get, |
| 77 | }, |
| 78 | { |
| 79 | .index = HRTIMER_BASE_REALTIME, |
| 80 | .clockid = CLOCK_REALTIME, |
| 81 | .get_time = &ktime_get_real, |
| 82 | }, |
| 83 | { |
| 84 | .index = HRTIMER_BASE_BOOTTIME, |
| 85 | .clockid = CLOCK_BOOTTIME, |
| 86 | .get_time = &ktime_get_boottime, |
| 87 | }, |
| 88 | { |
| 89 | .index = HRTIMER_BASE_TAI, |
| 90 | .clockid = CLOCK_TAI, |
| 91 | .get_time = &ktime_get_clocktai, |
| 92 | }, |
| 93 | } |
| 94 | }; |
| 95 | |
| 96 | static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { |
| 97 | /* Make sure we catch unsupported clockids */ |
| 98 | [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, |
| 99 | |
| 100 | [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, |
| 101 | [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, |
| 102 | [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, |
| 103 | [CLOCK_TAI] = HRTIMER_BASE_TAI, |
| 104 | }; |
| 105 | |
| 106 | static inline int hrtimer_clockid_to_base(clockid_t clock_id) |
| 107 | { |
| 108 | int base = hrtimer_clock_to_base_table[clock_id]; |
| 109 | BUG_ON(base == HRTIMER_MAX_CLOCK_BASES); |
| 110 | return base; |
| 111 | } |
| 112 | |
| 113 | /* |
| 114 | * Functions and macros which are different for UP/SMP systems are kept in a |
| 115 | * single place |
| 116 | */ |
| 117 | #ifdef CONFIG_SMP |
| 118 | |
| 119 | /* |
| 120 | * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() |
| 121 | * such that hrtimer_callback_running() can unconditionally dereference |
| 122 | * timer->base->cpu_base |
| 123 | */ |
| 124 | static struct hrtimer_cpu_base migration_cpu_base = { |
| 125 | .seq = SEQCNT_ZERO(migration_cpu_base), |
| 126 | .clock_base = { { .cpu_base = &migration_cpu_base, }, }, |
| 127 | }; |
| 128 | |
| 129 | #define migration_base migration_cpu_base.clock_base[0] |
| 130 | |
| 131 | /* |
| 132 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock |
| 133 | * means that all timers which are tied to this base via timer->base are |
| 134 | * locked, and the base itself is locked too. |
| 135 | * |
| 136 | * So __run_timers/migrate_timers can safely modify all timers which could |
| 137 | * be found on the lists/queues. |
| 138 | * |
| 139 | * When the timer's base is locked, and the timer removed from list, it is |
| 140 | * possible to set timer->base = &migration_base and drop the lock: the timer |
| 141 | * remains locked. |
| 142 | */ |
| 143 | static |
| 144 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, |
| 145 | unsigned long *flags) |
| 146 | { |
| 147 | struct hrtimer_clock_base *base; |
| 148 | |
| 149 | for (;;) { |
| 150 | base = timer->base; |
| 151 | if (likely(base != &migration_base)) { |
| 152 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
| 153 | if (likely(base == timer->base)) |
| 154 | return base; |
| 155 | /* The timer has migrated to another CPU: */ |
| 156 | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
| 157 | } |
| 158 | cpu_relax(); |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | /* |
| 163 | * With HIGHRES=y we do not migrate the timer when it is expiring |
| 164 | * before the next event on the target cpu because we cannot reprogram |
| 165 | * the target cpu hardware and we would cause it to fire late. |
| 166 | * |
| 167 | * Called with cpu_base->lock of target cpu held. |
| 168 | */ |
| 169 | static int |
| 170 | hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) |
| 171 | { |
| 172 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 173 | ktime_t expires; |
| 174 | |
| 175 | if (!new_base->cpu_base->hres_active) |
| 176 | return 0; |
| 177 | |
| 178 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); |
| 179 | return expires.tv64 <= new_base->cpu_base->expires_next.tv64; |
| 180 | #else |
| 181 | return 0; |
| 182 | #endif |
| 183 | } |
| 184 | |
| 185 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
| 186 | static inline |
| 187 | struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, |
| 188 | int pinned) |
| 189 | { |
| 190 | if (pinned || !base->migration_enabled) |
| 191 | return base; |
| 192 | return &per_cpu(hrtimer_bases, get_nohz_timer_target()); |
| 193 | } |
| 194 | #else |
| 195 | static inline |
| 196 | struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, |
| 197 | int pinned) |
| 198 | { |
| 199 | return base; |
| 200 | } |
| 201 | #endif |
| 202 | |
| 203 | /* |
| 204 | * We switch the timer base to a power-optimized selected CPU target, |
| 205 | * if: |
| 206 | * - NO_HZ_COMMON is enabled |
| 207 | * - timer migration is enabled |
| 208 | * - the timer callback is not running |
| 209 | * - the timer is not the first expiring timer on the new target |
| 210 | * |
| 211 | * If one of the above requirements is not fulfilled we move the timer |
| 212 | * to the current CPU or leave it on the previously assigned CPU if |
| 213 | * the timer callback is currently running. |
| 214 | */ |
| 215 | static inline struct hrtimer_clock_base * |
| 216 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, |
| 217 | int pinned) |
| 218 | { |
| 219 | struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; |
| 220 | struct hrtimer_clock_base *new_base; |
| 221 | int basenum = base->index; |
| 222 | |
| 223 | this_cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 224 | new_cpu_base = get_target_base(this_cpu_base, pinned); |
| 225 | again: |
| 226 | new_base = &new_cpu_base->clock_base[basenum]; |
| 227 | |
| 228 | if (base != new_base) { |
| 229 | /* |
| 230 | * We are trying to move timer to new_base. |
| 231 | * However we can't change timer's base while it is running, |
| 232 | * so we keep it on the same CPU. No hassle vs. reprogramming |
| 233 | * the event source in the high resolution case. The softirq |
| 234 | * code will take care of this when the timer function has |
| 235 | * completed. There is no conflict as we hold the lock until |
| 236 | * the timer is enqueued. |
| 237 | */ |
| 238 | if (unlikely(hrtimer_callback_running(timer))) |
| 239 | return base; |
| 240 | |
| 241 | /* See the comment in lock_hrtimer_base() */ |
| 242 | timer->base = &migration_base; |
| 243 | raw_spin_unlock(&base->cpu_base->lock); |
| 244 | raw_spin_lock(&new_base->cpu_base->lock); |
| 245 | |
| 246 | if (new_cpu_base != this_cpu_base && |
| 247 | hrtimer_check_target(timer, new_base)) { |
| 248 | raw_spin_unlock(&new_base->cpu_base->lock); |
| 249 | raw_spin_lock(&base->cpu_base->lock); |
| 250 | new_cpu_base = this_cpu_base; |
| 251 | timer->base = base; |
| 252 | goto again; |
| 253 | } |
| 254 | timer->base = new_base; |
| 255 | } else { |
| 256 | if (new_cpu_base != this_cpu_base && |
| 257 | hrtimer_check_target(timer, new_base)) { |
| 258 | new_cpu_base = this_cpu_base; |
| 259 | goto again; |
| 260 | } |
| 261 | } |
| 262 | return new_base; |
| 263 | } |
| 264 | |
| 265 | #else /* CONFIG_SMP */ |
| 266 | |
| 267 | static inline struct hrtimer_clock_base * |
| 268 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| 269 | { |
| 270 | struct hrtimer_clock_base *base = timer->base; |
| 271 | |
| 272 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
| 273 | |
| 274 | return base; |
| 275 | } |
| 276 | |
| 277 | # define switch_hrtimer_base(t, b, p) (b) |
| 278 | |
| 279 | #endif /* !CONFIG_SMP */ |
| 280 | |
| 281 | /* |
| 282 | * Functions for the union type storage format of ktime_t which are |
| 283 | * too large for inlining: |
| 284 | */ |
| 285 | #if BITS_PER_LONG < 64 |
| 286 | /* |
| 287 | * Divide a ktime value by a nanosecond value |
| 288 | */ |
| 289 | s64 __ktime_divns(const ktime_t kt, s64 div) |
| 290 | { |
| 291 | int sft = 0; |
| 292 | s64 dclc; |
| 293 | u64 tmp; |
| 294 | |
| 295 | dclc = ktime_to_ns(kt); |
| 296 | tmp = dclc < 0 ? -dclc : dclc; |
| 297 | |
| 298 | /* Make sure the divisor is less than 2^32: */ |
| 299 | while (div >> 32) { |
| 300 | sft++; |
| 301 | div >>= 1; |
| 302 | } |
| 303 | tmp >>= sft; |
| 304 | do_div(tmp, (unsigned long) div); |
| 305 | return dclc < 0 ? -tmp : tmp; |
| 306 | } |
| 307 | EXPORT_SYMBOL_GPL(__ktime_divns); |
| 308 | #endif /* BITS_PER_LONG >= 64 */ |
| 309 | |
| 310 | /* |
| 311 | * Add two ktime values and do a safety check for overflow: |
| 312 | */ |
| 313 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) |
| 314 | { |
| 315 | ktime_t res = ktime_add(lhs, rhs); |
| 316 | |
| 317 | /* |
| 318 | * We use KTIME_SEC_MAX here, the maximum timeout which we can |
| 319 | * return to user space in a timespec: |
| 320 | */ |
| 321 | if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) |
| 322 | res = ktime_set(KTIME_SEC_MAX, 0); |
| 323 | |
| 324 | return res; |
| 325 | } |
| 326 | |
| 327 | EXPORT_SYMBOL_GPL(ktime_add_safe); |
| 328 | |
| 329 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
| 330 | |
| 331 | static struct debug_obj_descr hrtimer_debug_descr; |
| 332 | |
| 333 | static void *hrtimer_debug_hint(void *addr) |
| 334 | { |
| 335 | return ((struct hrtimer *) addr)->function; |
| 336 | } |
| 337 | |
| 338 | /* |
| 339 | * fixup_init is called when: |
| 340 | * - an active object is initialized |
| 341 | */ |
| 342 | static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) |
| 343 | { |
| 344 | struct hrtimer *timer = addr; |
| 345 | |
| 346 | switch (state) { |
| 347 | case ODEBUG_STATE_ACTIVE: |
| 348 | hrtimer_cancel(timer); |
| 349 | debug_object_init(timer, &hrtimer_debug_descr); |
| 350 | return 1; |
| 351 | default: |
| 352 | return 0; |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | /* |
| 357 | * fixup_activate is called when: |
| 358 | * - an active object is activated |
| 359 | * - an unknown object is activated (might be a statically initialized object) |
| 360 | */ |
| 361 | static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) |
| 362 | { |
| 363 | switch (state) { |
| 364 | |
| 365 | case ODEBUG_STATE_NOTAVAILABLE: |
| 366 | WARN_ON_ONCE(1); |
| 367 | return 0; |
| 368 | |
| 369 | case ODEBUG_STATE_ACTIVE: |
| 370 | WARN_ON(1); |
| 371 | |
| 372 | default: |
| 373 | return 0; |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | /* |
| 378 | * fixup_free is called when: |
| 379 | * - an active object is freed |
| 380 | */ |
| 381 | static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) |
| 382 | { |
| 383 | struct hrtimer *timer = addr; |
| 384 | |
| 385 | switch (state) { |
| 386 | case ODEBUG_STATE_ACTIVE: |
| 387 | hrtimer_cancel(timer); |
| 388 | debug_object_free(timer, &hrtimer_debug_descr); |
| 389 | return 1; |
| 390 | default: |
| 391 | return 0; |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | static struct debug_obj_descr hrtimer_debug_descr = { |
| 396 | .name = "hrtimer", |
| 397 | .debug_hint = hrtimer_debug_hint, |
| 398 | .fixup_init = hrtimer_fixup_init, |
| 399 | .fixup_activate = hrtimer_fixup_activate, |
| 400 | .fixup_free = hrtimer_fixup_free, |
| 401 | }; |
| 402 | |
| 403 | static inline void debug_hrtimer_init(struct hrtimer *timer) |
| 404 | { |
| 405 | debug_object_init(timer, &hrtimer_debug_descr); |
| 406 | } |
| 407 | |
| 408 | static inline void debug_hrtimer_activate(struct hrtimer *timer) |
| 409 | { |
| 410 | debug_object_activate(timer, &hrtimer_debug_descr); |
| 411 | } |
| 412 | |
| 413 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) |
| 414 | { |
| 415 | debug_object_deactivate(timer, &hrtimer_debug_descr); |
| 416 | } |
| 417 | |
| 418 | static inline void debug_hrtimer_free(struct hrtimer *timer) |
| 419 | { |
| 420 | debug_object_free(timer, &hrtimer_debug_descr); |
| 421 | } |
| 422 | |
| 423 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| 424 | enum hrtimer_mode mode); |
| 425 | |
| 426 | void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, |
| 427 | enum hrtimer_mode mode) |
| 428 | { |
| 429 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); |
| 430 | __hrtimer_init(timer, clock_id, mode); |
| 431 | } |
| 432 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); |
| 433 | |
| 434 | void destroy_hrtimer_on_stack(struct hrtimer *timer) |
| 435 | { |
| 436 | debug_object_free(timer, &hrtimer_debug_descr); |
| 437 | } |
| 438 | |
| 439 | #else |
| 440 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } |
| 441 | static inline void debug_hrtimer_activate(struct hrtimer *timer) { } |
| 442 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
| 443 | #endif |
| 444 | |
| 445 | static inline void |
| 446 | debug_init(struct hrtimer *timer, clockid_t clockid, |
| 447 | enum hrtimer_mode mode) |
| 448 | { |
| 449 | debug_hrtimer_init(timer); |
| 450 | trace_hrtimer_init(timer, clockid, mode); |
| 451 | } |
| 452 | |
| 453 | static inline void debug_activate(struct hrtimer *timer) |
| 454 | { |
| 455 | debug_hrtimer_activate(timer); |
| 456 | trace_hrtimer_start(timer); |
| 457 | } |
| 458 | |
| 459 | static inline void debug_deactivate(struct hrtimer *timer) |
| 460 | { |
| 461 | debug_hrtimer_deactivate(timer); |
| 462 | trace_hrtimer_cancel(timer); |
| 463 | } |
| 464 | |
| 465 | #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) |
| 466 | static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base, |
| 467 | struct hrtimer *timer) |
| 468 | { |
| 469 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 470 | cpu_base->next_timer = timer; |
| 471 | #endif |
| 472 | } |
| 473 | |
| 474 | static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base) |
| 475 | { |
| 476 | struct hrtimer_clock_base *base = cpu_base->clock_base; |
| 477 | ktime_t expires, expires_next = { .tv64 = KTIME_MAX }; |
| 478 | unsigned int active = cpu_base->active_bases; |
| 479 | |
| 480 | hrtimer_update_next_timer(cpu_base, NULL); |
| 481 | for (; active; base++, active >>= 1) { |
| 482 | struct timerqueue_node *next; |
| 483 | struct hrtimer *timer; |
| 484 | |
| 485 | if (!(active & 0x01)) |
| 486 | continue; |
| 487 | |
| 488 | next = timerqueue_getnext(&base->active); |
| 489 | timer = container_of(next, struct hrtimer, node); |
| 490 | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
| 491 | if (expires.tv64 < expires_next.tv64) { |
| 492 | expires_next = expires; |
| 493 | hrtimer_update_next_timer(cpu_base, timer); |
| 494 | } |
| 495 | } |
| 496 | /* |
| 497 | * clock_was_set() might have changed base->offset of any of |
| 498 | * the clock bases so the result might be negative. Fix it up |
| 499 | * to prevent a false positive in clockevents_program_event(). |
| 500 | */ |
| 501 | if (expires_next.tv64 < 0) |
| 502 | expires_next.tv64 = 0; |
| 503 | return expires_next; |
| 504 | } |
| 505 | #endif |
| 506 | |
| 507 | static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) |
| 508 | { |
| 509 | ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; |
| 510 | ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; |
| 511 | ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; |
| 512 | |
| 513 | return ktime_get_update_offsets_now(&base->clock_was_set_seq, |
| 514 | offs_real, offs_boot, offs_tai); |
| 515 | } |
| 516 | |
| 517 | /* High resolution timer related functions */ |
| 518 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 519 | |
| 520 | /* |
| 521 | * High resolution timer enabled ? |
| 522 | */ |
| 523 | static int hrtimer_hres_enabled __read_mostly = 1; |
| 524 | unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; |
| 525 | EXPORT_SYMBOL_GPL(hrtimer_resolution); |
| 526 | |
| 527 | /* |
| 528 | * Enable / Disable high resolution mode |
| 529 | */ |
| 530 | static int __init setup_hrtimer_hres(char *str) |
| 531 | { |
| 532 | if (!strcmp(str, "off")) |
| 533 | hrtimer_hres_enabled = 0; |
| 534 | else if (!strcmp(str, "on")) |
| 535 | hrtimer_hres_enabled = 1; |
| 536 | else |
| 537 | return 0; |
| 538 | return 1; |
| 539 | } |
| 540 | |
| 541 | __setup("highres=", setup_hrtimer_hres); |
| 542 | |
| 543 | /* |
| 544 | * hrtimer_high_res_enabled - query, if the highres mode is enabled |
| 545 | */ |
| 546 | static inline int hrtimer_is_hres_enabled(void) |
| 547 | { |
| 548 | return hrtimer_hres_enabled; |
| 549 | } |
| 550 | |
| 551 | /* |
| 552 | * Is the high resolution mode active ? |
| 553 | */ |
| 554 | static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) |
| 555 | { |
| 556 | return cpu_base->hres_active; |
| 557 | } |
| 558 | |
| 559 | static inline int hrtimer_hres_active(void) |
| 560 | { |
| 561 | return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); |
| 562 | } |
| 563 | |
| 564 | /* |
| 565 | * Reprogram the event source with checking both queues for the |
| 566 | * next event |
| 567 | * Called with interrupts disabled and base->lock held |
| 568 | */ |
| 569 | static void |
| 570 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) |
| 571 | { |
| 572 | ktime_t expires_next; |
| 573 | |
| 574 | if (!cpu_base->hres_active) |
| 575 | return; |
| 576 | |
| 577 | expires_next = __hrtimer_get_next_event(cpu_base); |
| 578 | |
| 579 | if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) |
| 580 | return; |
| 581 | |
| 582 | cpu_base->expires_next.tv64 = expires_next.tv64; |
| 583 | |
| 584 | /* |
| 585 | * If a hang was detected in the last timer interrupt then we |
| 586 | * leave the hang delay active in the hardware. We want the |
| 587 | * system to make progress. That also prevents the following |
| 588 | * scenario: |
| 589 | * T1 expires 50ms from now |
| 590 | * T2 expires 5s from now |
| 591 | * |
| 592 | * T1 is removed, so this code is called and would reprogram |
| 593 | * the hardware to 5s from now. Any hrtimer_start after that |
| 594 | * will not reprogram the hardware due to hang_detected being |
| 595 | * set. So we'd effectivly block all timers until the T2 event |
| 596 | * fires. |
| 597 | */ |
| 598 | if (cpu_base->hang_detected) |
| 599 | return; |
| 600 | |
| 601 | tick_program_event(cpu_base->expires_next, 1); |
| 602 | } |
| 603 | |
| 604 | /* |
| 605 | * When a timer is enqueued and expires earlier than the already enqueued |
| 606 | * timers, we have to check, whether it expires earlier than the timer for |
| 607 | * which the clock event device was armed. |
| 608 | * |
| 609 | * Called with interrupts disabled and base->cpu_base.lock held |
| 610 | */ |
| 611 | static void hrtimer_reprogram(struct hrtimer *timer, |
| 612 | struct hrtimer_clock_base *base) |
| 613 | { |
| 614 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 615 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
| 616 | |
| 617 | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); |
| 618 | |
| 619 | /* |
| 620 | * If the timer is not on the current cpu, we cannot reprogram |
| 621 | * the other cpus clock event device. |
| 622 | */ |
| 623 | if (base->cpu_base != cpu_base) |
| 624 | return; |
| 625 | |
| 626 | /* |
| 627 | * If the hrtimer interrupt is running, then it will |
| 628 | * reevaluate the clock bases and reprogram the clock event |
| 629 | * device. The callbacks are always executed in hard interrupt |
| 630 | * context so we don't need an extra check for a running |
| 631 | * callback. |
| 632 | */ |
| 633 | if (cpu_base->in_hrtirq) |
| 634 | return; |
| 635 | |
| 636 | /* |
| 637 | * CLOCK_REALTIME timer might be requested with an absolute |
| 638 | * expiry time which is less than base->offset. Set it to 0. |
| 639 | */ |
| 640 | if (expires.tv64 < 0) |
| 641 | expires.tv64 = 0; |
| 642 | |
| 643 | if (expires.tv64 >= cpu_base->expires_next.tv64) |
| 644 | return; |
| 645 | |
| 646 | /* Update the pointer to the next expiring timer */ |
| 647 | cpu_base->next_timer = timer; |
| 648 | |
| 649 | /* |
| 650 | * If a hang was detected in the last timer interrupt then we |
| 651 | * do not schedule a timer which is earlier than the expiry |
| 652 | * which we enforced in the hang detection. We want the system |
| 653 | * to make progress. |
| 654 | */ |
| 655 | if (cpu_base->hang_detected) |
| 656 | return; |
| 657 | |
| 658 | /* |
| 659 | * Program the timer hardware. We enforce the expiry for |
| 660 | * events which are already in the past. |
| 661 | */ |
| 662 | cpu_base->expires_next = expires; |
| 663 | tick_program_event(expires, 1); |
| 664 | } |
| 665 | |
| 666 | /* |
| 667 | * Initialize the high resolution related parts of cpu_base |
| 668 | */ |
| 669 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) |
| 670 | { |
| 671 | base->expires_next.tv64 = KTIME_MAX; |
| 672 | base->hres_active = 0; |
| 673 | } |
| 674 | |
| 675 | /* |
| 676 | * Retrigger next event is called after clock was set |
| 677 | * |
| 678 | * Called with interrupts disabled via on_each_cpu() |
| 679 | */ |
| 680 | static void retrigger_next_event(void *arg) |
| 681 | { |
| 682 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
| 683 | |
| 684 | if (!base->hres_active) |
| 685 | return; |
| 686 | |
| 687 | raw_spin_lock(&base->lock); |
| 688 | hrtimer_update_base(base); |
| 689 | hrtimer_force_reprogram(base, 0); |
| 690 | raw_spin_unlock(&base->lock); |
| 691 | } |
| 692 | |
| 693 | /* |
| 694 | * Switch to high resolution mode |
| 695 | */ |
| 696 | static void hrtimer_switch_to_hres(void) |
| 697 | { |
| 698 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
| 699 | |
| 700 | if (tick_init_highres()) { |
| 701 | printk(KERN_WARNING "Could not switch to high resolution " |
| 702 | "mode on CPU %d\n", base->cpu); |
| 703 | return; |
| 704 | } |
| 705 | base->hres_active = 1; |
| 706 | hrtimer_resolution = HIGH_RES_NSEC; |
| 707 | |
| 708 | tick_setup_sched_timer(); |
| 709 | /* "Retrigger" the interrupt to get things going */ |
| 710 | retrigger_next_event(NULL); |
| 711 | } |
| 712 | |
| 713 | static void clock_was_set_work(struct work_struct *work) |
| 714 | { |
| 715 | clock_was_set(); |
| 716 | } |
| 717 | |
| 718 | static DECLARE_WORK(hrtimer_work, clock_was_set_work); |
| 719 | |
| 720 | /* |
| 721 | * Called from timekeeping and resume code to reprogramm the hrtimer |
| 722 | * interrupt device on all cpus. |
| 723 | */ |
| 724 | void clock_was_set_delayed(void) |
| 725 | { |
| 726 | schedule_work(&hrtimer_work); |
| 727 | } |
| 728 | |
| 729 | #else |
| 730 | |
| 731 | static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; } |
| 732 | static inline int hrtimer_hres_active(void) { return 0; } |
| 733 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
| 734 | static inline void hrtimer_switch_to_hres(void) { } |
| 735 | static inline void |
| 736 | hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } |
| 737 | static inline int hrtimer_reprogram(struct hrtimer *timer, |
| 738 | struct hrtimer_clock_base *base) |
| 739 | { |
| 740 | return 0; |
| 741 | } |
| 742 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } |
| 743 | static inline void retrigger_next_event(void *arg) { } |
| 744 | |
| 745 | #endif /* CONFIG_HIGH_RES_TIMERS */ |
| 746 | |
| 747 | /* |
| 748 | * Clock realtime was set |
| 749 | * |
| 750 | * Change the offset of the realtime clock vs. the monotonic |
| 751 | * clock. |
| 752 | * |
| 753 | * We might have to reprogram the high resolution timer interrupt. On |
| 754 | * SMP we call the architecture specific code to retrigger _all_ high |
| 755 | * resolution timer interrupts. On UP we just disable interrupts and |
| 756 | * call the high resolution interrupt code. |
| 757 | */ |
| 758 | void clock_was_set(void) |
| 759 | { |
| 760 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 761 | /* Retrigger the CPU local events everywhere */ |
| 762 | on_each_cpu(retrigger_next_event, NULL, 1); |
| 763 | #endif |
| 764 | timerfd_clock_was_set(); |
| 765 | } |
| 766 | |
| 767 | /* |
| 768 | * During resume we might have to reprogram the high resolution timer |
| 769 | * interrupt on all online CPUs. However, all other CPUs will be |
| 770 | * stopped with IRQs interrupts disabled so the clock_was_set() call |
| 771 | * must be deferred. |
| 772 | */ |
| 773 | void hrtimers_resume(void) |
| 774 | { |
| 775 | WARN_ONCE(!irqs_disabled(), |
| 776 | KERN_INFO "hrtimers_resume() called with IRQs enabled!"); |
| 777 | |
| 778 | /* Retrigger on the local CPU */ |
| 779 | retrigger_next_event(NULL); |
| 780 | /* And schedule a retrigger for all others */ |
| 781 | clock_was_set_delayed(); |
| 782 | } |
| 783 | |
| 784 | static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) |
| 785 | { |
| 786 | #ifdef CONFIG_TIMER_STATS |
| 787 | if (timer->start_site) |
| 788 | return; |
| 789 | timer->start_site = __builtin_return_address(0); |
| 790 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); |
| 791 | timer->start_pid = current->pid; |
| 792 | #endif |
| 793 | } |
| 794 | |
| 795 | static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) |
| 796 | { |
| 797 | #ifdef CONFIG_TIMER_STATS |
| 798 | timer->start_site = NULL; |
| 799 | #endif |
| 800 | } |
| 801 | |
| 802 | static inline void timer_stats_account_hrtimer(struct hrtimer *timer) |
| 803 | { |
| 804 | #ifdef CONFIG_TIMER_STATS |
| 805 | if (likely(!timer_stats_active)) |
| 806 | return; |
| 807 | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, |
| 808 | timer->function, timer->start_comm, 0); |
| 809 | #endif |
| 810 | } |
| 811 | |
| 812 | /* |
| 813 | * Counterpart to lock_hrtimer_base above: |
| 814 | */ |
| 815 | static inline |
| 816 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| 817 | { |
| 818 | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
| 819 | } |
| 820 | |
| 821 | /** |
| 822 | * hrtimer_forward - forward the timer expiry |
| 823 | * @timer: hrtimer to forward |
| 824 | * @now: forward past this time |
| 825 | * @interval: the interval to forward |
| 826 | * |
| 827 | * Forward the timer expiry so it will expire in the future. |
| 828 | * Returns the number of overruns. |
| 829 | * |
| 830 | * Can be safely called from the callback function of @timer. If |
| 831 | * called from other contexts @timer must neither be enqueued nor |
| 832 | * running the callback and the caller needs to take care of |
| 833 | * serialization. |
| 834 | * |
| 835 | * Note: This only updates the timer expiry value and does not requeue |
| 836 | * the timer. |
| 837 | */ |
| 838 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
| 839 | { |
| 840 | u64 orun = 1; |
| 841 | ktime_t delta; |
| 842 | |
| 843 | delta = ktime_sub(now, hrtimer_get_expires(timer)); |
| 844 | |
| 845 | if (delta.tv64 < 0) |
| 846 | return 0; |
| 847 | |
| 848 | if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) |
| 849 | return 0; |
| 850 | |
| 851 | if (interval.tv64 < hrtimer_resolution) |
| 852 | interval.tv64 = hrtimer_resolution; |
| 853 | |
| 854 | if (unlikely(delta.tv64 >= interval.tv64)) { |
| 855 | s64 incr = ktime_to_ns(interval); |
| 856 | |
| 857 | orun = ktime_divns(delta, incr); |
| 858 | hrtimer_add_expires_ns(timer, incr * orun); |
| 859 | if (hrtimer_get_expires_tv64(timer) > now.tv64) |
| 860 | return orun; |
| 861 | /* |
| 862 | * This (and the ktime_add() below) is the |
| 863 | * correction for exact: |
| 864 | */ |
| 865 | orun++; |
| 866 | } |
| 867 | hrtimer_add_expires(timer, interval); |
| 868 | |
| 869 | return orun; |
| 870 | } |
| 871 | EXPORT_SYMBOL_GPL(hrtimer_forward); |
| 872 | |
| 873 | /* |
| 874 | * enqueue_hrtimer - internal function to (re)start a timer |
| 875 | * |
| 876 | * The timer is inserted in expiry order. Insertion into the |
| 877 | * red black tree is O(log(n)). Must hold the base lock. |
| 878 | * |
| 879 | * Returns 1 when the new timer is the leftmost timer in the tree. |
| 880 | */ |
| 881 | static int enqueue_hrtimer(struct hrtimer *timer, |
| 882 | struct hrtimer_clock_base *base) |
| 883 | { |
| 884 | debug_activate(timer); |
| 885 | |
| 886 | base->cpu_base->active_bases |= 1 << base->index; |
| 887 | |
| 888 | timer->state = HRTIMER_STATE_ENQUEUED; |
| 889 | |
| 890 | return timerqueue_add(&base->active, &timer->node); |
| 891 | } |
| 892 | |
| 893 | /* |
| 894 | * __remove_hrtimer - internal function to remove a timer |
| 895 | * |
| 896 | * Caller must hold the base lock. |
| 897 | * |
| 898 | * High resolution timer mode reprograms the clock event device when the |
| 899 | * timer is the one which expires next. The caller can disable this by setting |
| 900 | * reprogram to zero. This is useful, when the context does a reprogramming |
| 901 | * anyway (e.g. timer interrupt) |
| 902 | */ |
| 903 | static void __remove_hrtimer(struct hrtimer *timer, |
| 904 | struct hrtimer_clock_base *base, |
| 905 | u8 newstate, int reprogram) |
| 906 | { |
| 907 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
| 908 | u8 state = timer->state; |
| 909 | |
| 910 | timer->state = newstate; |
| 911 | if (!(state & HRTIMER_STATE_ENQUEUED)) |
| 912 | return; |
| 913 | |
| 914 | if (!timerqueue_del(&base->active, &timer->node)) |
| 915 | cpu_base->active_bases &= ~(1 << base->index); |
| 916 | |
| 917 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 918 | /* |
| 919 | * Note: If reprogram is false we do not update |
| 920 | * cpu_base->next_timer. This happens when we remove the first |
| 921 | * timer on a remote cpu. No harm as we never dereference |
| 922 | * cpu_base->next_timer. So the worst thing what can happen is |
| 923 | * an superflous call to hrtimer_force_reprogram() on the |
| 924 | * remote cpu later on if the same timer gets enqueued again. |
| 925 | */ |
| 926 | if (reprogram && timer == cpu_base->next_timer) |
| 927 | hrtimer_force_reprogram(cpu_base, 1); |
| 928 | #endif |
| 929 | } |
| 930 | |
| 931 | /* |
| 932 | * remove hrtimer, called with base lock held |
| 933 | */ |
| 934 | static inline int |
| 935 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) |
| 936 | { |
| 937 | if (hrtimer_is_queued(timer)) { |
| 938 | u8 state = timer->state; |
| 939 | int reprogram; |
| 940 | |
| 941 | /* |
| 942 | * Remove the timer and force reprogramming when high |
| 943 | * resolution mode is active and the timer is on the current |
| 944 | * CPU. If we remove a timer on another CPU, reprogramming is |
| 945 | * skipped. The interrupt event on this CPU is fired and |
| 946 | * reprogramming happens in the interrupt handler. This is a |
| 947 | * rare case and less expensive than a smp call. |
| 948 | */ |
| 949 | debug_deactivate(timer); |
| 950 | timer_stats_hrtimer_clear_start_info(timer); |
| 951 | reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); |
| 952 | |
| 953 | if (!restart) |
| 954 | state = HRTIMER_STATE_INACTIVE; |
| 955 | |
| 956 | __remove_hrtimer(timer, base, state, reprogram); |
| 957 | return 1; |
| 958 | } |
| 959 | return 0; |
| 960 | } |
| 961 | |
| 962 | static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, |
| 963 | const enum hrtimer_mode mode) |
| 964 | { |
| 965 | #ifdef CONFIG_TIME_LOW_RES |
| 966 | /* |
| 967 | * CONFIG_TIME_LOW_RES indicates that the system has no way to return |
| 968 | * granular time values. For relative timers we add hrtimer_resolution |
| 969 | * (i.e. one jiffie) to prevent short timeouts. |
| 970 | */ |
| 971 | timer->is_rel = mode & HRTIMER_MODE_REL; |
| 972 | if (timer->is_rel) |
| 973 | tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution)); |
| 974 | #endif |
| 975 | return tim; |
| 976 | } |
| 977 | |
| 978 | /** |
| 979 | * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU |
| 980 | * @timer: the timer to be added |
| 981 | * @tim: expiry time |
| 982 | * @delta_ns: "slack" range for the timer |
| 983 | * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or |
| 984 | * relative (HRTIMER_MODE_REL) |
| 985 | */ |
| 986 | void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
| 987 | unsigned long delta_ns, const enum hrtimer_mode mode) |
| 988 | { |
| 989 | struct hrtimer_clock_base *base, *new_base; |
| 990 | unsigned long flags; |
| 991 | int leftmost; |
| 992 | |
| 993 | base = lock_hrtimer_base(timer, &flags); |
| 994 | |
| 995 | /* Remove an active timer from the queue: */ |
| 996 | remove_hrtimer(timer, base, true); |
| 997 | |
| 998 | if (mode & HRTIMER_MODE_REL) |
| 999 | tim = ktime_add_safe(tim, base->get_time()); |
| 1000 | |
| 1001 | tim = hrtimer_update_lowres(timer, tim, mode); |
| 1002 | |
| 1003 | hrtimer_set_expires_range_ns(timer, tim, delta_ns); |
| 1004 | |
| 1005 | /* Switch the timer base, if necessary: */ |
| 1006 | new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); |
| 1007 | |
| 1008 | timer_stats_hrtimer_set_start_info(timer); |
| 1009 | |
| 1010 | leftmost = enqueue_hrtimer(timer, new_base); |
| 1011 | if (!leftmost) |
| 1012 | goto unlock; |
| 1013 | |
| 1014 | if (!hrtimer_is_hres_active(timer)) { |
| 1015 | /* |
| 1016 | * Kick to reschedule the next tick to handle the new timer |
| 1017 | * on dynticks target. |
| 1018 | */ |
| 1019 | if (new_base->cpu_base->nohz_active) |
| 1020 | wake_up_nohz_cpu(new_base->cpu_base->cpu); |
| 1021 | } else { |
| 1022 | hrtimer_reprogram(timer, new_base); |
| 1023 | } |
| 1024 | unlock: |
| 1025 | unlock_hrtimer_base(timer, &flags); |
| 1026 | } |
| 1027 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); |
| 1028 | |
| 1029 | /** |
| 1030 | * hrtimer_try_to_cancel - try to deactivate a timer |
| 1031 | * @timer: hrtimer to stop |
| 1032 | * |
| 1033 | * Returns: |
| 1034 | * 0 when the timer was not active |
| 1035 | * 1 when the timer was active |
| 1036 | * -1 when the timer is currently excuting the callback function and |
| 1037 | * cannot be stopped |
| 1038 | */ |
| 1039 | int hrtimer_try_to_cancel(struct hrtimer *timer) |
| 1040 | { |
| 1041 | struct hrtimer_clock_base *base; |
| 1042 | unsigned long flags; |
| 1043 | int ret = -1; |
| 1044 | |
| 1045 | /* |
| 1046 | * Check lockless first. If the timer is not active (neither |
| 1047 | * enqueued nor running the callback, nothing to do here. The |
| 1048 | * base lock does not serialize against a concurrent enqueue, |
| 1049 | * so we can avoid taking it. |
| 1050 | */ |
| 1051 | if (!hrtimer_active(timer)) |
| 1052 | return 0; |
| 1053 | |
| 1054 | base = lock_hrtimer_base(timer, &flags); |
| 1055 | |
| 1056 | if (!hrtimer_callback_running(timer)) |
| 1057 | ret = remove_hrtimer(timer, base, false); |
| 1058 | |
| 1059 | unlock_hrtimer_base(timer, &flags); |
| 1060 | |
| 1061 | return ret; |
| 1062 | |
| 1063 | } |
| 1064 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
| 1065 | |
| 1066 | /** |
| 1067 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. |
| 1068 | * @timer: the timer to be cancelled |
| 1069 | * |
| 1070 | * Returns: |
| 1071 | * 0 when the timer was not active |
| 1072 | * 1 when the timer was active |
| 1073 | */ |
| 1074 | int hrtimer_cancel(struct hrtimer *timer) |
| 1075 | { |
| 1076 | for (;;) { |
| 1077 | int ret = hrtimer_try_to_cancel(timer); |
| 1078 | |
| 1079 | if (ret >= 0) |
| 1080 | return ret; |
| 1081 | cpu_relax(); |
| 1082 | } |
| 1083 | } |
| 1084 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
| 1085 | |
| 1086 | /** |
| 1087 | * hrtimer_get_remaining - get remaining time for the timer |
| 1088 | * @timer: the timer to read |
| 1089 | * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y |
| 1090 | */ |
| 1091 | ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) |
| 1092 | { |
| 1093 | unsigned long flags; |
| 1094 | ktime_t rem; |
| 1095 | |
| 1096 | lock_hrtimer_base(timer, &flags); |
| 1097 | if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) |
| 1098 | rem = hrtimer_expires_remaining_adjusted(timer); |
| 1099 | else |
| 1100 | rem = hrtimer_expires_remaining(timer); |
| 1101 | unlock_hrtimer_base(timer, &flags); |
| 1102 | |
| 1103 | return rem; |
| 1104 | } |
| 1105 | EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); |
| 1106 | |
| 1107 | #ifdef CONFIG_NO_HZ_COMMON |
| 1108 | /** |
| 1109 | * hrtimer_get_next_event - get the time until next expiry event |
| 1110 | * |
| 1111 | * Returns the next expiry time or KTIME_MAX if no timer is pending. |
| 1112 | */ |
| 1113 | u64 hrtimer_get_next_event(void) |
| 1114 | { |
| 1115 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 1116 | u64 expires = KTIME_MAX; |
| 1117 | unsigned long flags; |
| 1118 | |
| 1119 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
| 1120 | |
| 1121 | if (!__hrtimer_hres_active(cpu_base)) |
| 1122 | expires = __hrtimer_get_next_event(cpu_base).tv64; |
| 1123 | |
| 1124 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
| 1125 | |
| 1126 | return expires; |
| 1127 | } |
| 1128 | #endif |
| 1129 | |
| 1130 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| 1131 | enum hrtimer_mode mode) |
| 1132 | { |
| 1133 | struct hrtimer_cpu_base *cpu_base; |
| 1134 | int base; |
| 1135 | |
| 1136 | memset(timer, 0, sizeof(struct hrtimer)); |
| 1137 | |
| 1138 | cpu_base = raw_cpu_ptr(&hrtimer_bases); |
| 1139 | |
| 1140 | if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) |
| 1141 | clock_id = CLOCK_MONOTONIC; |
| 1142 | |
| 1143 | base = hrtimer_clockid_to_base(clock_id); |
| 1144 | timer->base = &cpu_base->clock_base[base]; |
| 1145 | timerqueue_init(&timer->node); |
| 1146 | |
| 1147 | #ifdef CONFIG_TIMER_STATS |
| 1148 | timer->start_site = NULL; |
| 1149 | timer->start_pid = -1; |
| 1150 | memset(timer->start_comm, 0, TASK_COMM_LEN); |
| 1151 | #endif |
| 1152 | } |
| 1153 | |
| 1154 | /** |
| 1155 | * hrtimer_init - initialize a timer to the given clock |
| 1156 | * @timer: the timer to be initialized |
| 1157 | * @clock_id: the clock to be used |
| 1158 | * @mode: timer mode abs/rel |
| 1159 | */ |
| 1160 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| 1161 | enum hrtimer_mode mode) |
| 1162 | { |
| 1163 | debug_init(timer, clock_id, mode); |
| 1164 | __hrtimer_init(timer, clock_id, mode); |
| 1165 | } |
| 1166 | EXPORT_SYMBOL_GPL(hrtimer_init); |
| 1167 | |
| 1168 | /* |
| 1169 | * A timer is active, when it is enqueued into the rbtree or the |
| 1170 | * callback function is running or it's in the state of being migrated |
| 1171 | * to another cpu. |
| 1172 | * |
| 1173 | * It is important for this function to not return a false negative. |
| 1174 | */ |
| 1175 | bool hrtimer_active(const struct hrtimer *timer) |
| 1176 | { |
| 1177 | struct hrtimer_cpu_base *cpu_base; |
| 1178 | unsigned int seq; |
| 1179 | |
| 1180 | do { |
| 1181 | cpu_base = READ_ONCE(timer->base->cpu_base); |
| 1182 | seq = raw_read_seqcount_begin(&cpu_base->seq); |
| 1183 | |
| 1184 | if (timer->state != HRTIMER_STATE_INACTIVE || |
| 1185 | cpu_base->running == timer) |
| 1186 | return true; |
| 1187 | |
| 1188 | } while (read_seqcount_retry(&cpu_base->seq, seq) || |
| 1189 | cpu_base != READ_ONCE(timer->base->cpu_base)); |
| 1190 | |
| 1191 | return false; |
| 1192 | } |
| 1193 | EXPORT_SYMBOL_GPL(hrtimer_active); |
| 1194 | |
| 1195 | /* |
| 1196 | * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 |
| 1197 | * distinct sections: |
| 1198 | * |
| 1199 | * - queued: the timer is queued |
| 1200 | * - callback: the timer is being ran |
| 1201 | * - post: the timer is inactive or (re)queued |
| 1202 | * |
| 1203 | * On the read side we ensure we observe timer->state and cpu_base->running |
| 1204 | * from the same section, if anything changed while we looked at it, we retry. |
| 1205 | * This includes timer->base changing because sequence numbers alone are |
| 1206 | * insufficient for that. |
| 1207 | * |
| 1208 | * The sequence numbers are required because otherwise we could still observe |
| 1209 | * a false negative if the read side got smeared over multiple consequtive |
| 1210 | * __run_hrtimer() invocations. |
| 1211 | */ |
| 1212 | |
| 1213 | static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, |
| 1214 | struct hrtimer_clock_base *base, |
| 1215 | struct hrtimer *timer, ktime_t *now) |
| 1216 | { |
| 1217 | enum hrtimer_restart (*fn)(struct hrtimer *); |
| 1218 | int restart; |
| 1219 | |
| 1220 | lockdep_assert_held(&cpu_base->lock); |
| 1221 | |
| 1222 | debug_deactivate(timer); |
| 1223 | cpu_base->running = timer; |
| 1224 | |
| 1225 | /* |
| 1226 | * Separate the ->running assignment from the ->state assignment. |
| 1227 | * |
| 1228 | * As with a regular write barrier, this ensures the read side in |
| 1229 | * hrtimer_active() cannot observe cpu_base->running == NULL && |
| 1230 | * timer->state == INACTIVE. |
| 1231 | */ |
| 1232 | raw_write_seqcount_barrier(&cpu_base->seq); |
| 1233 | |
| 1234 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); |
| 1235 | timer_stats_account_hrtimer(timer); |
| 1236 | fn = timer->function; |
| 1237 | |
| 1238 | /* |
| 1239 | * Clear the 'is relative' flag for the TIME_LOW_RES case. If the |
| 1240 | * timer is restarted with a period then it becomes an absolute |
| 1241 | * timer. If its not restarted it does not matter. |
| 1242 | */ |
| 1243 | if (IS_ENABLED(CONFIG_TIME_LOW_RES)) |
| 1244 | timer->is_rel = false; |
| 1245 | |
| 1246 | /* |
| 1247 | * Because we run timers from hardirq context, there is no chance |
| 1248 | * they get migrated to another cpu, therefore its safe to unlock |
| 1249 | * the timer base. |
| 1250 | */ |
| 1251 | raw_spin_unlock(&cpu_base->lock); |
| 1252 | trace_hrtimer_expire_entry(timer, now); |
| 1253 | restart = fn(timer); |
| 1254 | trace_hrtimer_expire_exit(timer); |
| 1255 | raw_spin_lock(&cpu_base->lock); |
| 1256 | |
| 1257 | /* |
| 1258 | * Note: We clear the running state after enqueue_hrtimer and |
| 1259 | * we do not reprogramm the event hardware. Happens either in |
| 1260 | * hrtimer_start_range_ns() or in hrtimer_interrupt() |
| 1261 | * |
| 1262 | * Note: Because we dropped the cpu_base->lock above, |
| 1263 | * hrtimer_start_range_ns() can have popped in and enqueued the timer |
| 1264 | * for us already. |
| 1265 | */ |
| 1266 | if (restart != HRTIMER_NORESTART && |
| 1267 | !(timer->state & HRTIMER_STATE_ENQUEUED)) |
| 1268 | enqueue_hrtimer(timer, base); |
| 1269 | |
| 1270 | /* |
| 1271 | * Separate the ->running assignment from the ->state assignment. |
| 1272 | * |
| 1273 | * As with a regular write barrier, this ensures the read side in |
| 1274 | * hrtimer_active() cannot observe cpu_base->running == NULL && |
| 1275 | * timer->state == INACTIVE. |
| 1276 | */ |
| 1277 | raw_write_seqcount_barrier(&cpu_base->seq); |
| 1278 | |
| 1279 | WARN_ON_ONCE(cpu_base->running != timer); |
| 1280 | cpu_base->running = NULL; |
| 1281 | } |
| 1282 | |
| 1283 | static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now) |
| 1284 | { |
| 1285 | struct hrtimer_clock_base *base = cpu_base->clock_base; |
| 1286 | unsigned int active = cpu_base->active_bases; |
| 1287 | |
| 1288 | for (; active; base++, active >>= 1) { |
| 1289 | struct timerqueue_node *node; |
| 1290 | ktime_t basenow; |
| 1291 | |
| 1292 | if (!(active & 0x01)) |
| 1293 | continue; |
| 1294 | |
| 1295 | basenow = ktime_add(now, base->offset); |
| 1296 | |
| 1297 | while ((node = timerqueue_getnext(&base->active))) { |
| 1298 | struct hrtimer *timer; |
| 1299 | |
| 1300 | timer = container_of(node, struct hrtimer, node); |
| 1301 | |
| 1302 | /* |
| 1303 | * The immediate goal for using the softexpires is |
| 1304 | * minimizing wakeups, not running timers at the |
| 1305 | * earliest interrupt after their soft expiration. |
| 1306 | * This allows us to avoid using a Priority Search |
| 1307 | * Tree, which can answer a stabbing querry for |
| 1308 | * overlapping intervals and instead use the simple |
| 1309 | * BST we already have. |
| 1310 | * We don't add extra wakeups by delaying timers that |
| 1311 | * are right-of a not yet expired timer, because that |
| 1312 | * timer will have to trigger a wakeup anyway. |
| 1313 | */ |
| 1314 | if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) |
| 1315 | break; |
| 1316 | |
| 1317 | __run_hrtimer(cpu_base, base, timer, &basenow); |
| 1318 | } |
| 1319 | } |
| 1320 | } |
| 1321 | |
| 1322 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 1323 | |
| 1324 | /* |
| 1325 | * High resolution timer interrupt |
| 1326 | * Called with interrupts disabled |
| 1327 | */ |
| 1328 | void hrtimer_interrupt(struct clock_event_device *dev) |
| 1329 | { |
| 1330 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 1331 | ktime_t expires_next, now, entry_time, delta; |
| 1332 | int retries = 0; |
| 1333 | |
| 1334 | BUG_ON(!cpu_base->hres_active); |
| 1335 | cpu_base->nr_events++; |
| 1336 | dev->next_event.tv64 = KTIME_MAX; |
| 1337 | |
| 1338 | raw_spin_lock(&cpu_base->lock); |
| 1339 | entry_time = now = hrtimer_update_base(cpu_base); |
| 1340 | retry: |
| 1341 | cpu_base->in_hrtirq = 1; |
| 1342 | /* |
| 1343 | * We set expires_next to KTIME_MAX here with cpu_base->lock |
| 1344 | * held to prevent that a timer is enqueued in our queue via |
| 1345 | * the migration code. This does not affect enqueueing of |
| 1346 | * timers which run their callback and need to be requeued on |
| 1347 | * this CPU. |
| 1348 | */ |
| 1349 | cpu_base->expires_next.tv64 = KTIME_MAX; |
| 1350 | |
| 1351 | __hrtimer_run_queues(cpu_base, now); |
| 1352 | |
| 1353 | /* Reevaluate the clock bases for the next expiry */ |
| 1354 | expires_next = __hrtimer_get_next_event(cpu_base); |
| 1355 | /* |
| 1356 | * Store the new expiry value so the migration code can verify |
| 1357 | * against it. |
| 1358 | */ |
| 1359 | cpu_base->expires_next = expires_next; |
| 1360 | cpu_base->in_hrtirq = 0; |
| 1361 | raw_spin_unlock(&cpu_base->lock); |
| 1362 | |
| 1363 | /* Reprogramming necessary ? */ |
| 1364 | if (!tick_program_event(expires_next, 0)) { |
| 1365 | cpu_base->hang_detected = 0; |
| 1366 | return; |
| 1367 | } |
| 1368 | |
| 1369 | /* |
| 1370 | * The next timer was already expired due to: |
| 1371 | * - tracing |
| 1372 | * - long lasting callbacks |
| 1373 | * - being scheduled away when running in a VM |
| 1374 | * |
| 1375 | * We need to prevent that we loop forever in the hrtimer |
| 1376 | * interrupt routine. We give it 3 attempts to avoid |
| 1377 | * overreacting on some spurious event. |
| 1378 | * |
| 1379 | * Acquire base lock for updating the offsets and retrieving |
| 1380 | * the current time. |
| 1381 | */ |
| 1382 | raw_spin_lock(&cpu_base->lock); |
| 1383 | now = hrtimer_update_base(cpu_base); |
| 1384 | cpu_base->nr_retries++; |
| 1385 | if (++retries < 3) |
| 1386 | goto retry; |
| 1387 | /* |
| 1388 | * Give the system a chance to do something else than looping |
| 1389 | * here. We stored the entry time, so we know exactly how long |
| 1390 | * we spent here. We schedule the next event this amount of |
| 1391 | * time away. |
| 1392 | */ |
| 1393 | cpu_base->nr_hangs++; |
| 1394 | cpu_base->hang_detected = 1; |
| 1395 | raw_spin_unlock(&cpu_base->lock); |
| 1396 | delta = ktime_sub(now, entry_time); |
| 1397 | if ((unsigned int)delta.tv64 > cpu_base->max_hang_time) |
| 1398 | cpu_base->max_hang_time = (unsigned int) delta.tv64; |
| 1399 | /* |
| 1400 | * Limit it to a sensible value as we enforce a longer |
| 1401 | * delay. Give the CPU at least 100ms to catch up. |
| 1402 | */ |
| 1403 | if (delta.tv64 > 100 * NSEC_PER_MSEC) |
| 1404 | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); |
| 1405 | else |
| 1406 | expires_next = ktime_add(now, delta); |
| 1407 | tick_program_event(expires_next, 1); |
| 1408 | printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", |
| 1409 | ktime_to_ns(delta)); |
| 1410 | } |
| 1411 | |
| 1412 | /* |
| 1413 | * local version of hrtimer_peek_ahead_timers() called with interrupts |
| 1414 | * disabled. |
| 1415 | */ |
| 1416 | static inline void __hrtimer_peek_ahead_timers(void) |
| 1417 | { |
| 1418 | struct tick_device *td; |
| 1419 | |
| 1420 | if (!hrtimer_hres_active()) |
| 1421 | return; |
| 1422 | |
| 1423 | td = this_cpu_ptr(&tick_cpu_device); |
| 1424 | if (td && td->evtdev) |
| 1425 | hrtimer_interrupt(td->evtdev); |
| 1426 | } |
| 1427 | |
| 1428 | #else /* CONFIG_HIGH_RES_TIMERS */ |
| 1429 | |
| 1430 | static inline void __hrtimer_peek_ahead_timers(void) { } |
| 1431 | |
| 1432 | #endif /* !CONFIG_HIGH_RES_TIMERS */ |
| 1433 | |
| 1434 | /* |
| 1435 | * Called from run_local_timers in hardirq context every jiffy |
| 1436 | */ |
| 1437 | void hrtimer_run_queues(void) |
| 1438 | { |
| 1439 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
| 1440 | ktime_t now; |
| 1441 | |
| 1442 | if (__hrtimer_hres_active(cpu_base)) |
| 1443 | return; |
| 1444 | |
| 1445 | /* |
| 1446 | * This _is_ ugly: We have to check periodically, whether we |
| 1447 | * can switch to highres and / or nohz mode. The clocksource |
| 1448 | * switch happens with xtime_lock held. Notification from |
| 1449 | * there only sets the check bit in the tick_oneshot code, |
| 1450 | * otherwise we might deadlock vs. xtime_lock. |
| 1451 | */ |
| 1452 | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { |
| 1453 | hrtimer_switch_to_hres(); |
| 1454 | return; |
| 1455 | } |
| 1456 | |
| 1457 | raw_spin_lock(&cpu_base->lock); |
| 1458 | now = hrtimer_update_base(cpu_base); |
| 1459 | __hrtimer_run_queues(cpu_base, now); |
| 1460 | raw_spin_unlock(&cpu_base->lock); |
| 1461 | } |
| 1462 | |
| 1463 | /* |
| 1464 | * Sleep related functions: |
| 1465 | */ |
| 1466 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
| 1467 | { |
| 1468 | struct hrtimer_sleeper *t = |
| 1469 | container_of(timer, struct hrtimer_sleeper, timer); |
| 1470 | struct task_struct *task = t->task; |
| 1471 | |
| 1472 | t->task = NULL; |
| 1473 | if (task) |
| 1474 | wake_up_process(task); |
| 1475 | |
| 1476 | return HRTIMER_NORESTART; |
| 1477 | } |
| 1478 | |
| 1479 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) |
| 1480 | { |
| 1481 | sl->timer.function = hrtimer_wakeup; |
| 1482 | sl->task = task; |
| 1483 | } |
| 1484 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); |
| 1485 | |
| 1486 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
| 1487 | { |
| 1488 | hrtimer_init_sleeper(t, current); |
| 1489 | |
| 1490 | do { |
| 1491 | set_current_state(TASK_INTERRUPTIBLE); |
| 1492 | hrtimer_start_expires(&t->timer, mode); |
| 1493 | |
| 1494 | if (likely(t->task)) |
| 1495 | freezable_schedule(); |
| 1496 | |
| 1497 | hrtimer_cancel(&t->timer); |
| 1498 | mode = HRTIMER_MODE_ABS; |
| 1499 | |
| 1500 | } while (t->task && !signal_pending(current)); |
| 1501 | |
| 1502 | __set_current_state(TASK_RUNNING); |
| 1503 | |
| 1504 | return t->task == NULL; |
| 1505 | } |
| 1506 | |
| 1507 | static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) |
| 1508 | { |
| 1509 | struct timespec rmt; |
| 1510 | ktime_t rem; |
| 1511 | |
| 1512 | rem = hrtimer_expires_remaining(timer); |
| 1513 | if (rem.tv64 <= 0) |
| 1514 | return 0; |
| 1515 | rmt = ktime_to_timespec(rem); |
| 1516 | |
| 1517 | if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) |
| 1518 | return -EFAULT; |
| 1519 | |
| 1520 | return 1; |
| 1521 | } |
| 1522 | |
| 1523 | long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
| 1524 | { |
| 1525 | struct hrtimer_sleeper t; |
| 1526 | struct timespec __user *rmtp; |
| 1527 | int ret = 0; |
| 1528 | |
| 1529 | hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, |
| 1530 | HRTIMER_MODE_ABS); |
| 1531 | hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); |
| 1532 | |
| 1533 | if (do_nanosleep(&t, HRTIMER_MODE_ABS)) |
| 1534 | goto out; |
| 1535 | |
| 1536 | rmtp = restart->nanosleep.rmtp; |
| 1537 | if (rmtp) { |
| 1538 | ret = update_rmtp(&t.timer, rmtp); |
| 1539 | if (ret <= 0) |
| 1540 | goto out; |
| 1541 | } |
| 1542 | |
| 1543 | /* The other values in restart are already filled in */ |
| 1544 | ret = -ERESTART_RESTARTBLOCK; |
| 1545 | out: |
| 1546 | destroy_hrtimer_on_stack(&t.timer); |
| 1547 | return ret; |
| 1548 | } |
| 1549 | |
| 1550 | long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, |
| 1551 | const enum hrtimer_mode mode, const clockid_t clockid) |
| 1552 | { |
| 1553 | struct restart_block *restart; |
| 1554 | struct hrtimer_sleeper t; |
| 1555 | int ret = 0; |
| 1556 | unsigned long slack; |
| 1557 | |
| 1558 | slack = current->timer_slack_ns; |
| 1559 | if (dl_task(current) || rt_task(current)) |
| 1560 | slack = 0; |
| 1561 | |
| 1562 | hrtimer_init_on_stack(&t.timer, clockid, mode); |
| 1563 | hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); |
| 1564 | if (do_nanosleep(&t, mode)) |
| 1565 | goto out; |
| 1566 | |
| 1567 | /* Absolute timers do not update the rmtp value and restart: */ |
| 1568 | if (mode == HRTIMER_MODE_ABS) { |
| 1569 | ret = -ERESTARTNOHAND; |
| 1570 | goto out; |
| 1571 | } |
| 1572 | |
| 1573 | if (rmtp) { |
| 1574 | ret = update_rmtp(&t.timer, rmtp); |
| 1575 | if (ret <= 0) |
| 1576 | goto out; |
| 1577 | } |
| 1578 | |
| 1579 | restart = ¤t->restart_block; |
| 1580 | restart->fn = hrtimer_nanosleep_restart; |
| 1581 | restart->nanosleep.clockid = t.timer.base->clockid; |
| 1582 | restart->nanosleep.rmtp = rmtp; |
| 1583 | restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); |
| 1584 | |
| 1585 | ret = -ERESTART_RESTARTBLOCK; |
| 1586 | out: |
| 1587 | destroy_hrtimer_on_stack(&t.timer); |
| 1588 | return ret; |
| 1589 | } |
| 1590 | |
| 1591 | SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, |
| 1592 | struct timespec __user *, rmtp) |
| 1593 | { |
| 1594 | struct timespec tu; |
| 1595 | |
| 1596 | if (copy_from_user(&tu, rqtp, sizeof(tu))) |
| 1597 | return -EFAULT; |
| 1598 | |
| 1599 | if (!timespec_valid(&tu)) |
| 1600 | return -EINVAL; |
| 1601 | |
| 1602 | return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); |
| 1603 | } |
| 1604 | |
| 1605 | /* |
| 1606 | * Functions related to boot-time initialization: |
| 1607 | */ |
| 1608 | static void init_hrtimers_cpu(int cpu) |
| 1609 | { |
| 1610 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
| 1611 | int i; |
| 1612 | |
| 1613 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
| 1614 | cpu_base->clock_base[i].cpu_base = cpu_base; |
| 1615 | timerqueue_init_head(&cpu_base->clock_base[i].active); |
| 1616 | } |
| 1617 | |
| 1618 | cpu_base->cpu = cpu; |
| 1619 | hrtimer_init_hres(cpu_base); |
| 1620 | } |
| 1621 | |
| 1622 | #ifdef CONFIG_HOTPLUG_CPU |
| 1623 | |
| 1624 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
| 1625 | struct hrtimer_clock_base *new_base) |
| 1626 | { |
| 1627 | struct hrtimer *timer; |
| 1628 | struct timerqueue_node *node; |
| 1629 | |
| 1630 | while ((node = timerqueue_getnext(&old_base->active))) { |
| 1631 | timer = container_of(node, struct hrtimer, node); |
| 1632 | BUG_ON(hrtimer_callback_running(timer)); |
| 1633 | debug_deactivate(timer); |
| 1634 | |
| 1635 | /* |
| 1636 | * Mark it as ENQUEUED not INACTIVE otherwise the |
| 1637 | * timer could be seen as !active and just vanish away |
| 1638 | * under us on another CPU |
| 1639 | */ |
| 1640 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); |
| 1641 | timer->base = new_base; |
| 1642 | /* |
| 1643 | * Enqueue the timers on the new cpu. This does not |
| 1644 | * reprogram the event device in case the timer |
| 1645 | * expires before the earliest on this CPU, but we run |
| 1646 | * hrtimer_interrupt after we migrated everything to |
| 1647 | * sort out already expired timers and reprogram the |
| 1648 | * event device. |
| 1649 | */ |
| 1650 | enqueue_hrtimer(timer, new_base); |
| 1651 | } |
| 1652 | } |
| 1653 | |
| 1654 | static void migrate_hrtimers(int scpu) |
| 1655 | { |
| 1656 | struct hrtimer_cpu_base *old_base, *new_base; |
| 1657 | int i; |
| 1658 | |
| 1659 | BUG_ON(cpu_online(scpu)); |
| 1660 | tick_cancel_sched_timer(scpu); |
| 1661 | |
| 1662 | local_irq_disable(); |
| 1663 | old_base = &per_cpu(hrtimer_bases, scpu); |
| 1664 | new_base = this_cpu_ptr(&hrtimer_bases); |
| 1665 | /* |
| 1666 | * The caller is globally serialized and nobody else |
| 1667 | * takes two locks at once, deadlock is not possible. |
| 1668 | */ |
| 1669 | raw_spin_lock(&new_base->lock); |
| 1670 | raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
| 1671 | |
| 1672 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
| 1673 | migrate_hrtimer_list(&old_base->clock_base[i], |
| 1674 | &new_base->clock_base[i]); |
| 1675 | } |
| 1676 | |
| 1677 | raw_spin_unlock(&old_base->lock); |
| 1678 | raw_spin_unlock(&new_base->lock); |
| 1679 | |
| 1680 | /* Check, if we got expired work to do */ |
| 1681 | __hrtimer_peek_ahead_timers(); |
| 1682 | local_irq_enable(); |
| 1683 | } |
| 1684 | |
| 1685 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 1686 | |
| 1687 | static int hrtimer_cpu_notify(struct notifier_block *self, |
| 1688 | unsigned long action, void *hcpu) |
| 1689 | { |
| 1690 | int scpu = (long)hcpu; |
| 1691 | |
| 1692 | switch (action) { |
| 1693 | |
| 1694 | case CPU_UP_PREPARE: |
| 1695 | case CPU_UP_PREPARE_FROZEN: |
| 1696 | init_hrtimers_cpu(scpu); |
| 1697 | break; |
| 1698 | |
| 1699 | #ifdef CONFIG_HOTPLUG_CPU |
| 1700 | case CPU_DEAD: |
| 1701 | case CPU_DEAD_FROZEN: |
| 1702 | migrate_hrtimers(scpu); |
| 1703 | break; |
| 1704 | #endif |
| 1705 | |
| 1706 | default: |
| 1707 | break; |
| 1708 | } |
| 1709 | |
| 1710 | return NOTIFY_OK; |
| 1711 | } |
| 1712 | |
| 1713 | static struct notifier_block hrtimers_nb = { |
| 1714 | .notifier_call = hrtimer_cpu_notify, |
| 1715 | }; |
| 1716 | |
| 1717 | void __init hrtimers_init(void) |
| 1718 | { |
| 1719 | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, |
| 1720 | (void *)(long)smp_processor_id()); |
| 1721 | register_cpu_notifier(&hrtimers_nb); |
| 1722 | } |
| 1723 | |
| 1724 | /** |
| 1725 | * schedule_hrtimeout_range_clock - sleep until timeout |
| 1726 | * @expires: timeout value (ktime_t) |
| 1727 | * @delta: slack in expires timeout (ktime_t) |
| 1728 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL |
| 1729 | * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME |
| 1730 | */ |
| 1731 | int __sched |
| 1732 | schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, |
| 1733 | const enum hrtimer_mode mode, int clock) |
| 1734 | { |
| 1735 | struct hrtimer_sleeper t; |
| 1736 | |
| 1737 | /* |
| 1738 | * Optimize when a zero timeout value is given. It does not |
| 1739 | * matter whether this is an absolute or a relative time. |
| 1740 | */ |
| 1741 | if (expires && !expires->tv64) { |
| 1742 | __set_current_state(TASK_RUNNING); |
| 1743 | return 0; |
| 1744 | } |
| 1745 | |
| 1746 | /* |
| 1747 | * A NULL parameter means "infinite" |
| 1748 | */ |
| 1749 | if (!expires) { |
| 1750 | schedule(); |
| 1751 | return -EINTR; |
| 1752 | } |
| 1753 | |
| 1754 | hrtimer_init_on_stack(&t.timer, clock, mode); |
| 1755 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
| 1756 | |
| 1757 | hrtimer_init_sleeper(&t, current); |
| 1758 | |
| 1759 | hrtimer_start_expires(&t.timer, mode); |
| 1760 | |
| 1761 | if (likely(t.task)) |
| 1762 | schedule(); |
| 1763 | |
| 1764 | hrtimer_cancel(&t.timer); |
| 1765 | destroy_hrtimer_on_stack(&t.timer); |
| 1766 | |
| 1767 | __set_current_state(TASK_RUNNING); |
| 1768 | |
| 1769 | return !t.task ? 0 : -EINTR; |
| 1770 | } |
| 1771 | |
| 1772 | /** |
| 1773 | * schedule_hrtimeout_range - sleep until timeout |
| 1774 | * @expires: timeout value (ktime_t) |
| 1775 | * @delta: slack in expires timeout (ktime_t) |
| 1776 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL |
| 1777 | * |
| 1778 | * Make the current task sleep until the given expiry time has |
| 1779 | * elapsed. The routine will return immediately unless |
| 1780 | * the current task state has been set (see set_current_state()). |
| 1781 | * |
| 1782 | * The @delta argument gives the kernel the freedom to schedule the |
| 1783 | * actual wakeup to a time that is both power and performance friendly. |
| 1784 | * The kernel give the normal best effort behavior for "@expires+@delta", |
| 1785 | * but may decide to fire the timer earlier, but no earlier than @expires. |
| 1786 | * |
| 1787 | * You can set the task state as follows - |
| 1788 | * |
| 1789 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to |
| 1790 | * pass before the routine returns. |
| 1791 | * |
| 1792 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
| 1793 | * delivered to the current task. |
| 1794 | * |
| 1795 | * The current task state is guaranteed to be TASK_RUNNING when this |
| 1796 | * routine returns. |
| 1797 | * |
| 1798 | * Returns 0 when the timer has expired otherwise -EINTR |
| 1799 | */ |
| 1800 | int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, |
| 1801 | const enum hrtimer_mode mode) |
| 1802 | { |
| 1803 | return schedule_hrtimeout_range_clock(expires, delta, mode, |
| 1804 | CLOCK_MONOTONIC); |
| 1805 | } |
| 1806 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
| 1807 | |
| 1808 | /** |
| 1809 | * schedule_hrtimeout - sleep until timeout |
| 1810 | * @expires: timeout value (ktime_t) |
| 1811 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL |
| 1812 | * |
| 1813 | * Make the current task sleep until the given expiry time has |
| 1814 | * elapsed. The routine will return immediately unless |
| 1815 | * the current task state has been set (see set_current_state()). |
| 1816 | * |
| 1817 | * You can set the task state as follows - |
| 1818 | * |
| 1819 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to |
| 1820 | * pass before the routine returns. |
| 1821 | * |
| 1822 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
| 1823 | * delivered to the current task. |
| 1824 | * |
| 1825 | * The current task state is guaranteed to be TASK_RUNNING when this |
| 1826 | * routine returns. |
| 1827 | * |
| 1828 | * Returns 0 when the timer has expired otherwise -EINTR |
| 1829 | */ |
| 1830 | int __sched schedule_hrtimeout(ktime_t *expires, |
| 1831 | const enum hrtimer_mode mode) |
| 1832 | { |
| 1833 | return schedule_hrtimeout_range(expires, 0, mode); |
| 1834 | } |
| 1835 | EXPORT_SYMBOL_GPL(schedule_hrtimeout); |